ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
Revision: 4417
Committed: Sun Apr 10 12:57:41 2016 UTC (8 years, 2 months ago) by gezelter
Content type: application/x-tex
File size: 27648 byte(s)
Log Message:
Latest changes

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38 \usepackage{braket}
39
40
41 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
42 %\linenumbers\relax % Commence numbering lines
43
44 \begin{document}
45
46 \title{Supplemental Material for: Real space electrostatics for
47 multipoles. III. Dielectric Properties}
48
49 \author{Madan Lamichhane}
50 \affiliation{Department of Physics, University
51 of Notre Dame, Notre Dame, IN 46556}
52 \author{Thomas Parsons}
53 \affiliation{Department of Chemistry and Biochemistry, University
54 of Notre Dame, Notre Dame, IN 46556}
55 \author{Kathie E. Newman}
56 \affiliation{Department of Physics, University
57 of Notre Dame, Notre Dame, IN 46556}
58 \author{J. Daniel Gezelter}
59 \email{gezelter@nd.edu.}
60 \affiliation{Department of Chemistry and Biochemistry, University
61 of Notre Dame, Notre Dame, IN 46556}
62
63 \date{\today}% It is always \today, today,
64 % but any date may be explicitly specified
65
66 \maketitle
67
68 This document contains derivations of useful relationships for
69 electric field gradients and their interactions with point multipoles.
70 We rely heavily on both the notation and results from Torres del
71 Castillo and Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo} In
72 this work, tensors are expressed in Cartesian components, using at
73 times a dyadic notation. This proves quite useful for our work as we
74 employ toroidal boundary conditions in our simulations, and these are
75 easily implemented in Cartesian coordinate systems.
76
77 An alternative formalism uses the theory of angular momentum and
78 spherical harmonics and is common in standard physics texts such as
79 Jackson,\cite{Jackson98} Morse and Feshbach, and Baym. Because this
80 approach has its own advantages, relationships are provided below
81 comparing that terminology to the Cartesian tensor notation.
82
83 The gradient of the electric field,
84 \begin{equation*}
85 \mathsf{G}(\mathbf{r}) = -\nabla \nabla \Phi(\mathbf{r}),
86 \end{equation*}
87 where $\Phi(\mathbf{r})$ is the electrostatic potential. In a
88 charge-free region of space, $\nabla \cdot \mathbf{E}=0$, and
89 $\mathsf{G}$ is a symmetric traceless tensor. From symmetry
90 arguments, we know that this tensor can be written in terms of just
91 five independent components.
92
93 Following Torres del Castillo and Mend\'{e}z Garido's notation, the
94 gradient of the electric field may also be written in terms of two
95 vectors $\mathbf{a}$ and $\mathbf{b}$,
96 \begin{equation*}
97 G_{ij}=\frac{1}{2} (a_i b_j + a_j b_i) - \frac{1}{3}(\mathbf a \cdot \mathbf b) \delta_{ij} .
98 \end{equation*}
99 If the vectors $\mathbf{a}$ and $\mathbf{b}$ are unit vectors, the
100 electrostatic potential that generates a uniform gradient may be
101 written:
102 \begin{align}
103 \Phi(x, y, z) =\; -g_o & \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
104 & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z + \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right) .
105 \label{eq:appliedPotential}
106 \end{align}
107 Note $\mathbf{a}\cdot\mathbf{a} = \mathbf{b} \cdot \mathbf{b} = 1$,
108 $\mathbf{a} \cdot \mathbf{b}=\cos \psi$, and $g_0$ is the overall
109 strength of the potential.
110
111 An alternative to this notation is to write an electrostatic potential
112 that generates a uniform gradient using the notation of Morse and
113 Feshbach,
114 \begin{equation} \label{eq:quad_phi}
115 \Phi(x,y,z) = - \left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
116 + 3 a_{21}^e \,xz + 3 a_{21}^o \,yz
117 + 6a_{22}^e \,xy + 3 a_{22}^o (x^2 - y^2) \right] .
118 \end{equation}
119 Here we use the standard $(l,m)$ form for the $a_{lm}$ coefficients,
120 with superscript $e$ and $o$ denoting even and odd, respectively.
121 This form makes the functional analogy to ``d'' atomic states
122 apparent. The gradient of the electric field in this form is:
123 \begin{equation} \label{eq:grad_e2}
124 \mathsf{G} =
125 \begin{pmatrix}
126 6 a_{22}^o - a_{20} & 6a_{22}^e & 3a_{21}^e\\
127 6a_{22}^e & -(a_{20}+6a_{22}^o) & 3a_{21}^o \\
128 3a_{21}^e & 3a_{21}^o & 2a_{20} \\
129 \end{pmatrix} \\
130 \end{equation}
131 which can be factored as
132 \begin{gather}
133 \begin{aligned}
134 \mathsf{G} = a_{20}
135 \begin{pmatrix}
136 -1 & 0 & 0\\
137 0 & -1 & 0\\
138 0 & 0 & 2\\
139 \end{pmatrix}
140 +3a_{21}^e
141 \begin{pmatrix}
142 0 & 0 & 1\\
143 0 & 0 & 0\\
144 1 & 0 & 0\\
145 \end{pmatrix}
146 +3a_{21}^o
147 \begin{pmatrix}
148 0 & 0 & 0\\
149 0 & 0 & 1\\
150 0 & 1 & 0\\
151 \end{pmatrix}
152 +6a_{22}^e
153 \begin{pmatrix}
154 0 & 1 & 0\\
155 1 & 0 & 0\\
156 0 & 0 & 0\\
157 \end{pmatrix}
158 +6a_{22}^o
159 \begin{pmatrix}
160 1 & 0 & 0\\
161 0 & -1 & 0\\
162 0 & 0 & 0\\
163 \end{pmatrix}
164 \end{aligned}
165 \label{eq:intro_tensors}
166 \end{gather}
167 The five matrices in the expression above represent five different
168 symmetric traceless tensors of rank 2. The trace corresponds to
169 $\nabla \cdot \mathbf{E} = 0$, consistent with being in a charge-free
170 region. Using the Cartesian notation of
171 Eq. (\ref{eq:appliedPotential}), this tensor is written:
172 \begin{equation}
173 \mathsf{G} =\nabla\bf{E}
174 = \frac{g_o}{2}\left(\begin{array}{ccc}
175 2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
176 (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
177 (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
178 \end{array} \right).
179 \label{eq:GC}
180 \end{equation}
181
182 It is useful to find vectors $\mathbf a$ and $\mathbf b$ that generate
183 the five types of tensors shown in Eq. (\ref{eq:intro_tensors}). If
184 the two vectors are co-linear, e.g., $\psi=0$, $\mathbf{a}=(0,0,1)$ and
185 $\mathbf{b}=(0,0,1)$, then
186 \begin{equation*}
187 \mathsf{G} = \frac{g_0}{3}
188 \begin{pmatrix}
189 -1 & 0 & 0 \\
190 0 & -1 & 0 \\
191 0 & 0 & 2 \\
192 \end{pmatrix} ,
193 \end{equation*}
194 which is the $a_{20}$ symmetry.
195 To generate the $a_{22}^o$ symmetry, we take:
196 $\mathbf{a}= (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},0)$ and
197 $\mathbf{b}=(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}},0)$
198 and find:
199 \begin{equation*}
200 \mathsf{G}=\frac{g_0}{2}
201 \begin{pmatrix}
202 1 & 0 & 0 \\
203 0 & -1 & 0 \\
204 0 & 0 & 0 \\
205 \end{pmatrix} .
206 \end{equation*}
207 To generate the $a_{22}^e$ symmetry, we take:
208 $\mathbf{a}= (1, 0, 0)$ and $\mathbf{b} = (0,1,0)$ and find:
209 \begin{equation*}
210 \mathsf{G}=\frac{g_0}{2}
211 \begin{pmatrix}
212 0 & 1 & 0 \\
213 1 & 0 & 0 \\
214 0 & 0 & 0 \\
215 \end{pmatrix} .
216 \end{equation*}
217 The pattern is straightforward to continue for the other symmetries.
218
219 Using Eq. (\ref{eq:quad_phi}) the electric field is written:
220 \begin{equation}
221 \mathbf{E}
222 = \left(\begin{array}{ccc}
223 \left(-a_{20} + 6a_{22}^o \right) x + 6a_{22}^e y + 3a_{21}^e z \\
224 6a_{22}^e x+(-a_{20} - 6a_{22}^o) y + 3a_{21}^e z \\
225 3a_{21}^e x +3a_{21}^o y + 2a_{20} z
226 \end{array} \right).
227 \label{eq:MFE}
228 \end{equation}
229 while using Eq. (\ref{eq:appliedPotential}), we find:
230 \begin{equation}
231 \mathbf{E}
232 =\frac{g_o}{2} \left(\begin{array}{ccc}
233 2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+ (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
234 (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y + (a_2\; b_3 \;+ a_3\; b_3)\;z \\
235 (a_3\; b_1 \;+ a_3\; b_2)\;x + (a_3\; b_2 \;+ a_2\; b_3)\;y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
236 \end{array} \right).
237 \label{eq:CE}
238 \end{equation}
239 We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo}
240 to be helpful when creating specific types of constant gradient
241 electric fields in simulations. For this reason,
242 Eqs. (\ref{eq:appliedPotential}), (\ref{eq:GC}), and (\ref{eq:CE}) are
243 used in our code.
244
245 \section{Point-multipolar interactions with a spatially-varying electric field}
246
247 This section develops formulas for the force and torque exerted by an
248 external electric field, $\mathbf{E}(\mathbf{r})$, on object
249 $a$. Object $a$ has an embedded collection of charges and in
250 simulations will represent a molecule, ion, or a coarse-grained
251 substructure. We describe the charge distributions using primitive
252 multipoles defined in Ref. \onlinecite{PaperI} by
253 \begin{align}
254 C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
255 D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
256 Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
257 r_{k\alpha} r_{k\beta},
258 \label{eq:quadrupole}
259 \end{align}
260 where $\mathbf{r}_k$ is the local coordinate system for the object
261 (usually the center of mass of object $a$). Components of vectors and
262 tensors are given using Green indices, using the Einstein repeated
263 summation notation. Note that the definition of the primitive
264 quadrupole here differs from the standard traceless form, and contains
265 an additional Taylor-series based factor of $1/2$. In Ref.
266 \onlinecite{PaperI}, we derived the forces and torques each object
267 exerts on the other objects in the system.
268
269 Here we must also consider an external electric field that varies in
270 space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
271 object $a$ will then experience a slightly different field. This
272 electric field can be expanded in a Taylor series around the local
273 origin of each object. For a particular charge $q_k$, the electric
274 field at that site's position is given by:
275 \begin{equation}
276 \mathbf{E}(\mathbf{r}_k) = E_\gamma|_{\mathbf{r}_k = 0} + \nabla_\delta E_\gamma |_{\mathbf{r}_k = 0} r_{k \delta}
277 + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0} r_{k \delta}
278 r_{k \varepsilon} + ...
279 \end{equation}
280 Note that once one shrinks object $a$ to point size, the ${E}_\gamma$
281 terms are all evaluated at the center of the object (now a
282 point). Thus later the ${E}_\gamma$ terms can be written using the
283 same global origin for all objects $a, b, c, ...$ in the system. The
284 force exerted on object $a$ by the electric field is given by,
285
286 \begin{align}
287 F^a_\gamma = \sum_{k \textrm{~in~} a} E_\gamma(\mathbf{r}_k) &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
288 + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
289 r_{k \varepsilon} + ... \rbrace \\
290 &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
291 + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
292 ...
293 \end{align}
294 Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
295
296 Similarly, the torque exerted by the field on $a$ can be expressed as
297 \begin{align}
298 \tau^a_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
299 & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
300 r_{k\beta} E_\gamma(\mathbf r_k) \\
301 & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
302 + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
303 E_\gamma + ...
304 \end{align}
305 We note that the Levi-Civita symbol can be eliminated by utilizing the matrix cross product as defined in Ref. \onlinecite{Smith98}:
306 \begin{equation}
307 \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
308 \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
309 -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
310 \right]
311 \label{eq:matrixCross}
312 \end{equation}
313 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
314 the matrix indices. Finally, the interaction energy $U^a$ of object $a$ with the external field is given by,
315 \begin{equation}
316 U^a = \sum_{k~in~a} q_k \phi_k (\mathrm{r}_k)
317 \end{equation}
318 Performing another Taylor series expansion about the local body origin,
319 \begin{equation}
320 \phi({\mathbf{r}_k}) = \phi|_{\mathbf{r}_k = 0 } + r_{k \alpha} \nabla_\alpha \phi_\alpha|_{\mathbf{r}_k = 0 } + \frac{1}{2} r_{k\alpha}r_{k\beta}\nabla_\alpha \nabla_\beta \phi|_{\mathbf{r}_k = 0} + ...
321 \end{equation}
322 Writing this in terms of the global origin $\mathrm{r}$, we find
323 \begin{equation}
324 U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ...
325 \end{equation}
326 The results has been summarized in Table I.
327
328 \begin{table}
329 \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
330 $(\mathbf{\tau})$ expressions for a multipolar site $\mathrm{r}$ in an
331 electric field, $\mathbf{E}(\mathbf{r})$.
332 \label{tab:UFT}}
333 \begin{tabular}{r|ccc}
334 & Charge & Dipole & Quadrupole \\ \hline
335 $U(\mathbf{r})$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
336 $\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
337 $\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
338 \end{tabular}
339 \end{table}
340
341
342 \section{Boltzmann averages for orientational polarization}
343 The dielectric properties of the system is mainly arise from two
344 different ways: i) the applied field distort the charge distributions
345 so it produces an induced multipolar moment in each molecule; and ii)
346 the applied field tends to line up originally randomly oriented
347 molecular moment towards the direction of the applied field. In this
348 study, we basically focus on the orientational contribution in the
349 dielectric properties. If we consider a system of molecules in the
350 presence of external field perturbation, the perturbation experienced
351 by any molecule will not be only due to external field or field
352 gradient but also due to the field or field gradient produced by the
353 all other molecules in the system. In the following subsections
354 \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
355 we will discuss about the molecular polarization only due to external
356 field perturbation. The contribution of the field or field gradient
357 due to all other molecules will be taken into account while
358 calculating correction factor in the paper.
359
360 \subsection{Dipoles}
361 \label{subsec:boltzAverage-Dipole}
362 Consider a system of molecules, each with permanent dipole moment
363 $p_o$. In the absense of external field, thermal agitation orients the
364 dipoles randomly, reducing the system moment to zero. External fields
365 will tend to line up the dipoles in the direction of applied field.
366 Here we have considered net field from all other molecules is
367 considered to be zero. Therefore the total Hamiltonian of each
368 molecule is,\cite{Jackson98}
369 \begin{equation}
370 H = H_o - \mathbf{p_o}\cdot \mathbf{E},
371 \end{equation}
372 where $H_o$ is a function of the internal coordinates of the molecule.
373 The Boltzmann average of the dipole moment is given by,
374 \begin{equation}
375 \braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\; e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}},
376 \end{equation}
377 where $\bf{E}$ is selected along z-axis. If we consider that the
378 applied field is small, \textit{i.e.} $\frac{p_oE\; cos\theta}{k_B T} << 1$,
379 \begin{equation}
380 \braket{p_{mol}} \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E,
381 \end{equation}
382 where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular
383 polarizability. The orientational polarization depends inversely on
384 the temperature and applied field must overcome the thermal agitation.
385
386 \subsection{Quadrupoles}
387 \label{subsec:boltzAverage-Quad}
388 Consider a system of molecules with permanent quadrupole moment
389 $q_{\alpha\beta}$. The average quadrupole moment at temperature T in
390 the presence of uniform applied field gradient is given
391 by,\cite{AduGyamfi78, AduGyamfi81}
392 \begin{equation}
393 \braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
394 \label{boltzQuad}
395 \end{equation}
396 where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
397 sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
398 angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
399 a quadrupole in the gradient of the
400 applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation,
401 \begin{equation}
402 \begin{split}
403 &q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
404 &H = H_o - q:{\nabla}\mathbf{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu.
405 \end{split}
406 \label{energyQuad}
407 \end{equation}
408 Here the starred tensors are the components in the body fixed
409 frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad})
410 and taking linear terms in the expansion we get,
411 \begin{equation}
412 \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
413 \end{equation}
414 where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
415 the body fixed co-ordinates to the space co-ordinates,
416 \[\eta_{\alpha\alpha'}
417 = \left(\begin{array}{ccc}
418 cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
419 cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
420 sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
421 \end{array} \right).\]
422 Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
423 and $8 \pi^2 /3\;{\nabla}.\mathbf{E}\; Tr(q^*) $ respectively. The
424 second term vanishes for charge free space, ${\nabla}.\mathbf{E} \; = \; 0$. Similarly integration of the
425 1st term in the numerator produces
426 $8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
427 $8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
428 {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
429 if ${\nabla}.\mathbf{E} \; = \; 0$,
430 $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
431 ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
432 Boltzmann average of a quadrupole moment can be written as,
433
434 \begin{equation}
435 \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
436 \end{equation}
437 where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupole polarizablity and ${\bar{q_o}}^2=
438 3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
439
440 % \section{External application of a uniform field gradient}
441 % \label{Ap:fieldOrGradient}
442
443 % To satisfy the condition $ \nabla \cdot \mathbf{E} = 0 $, within the box of molecules we have taken electrostatic potential in the following form
444 % \begin{equation}
445 % \begin{split}
446 % \phi(x, y, z) =\; &-g_o \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
447 % & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z + \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right),
448 % \end{split}
449 % \label{eq:appliedPotential}
450 % \end{equation}
451 % where $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are basis vectors determine coefficients in x, y, and z direction. And $g_o$ and $\psi$ are overall strength of the potential and angle between basis vectors respectively. The electric field derived from the above potential is,
452 % \[\mathbf{E}
453 % = \frac{g_o}{2} \left(\begin{array}{ccc}
454 % 2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+ (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
455 % (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y + (a_2\; b_3 \;+ a_3\; b_2)\;z \\
456 % (a_3\; b_1 \;+ a_3\; b_2)\;x + (a_3\; b_2 \;+ a_2\; b_3)y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
457 % \end{array} \right).\]
458 % The gradient of the applied field derived from the potential can be written in the following form,
459 % \[\nabla\mathbf{E}
460 % = \frac{g_o}{2}\left(\begin{array}{ccc}
461 % 2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
462 % (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_2) \\
463 % (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
464 % \end{array} \right).\]
465
466
467
468 \section{Gradient of the field due to quadrupolar polarization}
469 \label{singularQuad}
470 In this section, we will discuss the gradient of the field produced by
471 quadrupolar polarization. For this purpose, we consider a distribution
472 of charge ${\rho}(\mathbf r)$ which gives rise to an electric field
473 $\mathbf{E}(\mathbf r)$ and gradient of the field ${\nabla} \mathbf{E}(\mathbf r)$
474 throughout space. The total gradient of the electric field over volume
475 due to the all charges within the sphere of radius $R$ is given by
476 (cf. Jackson equation 4.14):
477 \begin{equation}
478 \int_{r<R} {\nabla}\mathbf{E}\;d^3r = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega
479 \label{eq:8}
480 \end{equation}
481 where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
482 of the surface of the sphere,
483 $\hat{n} = sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
484 cos[\theta]\hat{z}$
485 in spherical coordinates. For the charge density ${\rho}(\mathbf r')$, the
486 total gradient of the electric field can be written as, ~\cite{Jackson98}
487 \begin{equation}
488 \int_{r<R} {\nabla}\mathbf {E}\; d^3r=-\int_{r=R} R^2\; {\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int \frac{\rho(\mathbf r')}{|\mathbf{r}-\mathbf{r}'|}\;d^3r'\right) \hat{n}\; d\Omega
489 \label{eq:9}
490 \end{equation}
491 The radial function in the equation (\ref{eq:9}) can be expressed in
492 terms of spherical harmonics as,\cite{Jackson98}
493 \begin{equation}
494 \frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
495 \label{eq:10}
496 \end{equation}
497 If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
498 \begin{equation}
499 \begin{split}
500 \int_{r<R} {\nabla}\mathbf{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
501 &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
502 '
503 \end{split}
504 \label{eq:11}
505 \end{equation}
506 The gradient of the product of radial function and spherical harmonics
507 is given by:\cite{Arfkan}
508 \begin{equation}
509 \begin{split}
510 {\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
511 {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
512 \end{split}
513 \label{eq:12}
514 \end{equation}
515 Using equation (\ref{eq:12}) we get,
516 \begin{equation}
517 {\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
518 \label{eq:13}
519 \end{equation}
520 where $ Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical harmonics \cite{Arfkan}. Using Clebsch-Gorden coefficients $C(l+1, 1, l|m_1,m_2,m) $, equation \ref{eq:14} can be written in spherical harmonics,
521 \begin{equation}
522 Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}.
523 \label{eq:14}
524 \end{equation}
525 Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
526 in terms of Cartesian coordinates,
527 \begin{equation}
528 {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}.
529 \label{eq:15}
530 \end{equation}
531 The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below,
532 \begin{equation}
533 \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right).
534 \label{eq:16}
535 \end{equation}
536 The surface integral of the product of $\hat{n}$ and
537 ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
538 \begin{equation}
539 \begin{split}
540 \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
541 &= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
542 &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
543 \end{split}
544 \label{eq:17}
545 \end{equation}
546 where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
547 $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
548 \delta_{ll'}\delta_{mm'} $.
549 Non-vanishing values of equation \ref{eq:17} require $l = 0$,
550 therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
551 1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
552 provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
553 modified,
554 \begin{equation}
555 \begin{split}
556 \int_{r<R} {\nabla}\mathbf{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
557 1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r' \\
558 &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
559 &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
560 \end{split}
561 \label{eq:19}
562 \end{equation}
563 In the last step, the charge density was integrated over the sphere, yielding a total charge $\mathrm{C_total}$.Equation (\ref{eq:19}) gives the total gradient of the field over a sphere due to the distribution of the charges.
564 For quadrupolar fluids the total charge within a sphere is zero, therefore
565 $ \int_{r<R} {\nabla}\mathbf{E}\;d^3r = 0 $. Hence the quadrupolar
566 polarization produces zero net gradient of the field inside the
567 sphere.
568
569
570 \bibliography{dielectric_new}
571 \end{document}
572 %
573 % ****** End of file multipole.tex ******