| 1 |
gezelter |
3986 |
% ****** Start of file aipsamp.tex ****** |
| 2 |
|
|
% |
| 3 |
|
|
% This file is part of the AIP files in the AIP distribution for REVTeX 4. |
| 4 |
|
|
% Version 4.1 of REVTeX, October 2009 |
| 5 |
|
|
% |
| 6 |
|
|
% Copyright (c) 2009 American Institute of Physics. |
| 7 |
|
|
% |
| 8 |
|
|
% See the AIP README file for restrictions and more information. |
| 9 |
|
|
% |
| 10 |
|
|
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed |
| 11 |
|
|
% as well as the rest of the prerequisites for REVTeX 4.1 |
| 12 |
|
|
% |
| 13 |
|
|
% It also requires running BibTeX. The commands are as follows: |
| 14 |
|
|
% |
| 15 |
|
|
% 1) latex aipsamp |
| 16 |
|
|
% 2) bibtex aipsamp |
| 17 |
|
|
% 3) latex aipsamp |
| 18 |
|
|
% 4) latex aipsamp |
| 19 |
|
|
% |
| 20 |
|
|
% Use this file as a source of example code for your aip document. |
| 21 |
|
|
% Use the file aiptemplate.tex as a template for your document. |
| 22 |
|
|
\documentclass[% |
| 23 |
|
|
aip,jcp, |
| 24 |
|
|
amsmath,amssymb, |
| 25 |
|
|
preprint,% |
| 26 |
|
|
% reprint,% |
| 27 |
|
|
%author-year,% |
| 28 |
|
|
%author-numerical,% |
| 29 |
|
|
jcp]{revtex4-1} |
| 30 |
|
|
|
| 31 |
|
|
\usepackage{graphicx}% Include figure files |
| 32 |
|
|
\usepackage{dcolumn}% Align table columns on decimal point |
| 33 |
|
|
%\usepackage{bm}% bold math |
| 34 |
|
|
\usepackage{times} |
| 35 |
|
|
\usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions |
| 36 |
|
|
\usepackage{url} |
| 37 |
|
|
\usepackage{rotating} |
| 38 |
|
|
|
| 39 |
|
|
%\usepackage[mathlines]{lineno}% Enable numbering of text and display math |
| 40 |
|
|
%\linenumbers\relax % Commence numbering lines |
| 41 |
|
|
|
| 42 |
|
|
\begin{document} |
| 43 |
|
|
|
| 44 |
|
|
\title[Taylor-shifted and Gradient-shifted electrostatics for multipoles] |
| 45 |
|
|
{Supplemental Material for: Real space alternatives to the Ewald |
| 46 |
|
|
Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles} |
| 47 |
|
|
|
| 48 |
|
|
\author{Madan Lamichhane} |
| 49 |
|
|
\affiliation{Department of Physics, University |
| 50 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 51 |
|
|
|
| 52 |
|
|
\author{J. Daniel Gezelter} |
| 53 |
|
|
\email{gezelter@nd.edu.} |
| 54 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
| 55 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 56 |
|
|
|
| 57 |
|
|
\author{Kathie E. Newman} |
| 58 |
|
|
\affiliation{Department of Physics, University |
| 59 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 60 |
|
|
|
| 61 |
|
|
\date{\today}% It is always \today, today, |
| 62 |
|
|
% but any date may be explicitly specified |
| 63 |
|
|
|
| 64 |
|
|
\maketitle |
| 65 |
|
|
|
| 66 |
|
|
\section{Interaction Energies in body-frame coordiantes} |
| 67 |
|
|
% |
| 68 |
|
|
% |
| 69 |
|
|
%Energy in body coordinate form --------------------------------------------------------------- |
| 70 |
|
|
% |
| 71 |
|
|
Although they are not as widely used as space-frame coordinates, the |
| 72 |
|
|
body-frame versions may occasionally prove useful. In this section, |
| 73 |
|
|
we list the interaction energies, forces, and torques in terms of the |
| 74 |
|
|
body coordinates for both the Taylor-Shifted and Gradient-Shifted |
| 75 |
|
|
approximations. The radial functions ($v_{ij}(r)$ and $w_{\alpha}(r)$) |
| 76 |
|
|
are given in the Tables I and II in the paper. These functions depend |
| 77 |
|
|
on the choice of electrostatic kernel as well as the approximation |
| 78 |
|
|
method being utilized. Again, all energy, force, and torque equations |
| 79 |
|
|
have an an implied factor of $1/4\pi \epsilon_0$: |
| 80 |
|
|
% |
| 81 |
|
|
% u ca cb |
| 82 |
|
|
% |
| 83 |
|
|
\begin{align} |
| 84 |
|
|
U_{C_{\bf a}C_{\bf b}}(r)=& |
| 85 |
|
|
C_{\bf a} C_{\bf b} v_{01}(r) |
| 86 |
|
|
\\ |
| 87 |
|
|
% |
| 88 |
|
|
% u ca db |
| 89 |
|
|
% |
| 90 |
|
|
U_{C_{\bf a}D_{\bf b}}(r)=& |
| 91 |
|
|
C_{\bf a} |
| 92 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r) |
| 93 |
|
|
\\ |
| 94 |
|
|
% |
| 95 |
|
|
% u ca qb |
| 96 |
|
|
% |
| 97 |
|
|
U_{C_{\bf a}Q_{\bf b}}(r)=& |
| 98 |
|
|
C_{\bf a }\text{Tr}Q_{\bf b} |
| 99 |
|
|
v_{21}(r) +C_{\bf a} |
| 100 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) |
| 101 |
|
|
v_{22}(r) \\ |
| 102 |
|
|
% |
| 103 |
|
|
% u da cb |
| 104 |
|
|
% |
| 105 |
|
|
U_{D_{\bf a}C_{\bf b}}(r)=& |
| 106 |
|
|
-C_{\bf b} |
| 107 |
|
|
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r) |
| 108 |
|
|
\\ |
| 109 |
|
|
% |
| 110 |
|
|
% u da db |
| 111 |
|
|
% |
| 112 |
|
|
% 1 |
| 113 |
|
|
U_{D_{\bf a}D_{\bf b}}(r)=& |
| 114 |
|
|
- \sum_{mn} D_{\mathbf {a}m} |
| 115 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 116 |
|
|
D_{\mathbf{b}n} v_{21}(r) \nonumber \\ |
| 117 |
|
|
% 2 |
| 118 |
|
|
&- |
| 119 |
|
|
\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
| 120 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} |
| 121 |
|
|
v_{22}(r) |
| 122 |
|
|
\\ |
| 123 |
|
|
% |
| 124 |
|
|
% u da qb |
| 125 |
|
|
% |
| 126 |
|
|
% 1 |
| 127 |
|
|
U_{D_{\bf a}Q_{\bf b}}(r)=& |
| 128 |
|
|
-\left( |
| 129 |
|
|
\text{Tr}Q_{\mathbf{b}} |
| 130 |
|
|
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} |
| 131 |
|
|
+2\sum_{lmn}D_{\mathbf{a}l} |
| 132 |
|
|
(\hat{a}_l \cdot \hat{b}_m) |
| 133 |
|
|
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
| 134 |
|
|
\right) v_{31}(r) \nonumber \\ |
| 135 |
|
|
% 2 |
| 136 |
|
|
&- |
| 137 |
|
|
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
| 138 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 139 |
|
|
Q_{{\mathbf b}mn} |
| 140 |
|
|
(\hat{b}_n \cdot \hat{r}) v_{32}(r) |
| 141 |
|
|
\\ |
| 142 |
|
|
% |
| 143 |
|
|
% u qa cb |
| 144 |
|
|
% |
| 145 |
|
|
U_{Q_{\bf a}C_{\bf b}}(r)=& |
| 146 |
|
|
C_{\bf b }\text{Tr}Q_{\bf a} v_{21}(r) |
| 147 |
|
|
+C_{\bf b} |
| 148 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r) |
| 149 |
|
|
\\ |
| 150 |
|
|
% |
| 151 |
|
|
% u qa db |
| 152 |
|
|
% |
| 153 |
|
|
%1 |
| 154 |
|
|
U_{Q_{\bf a}D_{\bf b}}(r)=& |
| 155 |
|
|
\left( |
| 156 |
|
|
\text{Tr}Q_{\mathbf{a}} |
| 157 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} |
| 158 |
|
|
+2\sum_{lmn}D_{\mathbf{b}l} |
| 159 |
|
|
(\hat{b}_l \cdot \hat{a}_m) |
| 160 |
|
|
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
| 161 |
|
|
\right) v_{31}(r) \nonumber \\ |
| 162 |
|
|
% 2 |
| 163 |
|
|
&+ |
| 164 |
|
|
\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
| 165 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 166 |
|
|
Q_{{\mathbf a}mn} |
| 167 |
|
|
(\hat{a}_n \cdot \hat{r}) v_{32}(r) |
| 168 |
|
|
\end{align} |
| 169 |
|
|
|
| 170 |
|
|
\begin{align} |
| 171 |
|
|
% |
| 172 |
|
|
% u qa qb |
| 173 |
|
|
% |
| 174 |
|
|
%1 |
| 175 |
|
|
U_{Q_{\bf a}Q_{\bf b}}(r)=& |
| 176 |
|
|
\Bigl[ |
| 177 |
|
|
\text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}} |
| 178 |
|
|
+2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
| 179 |
|
|
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
| 180 |
|
|
(\hat{a}_m \cdot \hat{b}_n) \Bigr] |
| 181 |
|
|
v_{41}(r) \nonumber \\ |
| 182 |
|
|
% 2 |
| 183 |
|
|
&+ |
| 184 |
|
|
\Bigl[ \text{Tr}Q_{\mathbf{a}} |
| 185 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{b}_l ) |
| 186 |
|
|
Q_{{\mathbf b}lm} |
| 187 |
|
|
(\hat{b}_m \cdot \hat{r}) |
| 188 |
|
|
+\text{Tr}Q_{\mathbf{b}} |
| 189 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l ) |
| 190 |
|
|
Q_{{\mathbf a}lm} |
| 191 |
|
|
(\hat{a}_m \cdot \hat{r}) \nonumber \\ |
| 192 |
|
|
% 3 |
| 193 |
|
|
&+4 \sum_{lmnp} |
| 194 |
|
|
(\hat{r} \cdot \hat{a}_l ) |
| 195 |
|
|
Q_{{\mathbf a}lm} |
| 196 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 197 |
|
|
Q_{{\mathbf b}np} |
| 198 |
|
|
(\hat{b}_p \cdot \hat{r}) |
| 199 |
|
|
\Bigr] v_{42}(r) \nonumber \\ |
| 200 |
|
|
% 4 |
| 201 |
|
|
&+ |
| 202 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) |
| 203 |
|
|
Q_{{\mathbf a}lm} |
| 204 |
|
|
(\hat{a}_m \cdot \hat{r}) |
| 205 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) |
| 206 |
|
|
Q_{{\mathbf b}np} |
| 207 |
|
|
(\hat{b}_p \cdot \hat{r}) v_{43}(r). |
| 208 |
|
|
\end{align} |
| 209 |
|
|
|
| 210 |
|
|
|
| 211 |
|
|
% BODY coordinates force equations -------------------------------------------- |
| 212 |
|
|
% |
| 213 |
|
|
% |
| 214 |
|
|
Here are the force equations written in terms of body coordinates. |
| 215 |
|
|
% |
| 216 |
|
|
% f ca cb |
| 217 |
|
|
% |
| 218 |
|
|
\begin{align} |
| 219 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =& |
| 220 |
|
|
C_{\bf a} C_{\bf b} w_a(r) \hat{r} |
| 221 |
|
|
\\ |
| 222 |
|
|
% |
| 223 |
|
|
% f ca db |
| 224 |
|
|
% |
| 225 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =& |
| 226 |
|
|
C_{\bf a} |
| 227 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r} |
| 228 |
|
|
+C_{\bf a} |
| 229 |
|
|
\sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r) |
| 230 |
|
|
\\ |
| 231 |
|
|
% |
| 232 |
|
|
% f ca qb |
| 233 |
|
|
% |
| 234 |
|
|
% 1 |
| 235 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =& |
| 236 |
|
|
C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r} |
| 237 |
|
|
+ 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot |
| 238 |
|
|
\hat{r}) w_e(r) \nonumber \\ |
| 239 |
|
|
% 2 |
| 240 |
|
|
&+C_{\bf a} |
| 241 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r} \\ |
| 242 |
|
|
% |
| 243 |
|
|
% f da cb |
| 244 |
|
|
% |
| 245 |
|
|
\mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =& |
| 246 |
|
|
-C_{\bf{b}} |
| 247 |
|
|
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r} |
| 248 |
|
|
-C_{\bf{b}} |
| 249 |
|
|
\sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r) |
| 250 |
|
|
\\ |
| 251 |
|
|
% |
| 252 |
|
|
% f da db |
| 253 |
|
|
% |
| 254 |
|
|
% 1 |
| 255 |
|
|
\mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =& |
| 256 |
|
|
-\sum_{mn} D_{\mathbf {a}m} |
| 257 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 258 |
|
|
D_{\mathbf{b}n} w_d(r) \hat{r} |
| 259 |
|
|
-\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
| 260 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} |
| 261 |
|
|
\nonumber \\ |
| 262 |
|
|
% 2 |
| 263 |
|
|
& + |
| 264 |
|
|
\Bigl[ \sum_m D_{\mathbf {a}m} |
| 265 |
|
|
\hat{a}_m \sum_n D_{\mathbf{b}n} |
| 266 |
|
|
(\hat{b}_n \cdot \hat{r}) |
| 267 |
|
|
+ \sum_m D_{\mathbf {b}m} |
| 268 |
|
|
\hat{b}_m \sum_n D_{\mathbf{a}n} |
| 269 |
|
|
(\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\ |
| 270 |
|
|
% |
| 271 |
|
|
% f da qb |
| 272 |
|
|
% |
| 273 |
|
|
% 1 |
| 274 |
|
|
\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& |
| 275 |
|
|
- \Bigl[ |
| 276 |
|
|
\text{Tr}Q_{\mathbf{b}} |
| 277 |
|
|
\sum_l D_{\mathbf{a}l} \hat{a}_l |
| 278 |
|
|
+2\sum_{lmn} D_{\mathbf{a}l} |
| 279 |
|
|
(\hat{a}_l \cdot \hat{b}_m) |
| 280 |
|
|
Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \nonumber \\ |
| 281 |
|
|
% 3 |
| 282 |
|
|
& - \Bigl[ |
| 283 |
|
|
\text{Tr}Q_{\mathbf{b}} |
| 284 |
|
|
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} |
| 285 |
|
|
+2\sum_{lmn}D_{\mathbf{a}l} |
| 286 |
|
|
(\hat{a}_l \cdot \hat{b}_m) |
| 287 |
|
|
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} |
| 288 |
|
|
\nonumber \\ |
| 289 |
|
|
% 4 |
| 290 |
|
|
&+ |
| 291 |
|
|
\Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l |
| 292 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 293 |
|
|
Q_{{\mathbf b}mn} |
| 294 |
|
|
(\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l) |
| 295 |
|
|
D_{\mathbf{a}l} |
| 296 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 297 |
|
|
Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r) \nonumber \\ |
| 298 |
|
|
% 6 |
| 299 |
|
|
& - |
| 300 |
|
|
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
| 301 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 302 |
|
|
Q_{{\mathbf b}mn} |
| 303 |
|
|
(\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r} |
| 304 |
|
|
\\ |
| 305 |
|
|
% |
| 306 |
|
|
% force qa cb |
| 307 |
|
|
% |
| 308 |
|
|
% 1 |
| 309 |
|
|
\mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =& |
| 310 |
|
|
C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r) |
| 311 |
|
|
+ 2C_{\bf b } \sum_l \hat{a}_l Q_{{\mathbf |
| 312 |
|
|
a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \nonumber \\ |
| 313 |
|
|
% 2 |
| 314 |
|
|
& +C_{\bf b} |
| 315 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r} |
| 316 |
|
|
\end{align} |
| 317 |
|
|
|
| 318 |
|
|
\begin{align} |
| 319 |
|
|
% |
| 320 |
|
|
% f qa db |
| 321 |
|
|
% |
| 322 |
|
|
% 1 |
| 323 |
|
|
\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =& |
| 324 |
|
|
\Bigl[ |
| 325 |
|
|
\text{Tr}Q_{\mathbf{a}} |
| 326 |
|
|
\sum_l D_{\mathbf{b}l} \hat{b}_l |
| 327 |
|
|
+2\sum_{lmn} D_{\mathbf{b}l} |
| 328 |
|
|
(\hat{b}_l \cdot \hat{a}_m) |
| 329 |
|
|
Q_{\mathbf{a}mn} \hat{a}_n \Bigr] |
| 330 |
|
|
w_g(r) \nonumber \\ |
| 331 |
|
|
% 3 |
| 332 |
|
|
& + \Bigl[ |
| 333 |
|
|
\text{Tr}Q_{\mathbf{a}} |
| 334 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} |
| 335 |
|
|
+2\sum_{lmn}D_{\mathbf{b}l} |
| 336 |
|
|
(\hat{b}_l \cdot \hat{a}_m) |
| 337 |
|
|
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} |
| 338 |
|
|
\nonumber \\ |
| 339 |
|
|
% 4 |
| 340 |
|
|
& + \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l |
| 341 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 342 |
|
|
Q_{{\mathbf a}mn} |
| 343 |
|
|
(\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l) |
| 344 |
|
|
D_{\mathbf{b}l} |
| 345 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 346 |
|
|
Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \nonumber \\ |
| 347 |
|
|
% 6 |
| 348 |
|
|
& +\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
| 349 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 350 |
|
|
Q_{{\mathbf a}mn} |
| 351 |
|
|
(\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r} |
| 352 |
|
|
\\ |
| 353 |
|
|
% |
| 354 |
|
|
% f qa qb |
| 355 |
|
|
% |
| 356 |
|
|
\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =& |
| 357 |
|
|
\Bigl[ |
| 358 |
|
|
\text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}} |
| 359 |
|
|
+ 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
| 360 |
|
|
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
| 361 |
|
|
(\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r} \nonumber \\ |
| 362 |
|
|
&+ \Bigl[ |
| 363 |
|
|
2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m |
| 364 |
|
|
+ 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) |
| 365 |
|
|
Q_{\mathbf{b}lm} \hat{b}_m \nonumber \\ |
| 366 |
|
|
&+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) |
| 367 |
|
|
+ 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p |
| 368 |
|
|
\Bigr] w_n(r) \nonumber \\ |
| 369 |
|
|
&+ |
| 370 |
|
|
\Bigl[ \text{Tr}Q_{\mathbf{a}} |
| 371 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r}) |
| 372 |
|
|
+ \text{Tr}Q_{\mathbf{b}} |
| 373 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\ |
| 374 |
|
|
&+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) |
| 375 |
|
|
Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \nonumber \\ |
| 376 |
|
|
% |
| 377 |
|
|
&+ \Bigl[ |
| 378 |
|
|
2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m |
| 379 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot |
| 380 |
|
|
\hat{r}) \nonumber \\ |
| 381 |
|
|
&+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) |
| 382 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] |
| 383 |
|
|
w_o(r) \hat{r} \nonumber \\ |
| 384 |
|
|
& + |
| 385 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) |
| 386 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r} |
| 387 |
|
|
\end{align} |
| 388 |
|
|
% |
| 389 |
|
|
Here we list the form of the non-zero damped shifted multipole torques showing |
| 390 |
|
|
explicitly dependences on body axes: |
| 391 |
|
|
% |
| 392 |
|
|
% t ca db |
| 393 |
|
|
% |
| 394 |
|
|
\begin{align} |
| 395 |
|
|
\mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =& |
| 396 |
|
|
C_{\bf a} |
| 397 |
|
|
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r) |
| 398 |
|
|
\\ |
| 399 |
|
|
% |
| 400 |
|
|
% t ca qb |
| 401 |
|
|
% |
| 402 |
|
|
\mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =& |
| 403 |
|
|
2C_{\bf a} |
| 404 |
|
|
\sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m |
| 405 |
|
|
\cdot \hat{r}) v_{22}(r) |
| 406 |
|
|
\\ |
| 407 |
|
|
% |
| 408 |
|
|
% t da cb |
| 409 |
|
|
% |
| 410 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =& |
| 411 |
|
|
-C_{\bf b} |
| 412 |
|
|
\sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r) |
| 413 |
|
|
\\ |
| 414 |
|
|
% |
| 415 |
|
|
% |
| 416 |
|
|
% ta da db |
| 417 |
|
|
% |
| 418 |
|
|
% 1 |
| 419 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =& |
| 420 |
|
|
\sum_{mn} D_{\mathbf {a}m} |
| 421 |
|
|
(\hat{a}_m \times \hat{b}_n) |
| 422 |
|
|
D_{\mathbf{b}n} v_{21}(r) \nonumber \\ |
| 423 |
|
|
% 2 |
| 424 |
|
|
&- |
| 425 |
|
|
\sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m} |
| 426 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r) |
| 427 |
|
|
\\ |
| 428 |
|
|
% |
| 429 |
|
|
% tb da db |
| 430 |
|
|
% |
| 431 |
|
|
% 1 |
| 432 |
|
|
\mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =& |
| 433 |
|
|
- \sum_{mn} D_{\mathbf {a}m} |
| 434 |
|
|
(\hat{a}_m \times \hat{b}_n) |
| 435 |
|
|
D_{\mathbf{b}n} v_{21}(r) \nonumber \\ |
| 436 |
|
|
% 2 |
| 437 |
|
|
&+ |
| 438 |
|
|
\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
| 439 |
|
|
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r) |
| 440 |
|
|
\\ |
| 441 |
|
|
% ta da qb |
| 442 |
|
|
% |
| 443 |
|
|
% 1 |
| 444 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =& |
| 445 |
|
|
\left( |
| 446 |
|
|
-\text{Tr}Q_{\mathbf{b}} |
| 447 |
|
|
\sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} |
| 448 |
|
|
+2\sum_{lmn}D_{\mathbf{a}l} |
| 449 |
|
|
(\hat{a}_l \times \hat{b}_m) |
| 450 |
|
|
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
| 451 |
|
|
\right) v_{31}(r) \nonumber \\ |
| 452 |
|
|
% 2 |
| 453 |
|
|
&- |
| 454 |
|
|
\sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l} |
| 455 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 456 |
|
|
Q_{{\mathbf b}mn} |
| 457 |
|
|
(\hat{b}_n \cdot \hat{r}) v_{32}(r) \\ |
| 458 |
|
|
% |
| 459 |
|
|
% tb da qb |
| 460 |
|
|
% |
| 461 |
|
|
% 1 |
| 462 |
|
|
\mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =& |
| 463 |
|
|
\left( |
| 464 |
|
|
-2\sum_{lmn}D_{\mathbf{a}l} |
| 465 |
|
|
(\hat{a}_l \cdot \hat{b}_m) |
| 466 |
|
|
Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n) |
| 467 |
|
|
-2\sum_{lmn}D_{\mathbf{a}l} |
| 468 |
|
|
(\hat{a}_l \times \hat{b}_m) |
| 469 |
|
|
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
| 470 |
|
|
\right) v_{31}(r) \nonumber \\ |
| 471 |
|
|
% 2 |
| 472 |
|
|
&-2 |
| 473 |
|
|
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
| 474 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 475 |
|
|
Q_{{\mathbf b}mn} |
| 476 |
|
|
(\hat{r}\times \hat{b}_n) v_{32}(r) |
| 477 |
|
|
\\ |
| 478 |
|
|
% |
| 479 |
|
|
% ta qa cb |
| 480 |
|
|
% |
| 481 |
|
|
\mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =& |
| 482 |
|
|
2C_{\bf a} |
| 483 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r) |
| 484 |
|
|
\\ |
| 485 |
|
|
% |
| 486 |
|
|
% ta qa db |
| 487 |
|
|
% |
| 488 |
|
|
% 1 |
| 489 |
|
|
\mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} = & |
| 490 |
|
|
\left( |
| 491 |
|
|
2\sum_{lmn}D_{\mathbf{b}l} |
| 492 |
|
|
(\hat{b}_l \cdot \hat{a}_m) |
| 493 |
|
|
Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n) |
| 494 |
|
|
+2\sum_{lmn}D_{\mathbf{b}l} |
| 495 |
|
|
(\hat{a}_l \times \hat{b}_m) |
| 496 |
|
|
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
| 497 |
|
|
\right) v_{31}(r) \nonumber \\ |
| 498 |
|
|
% 2 |
| 499 |
|
|
&+2 |
| 500 |
|
|
\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
| 501 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 502 |
|
|
Q_{{\mathbf a}mn} |
| 503 |
|
|
(\hat{r}\times \hat{a}_n) v_{32}(r) |
| 504 |
|
|
\\ |
| 505 |
|
|
% |
| 506 |
|
|
% tb qa db |
| 507 |
|
|
% |
| 508 |
|
|
% 1 |
| 509 |
|
|
\mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =& |
| 510 |
|
|
\left( |
| 511 |
|
|
\text{Tr}Q_{\mathbf{a}} |
| 512 |
|
|
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} |
| 513 |
|
|
+2\sum_{lmn}D_{\mathbf{b}l} |
| 514 |
|
|
(\hat{a}_l \times \hat{b}_m) |
| 515 |
|
|
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
| 516 |
|
|
\right) v_{31}(r) \nonumber \\ |
| 517 |
|
|
% 2 |
| 518 |
|
|
& \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l} |
| 519 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 520 |
|
|
Q_{{\mathbf a}mn} |
| 521 |
|
|
(\hat{a}_n \cdot \hat{r}) v_{32}(r) |
| 522 |
|
|
\end{align} |
| 523 |
|
|
|
| 524 |
|
|
% |
| 525 |
|
|
% ta qa qb |
| 526 |
|
|
% |
| 527 |
|
|
\begin{align} |
| 528 |
|
|
% 1 |
| 529 |
|
|
\mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =& |
| 530 |
|
|
-4 |
| 531 |
|
|
\sum_{lmnp} (\hat{a}_l \times \hat{b}_p) |
| 532 |
|
|
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
| 533 |
|
|
(\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \nonumber \\ |
| 534 |
|
|
% 2 |
| 535 |
|
|
&+ |
| 536 |
|
|
\Bigl[ |
| 537 |
|
|
2\text{Tr}Q_{\mathbf{b}} |
| 538 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l ) |
| 539 |
|
|
Q_{{\mathbf a}lm} |
| 540 |
|
|
(\hat{r} \times \hat{a}_m) |
| 541 |
|
|
+4 \sum_{lmnp} |
| 542 |
|
|
(\hat{r} \times \hat{a}_l ) |
| 543 |
|
|
Q_{{\mathbf a}lm} |
| 544 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 545 |
|
|
Q_{{\mathbf b}np} |
| 546 |
|
|
(\hat{b}_p \cdot \hat{r}) \nonumber \\ |
| 547 |
|
|
% 3 |
| 548 |
|
|
&-4 \sum_{lmnp} |
| 549 |
|
|
(\hat{r} \cdot \hat{a}_l ) |
| 550 |
|
|
Q_{{\mathbf a}lm} |
| 551 |
|
|
(\hat{a}_m \times \hat{b}_n) |
| 552 |
|
|
Q_{{\mathbf b}np} |
| 553 |
|
|
(\hat{b}_p \cdot \hat{r}) |
| 554 |
|
|
\Bigr] v_{42}(r) \nonumber \\ |
| 555 |
|
|
% 4 |
| 556 |
|
|
&+2 |
| 557 |
|
|
\sum_{lm} (\hat{r} \times \hat{a}_l) |
| 558 |
|
|
Q_{{\mathbf a}lm} |
| 559 |
|
|
(\hat{a}_m \cdot \hat{r}) |
| 560 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) |
| 561 |
|
|
Q_{{\mathbf b}np} |
| 562 |
|
|
(\hat{b}_p \cdot \hat{r}) v_{43}(r)\\ |
| 563 |
|
|
% |
| 564 |
|
|
% tb qa qb |
| 565 |
|
|
% |
| 566 |
|
|
% 1 |
| 567 |
|
|
\mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =& |
| 568 |
|
|
4 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
| 569 |
|
|
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
| 570 |
|
|
(\hat{a}_m \times \hat{b}_n) v_{41}(r) \nonumber \\ |
| 571 |
|
|
% 2 |
| 572 |
|
|
&+ |
| 573 |
|
|
\Bigl[ |
| 574 |
|
|
2\text{Tr}Q_{\mathbf{a}} |
| 575 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{b}_l ) |
| 576 |
|
|
Q_{{\mathbf b}lm} |
| 577 |
|
|
(\hat{r} \times \hat{b}_m) |
| 578 |
|
|
+4 \sum_{lmnp} |
| 579 |
|
|
(\hat{r} \cdot \hat{a}_l ) |
| 580 |
|
|
Q_{{\mathbf a}lm} |
| 581 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 582 |
|
|
Q_{{\mathbf b}np} |
| 583 |
|
|
(\hat{r} \times \hat{b}_p) \nonumber \\ |
| 584 |
|
|
% 3 |
| 585 |
|
|
&+4 \sum_{lmnp} |
| 586 |
|
|
(\hat{r} \cdot \hat{a}_l ) |
| 587 |
|
|
Q_{{\mathbf a}lm} |
| 588 |
|
|
(\hat{a}_m \times \hat{b}_n) |
| 589 |
|
|
Q_{{\mathbf b}np} |
| 590 |
|
|
(\hat{b}_p \cdot \hat{r}) |
| 591 |
|
|
\Bigr] v_{42}(r) \nonumber \\ |
| 592 |
|
|
% 4 |
| 593 |
|
|
&+2 |
| 594 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) |
| 595 |
|
|
Q_{{\mathbf a}lm} |
| 596 |
|
|
(\hat{a}_m \cdot \hat{r}) |
| 597 |
|
|
\sum_{np} (\hat{r} \times \hat{b}_n) |
| 598 |
|
|
Q_{{\mathbf b}np} |
| 599 |
|
|
(\hat{b}_p \cdot \hat{r}) v_{43}(r). |
| 600 |
|
|
\end{align} |
| 601 |
|
|
|
| 602 |
|
|
|
| 603 |
|
|
% \begin{table*} |
| 604 |
|
|
% \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.} |
| 605 |
|
|
% \begin{ruledtabular} |
| 606 |
|
|
% \begin{tabular}{|l|l|l|} |
| 607 |
|
|
% Generic&Taylor-shifted Force&Gradient-shifted Force |
| 608 |
|
|
% \\ \hline |
| 609 |
|
|
% % |
| 610 |
|
|
% % |
| 611 |
|
|
% % |
| 612 |
|
|
% $w_a(r)$& |
| 613 |
|
|
% $g_0(r)$& |
| 614 |
|
|
% $g(r)-g(r_c)$ \\ |
| 615 |
|
|
% % |
| 616 |
|
|
% % |
| 617 |
|
|
% $w_b(r)$ & |
| 618 |
|
|
% $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ & |
| 619 |
|
|
% $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\ |
| 620 |
|
|
% % |
| 621 |
|
|
% $w_c(r)$ & |
| 622 |
|
|
% $\frac{g_1(r)}{r} $ & |
| 623 |
|
|
% $\frac{v_{11}(r)}{r}$ \\ |
| 624 |
|
|
% % |
| 625 |
|
|
% % |
| 626 |
|
|
% $w_d(r)$& |
| 627 |
|
|
% $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ & |
| 628 |
|
|
% $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right) |
| 629 |
|
|
% -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\ |
| 630 |
|
|
% % |
| 631 |
|
|
% $w_e(r)$ & |
| 632 |
|
|
% $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ & |
| 633 |
|
|
% $\frac{v_{22}(r)}{r}$ \\ |
| 634 |
|
|
% % |
| 635 |
|
|
% % |
| 636 |
|
|
% $w_f(r)$& |
| 637 |
|
|
% $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ & |
| 638 |
|
|
% $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\ |
| 639 |
|
|
% &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\ |
| 640 |
|
|
% % |
| 641 |
|
|
% $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$& |
| 642 |
|
|
% $\frac{v_{31}(r)}{r}$\\ |
| 643 |
|
|
% % |
| 644 |
|
|
% $w_h(r)$ & |
| 645 |
|
|
% $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ & |
| 646 |
|
|
% $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\ |
| 647 |
|
|
% &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\ |
| 648 |
|
|
% &&$-\frac{v_{31}(r)}{r}$\\ |
| 649 |
|
|
% % 2 |
| 650 |
|
|
% $w_i(r)$ & |
| 651 |
|
|
% $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ & |
| 652 |
|
|
% $\frac{v_{32}(r)}{r}$ \\ |
| 653 |
|
|
% % |
| 654 |
|
|
% $w_j(r)$ & |
| 655 |
|
|
% $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ & |
| 656 |
|
|
% $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\ |
| 657 |
|
|
% &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\ |
| 658 |
|
|
% % |
| 659 |
|
|
% $w_k(r)$ & |
| 660 |
|
|
% $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ & |
| 661 |
|
|
% $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\ |
| 662 |
|
|
% &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\ |
| 663 |
|
|
% % |
| 664 |
|
|
% $w_l(r)$ & |
| 665 |
|
|
% $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ & |
| 666 |
|
|
% $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\ |
| 667 |
|
|
% &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right) |
| 668 |
|
|
% -\frac{2v_{42}(r)}{r}$ \\ |
| 669 |
|
|
% % |
| 670 |
|
|
% $w_m(r)$ & |
| 671 |
|
|
% $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ & |
| 672 |
|
|
% $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\ |
| 673 |
|
|
% &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3} |
| 674 |
|
|
% +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\ |
| 675 |
|
|
% &&$-\frac{4v_{43}(r)}{r}$ \\ |
| 676 |
|
|
% % |
| 677 |
|
|
% $w_n(r)$ & |
| 678 |
|
|
% $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ & |
| 679 |
|
|
% $\frac{v_{42}(r)}{r}$ \\ |
| 680 |
|
|
% % |
| 681 |
|
|
% $w_o(r)$ & |
| 682 |
|
|
% $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ & |
| 683 |
|
|
% $\frac{v_{43}(r)}{r}$ \\ |
| 684 |
|
|
% % |
| 685 |
|
|
% \end{tabular} |
| 686 |
|
|
% \end{ruledtabular} |
| 687 |
|
|
% \end{table*} |
| 688 |
|
|
% |
| 689 |
|
|
% \newpage |
| 690 |
|
|
% |
| 691 |
|
|
% \bibliography{multipole} |
| 692 |
|
|
% |
| 693 |
gezelter |
3990 |
|
| 694 |
|
|
To test the gradient-shifted force (GSF) and Taylor-shifted force |
| 695 |
|
|
(TSF) methods against known energies for multipolar crystals, we |
| 696 |
|
|
repeated the Luttinger \& Tisza series summations and have obtained |
| 697 |
|
|
the energy constants (converged to one part in $10^9$) in table |
| 698 |
|
|
\ref{tab:LT}. |
| 699 |
|
|
|
| 700 |
|
|
\section{} |
| 701 |
|
|
\begin{table*}[h] |
| 702 |
|
|
\centering{ |
| 703 |
|
|
\caption{Luttinger \& Tisza arrays and their associated |
| 704 |
|
|
energy constants. Type ``A'' arrays have nearest neighbor strings of |
| 705 |
|
|
antiparallel dipoles. Type ``B'' arrays have nearest neighbor |
| 706 |
|
|
strings of antiparallel dipoles if the dipoles are contained in a |
| 707 |
|
|
plane perpendicular to the dipole direction that passes through |
| 708 |
|
|
the dipole.} |
| 709 |
|
|
} |
| 710 |
|
|
\label{tab:LT} |
| 711 |
|
|
\begin{ruledtabular} |
| 712 |
|
|
\begin{tabular}{cccc} |
| 713 |
|
|
Array Type & Lattice & Dipole Direction & Energy constants \\ \hline |
| 714 |
|
|
A & SC & 001 & -2.676788684 \\ |
| 715 |
|
|
A & BCC & 001 & 0 \\ |
| 716 |
|
|
A & BCC & 111 & -1.770078733 \\ |
| 717 |
|
|
A & FCC & 001 & 2.166932835 \\ |
| 718 |
|
|
A & FCC & 011 & -1.083466417 \\ |
| 719 |
|
|
B & SC & 001 & -2.676788684 \\ |
| 720 |
|
|
B & BCC & 001 & -1.338394342 \\ |
| 721 |
|
|
B & BCC & 111 & -1.770078733 \\ |
| 722 |
|
|
B & FCC & 001 & -1.083466417 \\ |
| 723 |
|
|
B & FCC & 011 & -1.807573634 \\ |
| 724 |
|
|
-- & BCC & minimum & -1.985920929 \\ |
| 725 |
|
|
\end{tabular} |
| 726 |
|
|
\end{ruledtabular} |
| 727 |
|
|
\end{table*} |
| 728 |
|
|
|
| 729 |
|
|
We have also tested agains the energy constants for Quadrupolar |
| 730 |
|
|
arrays. Nagai and Nakamura computed the energies of selected |
| 731 |
|
|
quadrupole arrays based on extensions to the Luttinger and Tisza |
| 732 |
|
|
approach. These energy constants are given in table \ref{tab:NNQ}. |
| 733 |
|
|
|
| 734 |
|
|
\begin{table*} |
| 735 |
|
|
\centering{ |
| 736 |
|
|
\caption{Nagai and Nakamura Quadurpolar arrays}} |
| 737 |
|
|
\label{tab:NNQ} |
| 738 |
|
|
\begin{ruledtabular} |
| 739 |
|
|
\begin{tabular}{ccc} |
| 740 |
|
|
Lattice & Quadrupole Direction & Energy constants \\ \hline |
| 741 |
|
|
SC & 111 & -8.3 \\ |
| 742 |
|
|
BCC & 011 & -21.7 \\ |
| 743 |
|
|
FCC & 111 & -80.5 |
| 744 |
|
|
\end{tabular} |
| 745 |
|
|
\end{ruledtabular} |
| 746 |
|
|
\end{table*} |
| 747 |
|
|
|
| 748 |
|
|
|
| 749 |
gezelter |
3986 |
\end{document} |
| 750 |
|
|
% |
| 751 |
|
|
% ****** End of file multipole.tex ****** |