ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Supplemental.tex
Revision: 4195
Committed: Thu Jul 17 18:24:41 2014 UTC (9 years, 11 months ago) by gezelter
Content type: application/x-tex
File size: 20976 byte(s)
Log Message:
Most recent version including dielectric stuff

File Contents

# User Rev Content
1 gezelter 3986 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23     aip,jcp,
24     amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     jcp]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33     %\usepackage{bm}% bold math
34     \usepackage{times}
35     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37     \usepackage{rotating}
38    
39     %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44     \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
45     {Supplemental Material for: Real space alternatives to the Ewald
46 gezelter 4195 Sum. I. Shifted Electrostatics for Multipoles}
47 gezelter 3986
48     \author{Madan Lamichhane}
49     \affiliation{Department of Physics, University
50     of Notre Dame, Notre Dame, IN 46556}
51    
52     \author{J. Daniel Gezelter}
53     \email{gezelter@nd.edu.}
54     \affiliation{Department of Chemistry and Biochemistry, University
55     of Notre Dame, Notre Dame, IN 46556}
56    
57     \author{Kathie E. Newman}
58     \affiliation{Department of Physics, University
59     of Notre Dame, Notre Dame, IN 46556}
60    
61     \date{\today}% It is always \today, today,
62     % but any date may be explicitly specified
63    
64     \maketitle
65    
66     \section{Interaction Energies in body-frame coordiantes}
67     %
68     %
69     %Energy in body coordinate form ---------------------------------------------------------------
70     %
71     Although they are not as widely used as space-frame coordinates, the
72     body-frame versions may occasionally prove useful. In this section,
73     we list the interaction energies, forces, and torques in terms of the
74     body coordinates for both the Taylor-Shifted and Gradient-Shifted
75     approximations. The radial functions ($v_{ij}(r)$ and $w_{\alpha}(r)$)
76     are given in the Tables I and II in the paper. These functions depend
77     on the choice of electrostatic kernel as well as the approximation
78     method being utilized. Again, all energy, force, and torque equations
79     have an an implied factor of $1/4\pi \epsilon_0$:
80     %
81     % u ca cb
82     %
83     \begin{align}
84     U_{C_{\bf a}C_{\bf b}}(r)=&
85     C_{\bf a} C_{\bf b} v_{01}(r)
86     \\
87     %
88     % u ca db
89     %
90     U_{C_{\bf a}D_{\bf b}}(r)=&
91     C_{\bf a}
92     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
93     \\
94     %
95     % u ca qb
96     %
97     U_{C_{\bf a}Q_{\bf b}}(r)=&
98     C_{\bf a }\text{Tr}Q_{\bf b}
99     v_{21}(r) +C_{\bf a}
100     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
101     v_{22}(r) \\
102     %
103     % u da cb
104     %
105     U_{D_{\bf a}C_{\bf b}}(r)=&
106     -C_{\bf b}
107     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
108     \\
109     %
110     % u da db
111     %
112     % 1
113     U_{D_{\bf a}D_{\bf b}}(r)=&
114     - \sum_{mn} D_{\mathbf {a}m}
115     (\hat{a}_m \cdot \hat{b}_n)
116     D_{\mathbf{b}n} v_{21}(r) \nonumber \\
117     % 2
118     &-
119     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
120     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
121     v_{22}(r)
122     \\
123     %
124     % u da qb
125     %
126     % 1
127     U_{D_{\bf a}Q_{\bf b}}(r)=&
128     -\left(
129     \text{Tr}Q_{\mathbf{b}}
130     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
131     +2\sum_{lmn}D_{\mathbf{a}l}
132     (\hat{a}_l \cdot \hat{b}_m)
133     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
134     \right) v_{31}(r) \nonumber \\
135     % 2
136     &-
137     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
138     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
139     Q_{{\mathbf b}mn}
140     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
141     \\
142     %
143     % u qa cb
144     %
145     U_{Q_{\bf a}C_{\bf b}}(r)=&
146     C_{\bf b }\text{Tr}Q_{\bf a} v_{21}(r)
147     +C_{\bf b}
148     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
149     \\
150     %
151     % u qa db
152     %
153     %1
154     U_{Q_{\bf a}D_{\bf b}}(r)=&
155     \left(
156     \text{Tr}Q_{\mathbf{a}}
157     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
158     +2\sum_{lmn}D_{\mathbf{b}l}
159     (\hat{b}_l \cdot \hat{a}_m)
160     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
161     \right) v_{31}(r) \nonumber \\
162     % 2
163     &+
164     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
165     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
166     Q_{{\mathbf a}mn}
167     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
168     \end{align}
169    
170     \begin{align}
171     %
172     % u qa qb
173     %
174     %1
175     U_{Q_{\bf a}Q_{\bf b}}(r)=&
176     \Bigl[
177     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
178     +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
179     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
180     (\hat{a}_m \cdot \hat{b}_n) \Bigr]
181     v_{41}(r) \nonumber \\
182     % 2
183     &+
184     \Bigl[ \text{Tr}Q_{\mathbf{a}}
185     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
186     Q_{{\mathbf b}lm}
187     (\hat{b}_m \cdot \hat{r})
188     +\text{Tr}Q_{\mathbf{b}}
189     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
190     Q_{{\mathbf a}lm}
191     (\hat{a}_m \cdot \hat{r}) \nonumber \\
192     % 3
193     &+4 \sum_{lmnp}
194     (\hat{r} \cdot \hat{a}_l )
195     Q_{{\mathbf a}lm}
196     (\hat{a}_m \cdot \hat{b}_n)
197     Q_{{\mathbf b}np}
198     (\hat{b}_p \cdot \hat{r})
199     \Bigr] v_{42}(r) \nonumber \\
200     % 4
201     &+
202     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
203     Q_{{\mathbf a}lm}
204     (\hat{a}_m \cdot \hat{r})
205     \sum_{np} (\hat{r} \cdot \hat{b}_n)
206     Q_{{\mathbf b}np}
207     (\hat{b}_p \cdot \hat{r}) v_{43}(r).
208     \end{align}
209    
210    
211     % BODY coordinates force equations --------------------------------------------
212     %
213     %
214     Here are the force equations written in terms of body coordinates.
215     %
216     % f ca cb
217     %
218     \begin{align}
219     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
220     C_{\bf a} C_{\bf b} w_a(r) \hat{r}
221     \\
222     %
223     % f ca db
224     %
225     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
226     C_{\bf a}
227     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
228     +C_{\bf a}
229     \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
230     \\
231     %
232     % f ca qb
233     %
234     % 1
235     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
236     C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
237     + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot
238     \hat{r}) w_e(r) \nonumber \\
239     % 2
240     &+C_{\bf a}
241     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r} \\
242     %
243     % f da cb
244     %
245     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =&
246     -C_{\bf{b}}
247     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
248     -C_{\bf{b}}
249     \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
250     \\
251     %
252     % f da db
253     %
254     % 1
255     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
256     -\sum_{mn} D_{\mathbf {a}m}
257     (\hat{a}_m \cdot \hat{b}_n)
258     D_{\mathbf{b}n} w_d(r) \hat{r}
259     -\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
260     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r}
261     \nonumber \\
262     % 2
263     & +
264     \Bigl[ \sum_m D_{\mathbf {a}m}
265     \hat{a}_m \sum_n D_{\mathbf{b}n}
266     (\hat{b}_n \cdot \hat{r})
267     + \sum_m D_{\mathbf {b}m}
268     \hat{b}_m \sum_n D_{\mathbf{a}n}
269     (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
270     %
271     % f da qb
272     %
273     % 1
274     \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
275     - \Bigl[
276     \text{Tr}Q_{\mathbf{b}}
277     \sum_l D_{\mathbf{a}l} \hat{a}_l
278     +2\sum_{lmn} D_{\mathbf{a}l}
279     (\hat{a}_l \cdot \hat{b}_m)
280     Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \nonumber \\
281     % 3
282     & - \Bigl[
283     \text{Tr}Q_{\mathbf{b}}
284     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
285     +2\sum_{lmn}D_{\mathbf{a}l}
286     (\hat{a}_l \cdot \hat{b}_m)
287     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r}
288     \nonumber \\
289     % 4
290     &+
291     \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
292     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
293     Q_{{\mathbf b}mn}
294     (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
295     D_{\mathbf{a}l}
296     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
297     Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r) \nonumber \\
298     % 6
299     & -
300     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
301     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
302     Q_{{\mathbf b}mn}
303     (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
304     \\
305     %
306     % force qa cb
307     %
308     % 1
309     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =&
310     C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
311     + 2C_{\bf b } \sum_l \hat{a}_l Q_{{\mathbf
312     a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \nonumber \\
313     % 2
314     & +C_{\bf b}
315     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
316     \end{align}
317    
318     \begin{align}
319     %
320     % f qa db
321     %
322     % 1
323     \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =&
324     \Bigl[
325     \text{Tr}Q_{\mathbf{a}}
326     \sum_l D_{\mathbf{b}l} \hat{b}_l
327     +2\sum_{lmn} D_{\mathbf{b}l}
328     (\hat{b}_l \cdot \hat{a}_m)
329     Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
330     w_g(r) \nonumber \\
331     % 3
332     & + \Bigl[
333     \text{Tr}Q_{\mathbf{a}}
334     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
335     +2\sum_{lmn}D_{\mathbf{b}l}
336     (\hat{b}_l \cdot \hat{a}_m)
337     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r}
338     \nonumber \\
339     % 4
340     & + \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
341     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
342     Q_{{\mathbf a}mn}
343     (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
344     D_{\mathbf{b}l}
345     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
346     Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \nonumber \\
347     % 6
348     & +\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
349     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
350     Q_{{\mathbf a}mn}
351     (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
352     \\
353     %
354     % f qa qb
355     %
356     \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
357     \Bigl[
358     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
359     + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
360     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
361     (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r} \nonumber \\
362     &+ \Bigl[
363     2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
364     + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l)
365     Q_{\mathbf{b}lm} \hat{b}_m \nonumber \\
366     &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
367     + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
368     \Bigr] w_n(r) \nonumber \\
369     &+
370     \Bigl[ \text{Tr}Q_{\mathbf{a}}
371     \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
372     + \text{Tr}Q_{\mathbf{b}}
373     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
374     &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
375     Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \nonumber \\
376     %
377     &+ \Bigl[
378     2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
379     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot
380     \hat{r}) \nonumber \\
381     &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
382     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr]
383     w_o(r) \hat{r} \nonumber \\
384     & +
385     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
386     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
387     \end{align}
388     %
389     Here we list the form of the non-zero damped shifted multipole torques showing
390     explicitly dependences on body axes:
391     %
392     % t ca db
393     %
394     \begin{align}
395     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
396     C_{\bf a}
397     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
398     \\
399     %
400     % t ca qb
401     %
402     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
403     2C_{\bf a}
404     \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m
405     \cdot \hat{r}) v_{22}(r)
406     \\
407     %
408     % t da cb
409     %
410     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =&
411     -C_{\bf b}
412     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
413     \\
414     %
415     %
416     % ta da db
417     %
418     % 1
419     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
420     \sum_{mn} D_{\mathbf {a}m}
421     (\hat{a}_m \times \hat{b}_n)
422     D_{\mathbf{b}n} v_{21}(r) \nonumber \\
423     % 2
424     &-
425     \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
426     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
427     \\
428     %
429     % tb da db
430     %
431     % 1
432     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =&
433     - \sum_{mn} D_{\mathbf {a}m}
434     (\hat{a}_m \times \hat{b}_n)
435     D_{\mathbf{b}n} v_{21}(r) \nonumber \\
436     % 2
437     &+
438     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
439     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
440     \\
441     % ta da qb
442     %
443     % 1
444     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
445     \left(
446     -\text{Tr}Q_{\mathbf{b}}
447     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
448     +2\sum_{lmn}D_{\mathbf{a}l}
449     (\hat{a}_l \times \hat{b}_m)
450     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
451     \right) v_{31}(r) \nonumber \\
452     % 2
453     &-
454     \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
455     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
456     Q_{{\mathbf b}mn}
457     (\hat{b}_n \cdot \hat{r}) v_{32}(r) \\
458     %
459     % tb da qb
460     %
461     % 1
462     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
463     \left(
464     -2\sum_{lmn}D_{\mathbf{a}l}
465     (\hat{a}_l \cdot \hat{b}_m)
466     Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
467     -2\sum_{lmn}D_{\mathbf{a}l}
468     (\hat{a}_l \times \hat{b}_m)
469     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
470     \right) v_{31}(r) \nonumber \\
471     % 2
472     &-2
473     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
474     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
475     Q_{{\mathbf b}mn}
476     (\hat{r}\times \hat{b}_n) v_{32}(r)
477     \\
478     %
479     % ta qa cb
480     %
481     \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =&
482     2C_{\bf a}
483     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
484     \\
485     %
486     % ta qa db
487     %
488     % 1
489     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} = &
490     \left(
491     2\sum_{lmn}D_{\mathbf{b}l}
492     (\hat{b}_l \cdot \hat{a}_m)
493     Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
494     +2\sum_{lmn}D_{\mathbf{b}l}
495     (\hat{a}_l \times \hat{b}_m)
496     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
497     \right) v_{31}(r) \nonumber \\
498     % 2
499     &+2
500     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
501     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
502     Q_{{\mathbf a}mn}
503     (\hat{r}\times \hat{a}_n) v_{32}(r)
504     \\
505     %
506     % tb qa db
507     %
508     % 1
509     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =&
510     \left(
511     \text{Tr}Q_{\mathbf{a}}
512     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
513     +2\sum_{lmn}D_{\mathbf{b}l}
514     (\hat{a}_l \times \hat{b}_m)
515     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
516     \right) v_{31}(r) \nonumber \\
517     % 2
518     & \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
519     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
520     Q_{{\mathbf a}mn}
521     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
522     \end{align}
523    
524     %
525     % ta qa qb
526     %
527     \begin{align}
528     % 1
529     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
530     -4
531     \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
532     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
533     (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \nonumber \\
534     % 2
535     &+
536     \Bigl[
537     2\text{Tr}Q_{\mathbf{b}}
538     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
539     Q_{{\mathbf a}lm}
540     (\hat{r} \times \hat{a}_m)
541     +4 \sum_{lmnp}
542     (\hat{r} \times \hat{a}_l )
543     Q_{{\mathbf a}lm}
544     (\hat{a}_m \cdot \hat{b}_n)
545     Q_{{\mathbf b}np}
546     (\hat{b}_p \cdot \hat{r}) \nonumber \\
547     % 3
548     &-4 \sum_{lmnp}
549     (\hat{r} \cdot \hat{a}_l )
550     Q_{{\mathbf a}lm}
551     (\hat{a}_m \times \hat{b}_n)
552     Q_{{\mathbf b}np}
553     (\hat{b}_p \cdot \hat{r})
554     \Bigr] v_{42}(r) \nonumber \\
555     % 4
556     &+2
557     \sum_{lm} (\hat{r} \times \hat{a}_l)
558     Q_{{\mathbf a}lm}
559     (\hat{a}_m \cdot \hat{r})
560     \sum_{np} (\hat{r} \cdot \hat{b}_n)
561     Q_{{\mathbf b}np}
562     (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
563     %
564     % tb qa qb
565     %
566     % 1
567     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =&
568     4 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
569     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
570     (\hat{a}_m \times \hat{b}_n) v_{41}(r) \nonumber \\
571     % 2
572     &+
573     \Bigl[
574     2\text{Tr}Q_{\mathbf{a}}
575     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
576     Q_{{\mathbf b}lm}
577     (\hat{r} \times \hat{b}_m)
578     +4 \sum_{lmnp}
579     (\hat{r} \cdot \hat{a}_l )
580     Q_{{\mathbf a}lm}
581     (\hat{a}_m \cdot \hat{b}_n)
582     Q_{{\mathbf b}np}
583     (\hat{r} \times \hat{b}_p) \nonumber \\
584     % 3
585     &+4 \sum_{lmnp}
586     (\hat{r} \cdot \hat{a}_l )
587     Q_{{\mathbf a}lm}
588     (\hat{a}_m \times \hat{b}_n)
589     Q_{{\mathbf b}np}
590     (\hat{b}_p \cdot \hat{r})
591     \Bigr] v_{42}(r) \nonumber \\
592     % 4
593     &+2
594     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
595     Q_{{\mathbf a}lm}
596     (\hat{a}_m \cdot \hat{r})
597     \sum_{np} (\hat{r} \times \hat{b}_n)
598     Q_{{\mathbf b}np}
599     (\hat{b}_p \cdot \hat{r}) v_{43}(r).
600     \end{align}
601    
602    
603     % \begin{table*}
604     % \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
605     % \begin{ruledtabular}
606     % \begin{tabular}{|l|l|l|}
607     % Generic&Taylor-shifted Force&Gradient-shifted Force
608     % \\ \hline
609     % %
610     % %
611     % %
612     % $w_a(r)$&
613     % $g_0(r)$&
614     % $g(r)-g(r_c)$ \\
615     % %
616     % %
617     % $w_b(r)$ &
618     % $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
619     % $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
620     % %
621     % $w_c(r)$ &
622     % $\frac{g_1(r)}{r} $ &
623     % $\frac{v_{11}(r)}{r}$ \\
624     % %
625     % %
626     % $w_d(r)$&
627     % $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
628     % $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
629     % -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
630     % %
631     % $w_e(r)$ &
632     % $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
633     % $\frac{v_{22}(r)}{r}$ \\
634     % %
635     % %
636     % $w_f(r)$&
637     % $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
638     % $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
639     % &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
640     % %
641     % $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
642     % $\frac{v_{31}(r)}{r}$\\
643     % %
644     % $w_h(r)$ &
645     % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
646     % $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
647     % &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
648     % &&$-\frac{v_{31}(r)}{r}$\\
649     % % 2
650     % $w_i(r)$ &
651     % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
652     % $\frac{v_{32}(r)}{r}$ \\
653     % %
654     % $w_j(r)$ &
655     % $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
656     % $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
657     % &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
658     % %
659     % $w_k(r)$ &
660     % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
661     % $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
662     % &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
663     % %
664     % $w_l(r)$ &
665     % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
666     % $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
667     % &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
668     % -\frac{2v_{42}(r)}{r}$ \\
669     % %
670     % $w_m(r)$ &
671     % $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
672     % $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
673     % &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
674     % +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
675     % &&$-\frac{4v_{43}(r)}{r}$ \\
676     % %
677     % $w_n(r)$ &
678     % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
679     % $\frac{v_{42}(r)}{r}$ \\
680     % %
681     % $w_o(r)$ &
682     % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
683     % $\frac{v_{43}(r)}{r}$ \\
684     % %
685     % \end{tabular}
686     % \end{ruledtabular}
687     % \end{table*}
688     %
689     % \newpage
690     %
691     % \bibliography{multipole}
692     %
693 gezelter 3990
694     To test the gradient-shifted force (GSF) and Taylor-shifted force
695     (TSF) methods against known energies for multipolar crystals, we
696     repeated the Luttinger \& Tisza series summations and have obtained
697     the energy constants (converged to one part in $10^9$) in table
698     \ref{tab:LT}.
699    
700     \section{}
701     \begin{table*}[h]
702     \centering{
703     \caption{Luttinger \& Tisza arrays and their associated
704     energy constants. Type ``A'' arrays have nearest neighbor strings of
705     antiparallel dipoles. Type ``B'' arrays have nearest neighbor
706     strings of antiparallel dipoles if the dipoles are contained in a
707     plane perpendicular to the dipole direction that passes through
708     the dipole.}
709     }
710     \label{tab:LT}
711     \begin{ruledtabular}
712     \begin{tabular}{cccc}
713     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
714     A & SC & 001 & -2.676788684 \\
715     A & BCC & 001 & 0 \\
716     A & BCC & 111 & -1.770078733 \\
717     A & FCC & 001 & 2.166932835 \\
718     A & FCC & 011 & -1.083466417 \\
719     B & SC & 001 & -2.676788684 \\
720     B & BCC & 001 & -1.338394342 \\
721     B & BCC & 111 & -1.770078733 \\
722     B & FCC & 001 & -1.083466417 \\
723     B & FCC & 011 & -1.807573634 \\
724     -- & BCC & minimum & -1.985920929 \\
725     \end{tabular}
726     \end{ruledtabular}
727     \end{table*}
728    
729     We have also tested agains the energy constants for Quadrupolar
730     arrays. Nagai and Nakamura computed the energies of selected
731     quadrupole arrays based on extensions to the Luttinger and Tisza
732     approach. These energy constants are given in table \ref{tab:NNQ}.
733    
734     \begin{table*}
735     \centering{
736 gezelter 4179 \caption{Nagai and Nakamura Quadrupolar arrays. Note that these
737 gezelter 3996 take into account the factor of two corrections in
738     Ref. \onlinecite{Nagai01091963}}}
739 gezelter 3990 \label{tab:NNQ}
740     \begin{ruledtabular}
741     \begin{tabular}{ccc}
742     Lattice & Quadrupole Direction & Energy constants \\ \hline
743 gezelter 3996 SC & 111 & -16.6 \\
744     BCC & 011 & -43.4 \\
745     FCC & 111 & -161
746 gezelter 3990 \end{tabular}
747     \end{ruledtabular}
748     \end{table*}
749    
750 gezelter 3996 \newpage
751     \bibliography{multipole}
752 gezelter 3986 \end{document}
753     %
754     % ****** End of file multipole.tex ******