ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Supplemental.tex
Revision: 4198
Committed: Wed Jul 23 17:10:59 2014 UTC (10 years, 1 month ago) by gezelter
Content type: application/x-tex
File size: 22644 byte(s)
Log Message:
Latest version

File Contents

# User Rev Content
1 gezelter 3986 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23     aip,jcp,
24     amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     jcp]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33     %\usepackage{bm}% bold math
34     \usepackage{times}
35     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37     \usepackage{rotating}
38    
39     %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44 gezelter 4198 \title{Supplemental Material for: Real space electrostatics for
45     multipoles. I. Development of Methods}
46 gezelter 3986
47     \author{Madan Lamichhane}
48     \affiliation{Department of Physics, University
49     of Notre Dame, Notre Dame, IN 46556}
50    
51     \author{J. Daniel Gezelter}
52     \email{gezelter@nd.edu.}
53     \affiliation{Department of Chemistry and Biochemistry, University
54     of Notre Dame, Notre Dame, IN 46556}
55    
56     \author{Kathie E. Newman}
57     \affiliation{Department of Physics, University
58     of Notre Dame, Notre Dame, IN 46556}
59    
60     \date{\today}% It is always \today, today,
61     % but any date may be explicitly specified
62    
63     \maketitle
64    
65     \section{Interaction Energies in body-frame coordiantes}
66     %
67     %
68     %Energy in body coordinate form ---------------------------------------------------------------
69     %
70     Although they are not as widely used as space-frame coordinates, the
71     body-frame versions may occasionally prove useful. In this section,
72     we list the interaction energies, forces, and torques in terms of the
73     body coordinates for both the Taylor-Shifted and Gradient-Shifted
74     approximations. The radial functions ($v_{ij}(r)$ and $w_{\alpha}(r)$)
75     are given in the Tables I and II in the paper. These functions depend
76     on the choice of electrostatic kernel as well as the approximation
77     method being utilized. Again, all energy, force, and torque equations
78     have an an implied factor of $1/4\pi \epsilon_0$:
79     %
80     % u ca cb
81     %
82     \begin{align}
83 gezelter 4198 U_{C_a C_b}(r)=&
84     C_a C_b v_{01}(r)
85 gezelter 3986 \\
86     %
87     % u ca db
88     %
89 gezelter 4198 U_{C_a \mathbf{D}_b}(r)=&
90     C_a
91     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} \, v_{11}(r)
92 gezelter 3986 \\
93     %
94     % u ca qb
95     %
96 gezelter 4198 U_{C_a \mathsf{Q}_b}(r)=&
97     C_a \text{Tr} \mathsf{Q}_b
98     v_{21}(r) +C_a
99     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
100 gezelter 3986 v_{22}(r) \\
101     %
102     % u da cb
103     %
104 gezelter 4198 U_{\mathbf{D}_a C_b}(r)=&
105     -C_b
106     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an} \, v_{11}(r)
107 gezelter 3986 \\
108     %
109     % u da db
110     %
111     % 1
112 gezelter 4198 U_{\mathbf{D}_a \mathbf{D}_b}(r)=&
113     - \sum_{mn} D_{am}
114     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
115     D_{bn} v_{21}(r) \nonumber \\
116 gezelter 3986 % 2
117     &-
118 gezelter 4198 \sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) D_{am}
119     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn}
120 gezelter 3986 v_{22}(r)
121     \\
122     %
123     % u da qb
124     %
125     % 1
126 gezelter 4198 U_{\mathbf{D}_a \mathsf{Q}_b}(r)=&
127 gezelter 3986 -\left(
128 gezelter 4198 \text{Tr}\mathsf{Q}_b
129     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an}
130     +2\sum_{lmn}D_{al}
131     (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m)
132     Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
133 gezelter 3986 \right) v_{31}(r) \nonumber \\
134     % 2
135     &-
136 gezelter 4198 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) D_{al}
137     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
138     Q_{bmn}
139     (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) v_{32}(r)
140 gezelter 3986 \\
141     %
142     % u qa cb
143     %
144 gezelter 4198 U_{\mathsf{Q}_a C_b}(r)=&
145     C_b \text{Tr}\mathsf{Q}_a v_{21}(r)
146     +C_b
147     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{22}(r)
148 gezelter 3986 \\
149     %
150     % u qa db
151     %
152     %1
153 gezelter 4198 U_{\mathsf{Q}_a \mathbf{D}_b}(r)=&
154 gezelter 3986 \left(
155 gezelter 4198 \text{Tr}\mathsf{Q}_a
156     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn}
157     +2\sum_{lmn}D_{bl}
158     (\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m)
159     Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}})
160 gezelter 3986 \right) v_{31}(r) \nonumber \\
161     % 2
162     &+
163 gezelter 4198 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl}
164     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
165     Q_{amn}
166     (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{32}(r)
167 gezelter 3986 \end{align}
168    
169     \begin{align}
170     %
171     % u qa qb
172     %
173     %1
174 gezelter 4198 U_{\mathsf{Q}_a \mathsf{Q}_b}(r)=&
175 gezelter 3986 \Bigl[
176 gezelter 4198 \text{Tr}\mathsf{Q}_a \text{Tr}\mathsf{Q}_b
177     +2\sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p)
178     Q_{alm} Q_{bnp}
179     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) \Bigr]
180 gezelter 3986 v_{41}(r) \nonumber \\
181     % 2
182     &+
183 gezelter 4198 \Bigl[ \text{Tr}\mathsf{Q}_a
184     \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l )
185     Q_{blm}
186     (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})
187     +\text{Tr}\mathsf{Q}_b
188     \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
189     Q_{alm}
190     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) \nonumber \\
191 gezelter 3986 % 3
192     &+4 \sum_{lmnp}
193 gezelter 4198 (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
194     Q_{alm}
195     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
196     Q_{bnp}
197     (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}})
198 gezelter 3986 \Bigr] v_{42}(r) \nonumber \\
199     % 4
200     &+
201 gezelter 4198 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
202     Q_{alm}
203     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
204     \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n)
205     Q_{bnp}
206     (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r).
207 gezelter 3986 \end{align}
208    
209    
210     % BODY coordinates force equations --------------------------------------------
211     %
212     %
213     Here are the force equations written in terms of body coordinates.
214     %
215     % f ca cb
216     %
217     \begin{align}
218 gezelter 4198 \mathbf{F}_{a C_a C_b} =&
219     C_a C_b w_a(r) \hat{\mathbf{r}}
220 gezelter 3986 \\
221     %
222     % f ca db
223     %
224 gezelter 4198 \mathbf{F}_{a C_a \mathbf{D}_b} =&
225     C_a
226     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} w_b(r) \hat{\mathbf{r}}
227     +C_a
228     \sum_n D_{bn} \hat{\mathbf{B}}_n w_c(r)
229 gezelter 3986 \\
230     %
231     % f ca qb
232     %
233     % 1
234 gezelter 4198 \mathbf{F}_{a C_a \mathsf{Q}_b} =&
235     C_a \text{Tr}\mathsf{Q}_b w_d(r) \hat{\mathbf{r}}
236     + 2C_a \sum_l \hat{\mathbf{B}}_l Q_{bln} (\hat{\mathbf{B}}_n \cdot
237     \hat{\mathbf{r}}) w_e(r) \nonumber \\
238 gezelter 3986 % 2
239 gezelter 4198 &+C_a
240     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) w_f(r) \hat{\mathbf{r}} \\
241 gezelter 3986 %
242     % f da cb
243     %
244 gezelter 4198 \mathbf{F}_{a \mathbf{D}_a C_b} =&
245     -C_b
246     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an} w_b(r) \hat{\mathbf{r}}
247     -C_b
248     \sum_n D_{an} \hat{\mathbf{A}}_n w_c(r)
249 gezelter 3986 \\
250     %
251     % f da db
252     %
253     % 1
254 gezelter 4198 \mathbf{F}_{a \mathbf{D}_a \mathbf{D}_b} =&
255     -\sum_{mn} D_{am}
256     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
257     D_{bn} w_d(r) \hat{\mathbf{r}}
258     -\sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) D_{am}
259     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} w_f(r) \hat{\mathbf{r}}
260 gezelter 3986 \nonumber \\
261     % 2
262     & +
263 gezelter 4198 \Bigl[ \sum_m D_{am}
264     \hat{\mathbf{A}}_m \sum_n D_{bn}
265     (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
266     + \sum_m D_{bm}
267     \hat{\mathbf{B}}_m \sum_n D_{an}
268     (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_e(r) \\
269 gezelter 3986 %
270     % f da qb
271     %
272     % 1
273 gezelter 4198 \mathbf{F}_{a \mathbf{D}_a \mathsf{Q}_b} =&
274 gezelter 3986 - \Bigl[
275 gezelter 4198 \text{Tr}\mathsf{Q}_b
276     \sum_l D_{al} \hat{\mathbf{A}}_l
277     +2\sum_{lmn} D_{al}
278     (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m)
279     Q_{bmn} \hat{\mathbf{B}}_n \Bigr] w_g(r) \nonumber \\
280 gezelter 3986 % 3
281     & - \Bigl[
282 gezelter 4198 \text{Tr}\mathsf{Q}_b
283     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an}
284     +2\sum_{lmn}D_{al}
285     (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m)
286     Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_h(r) \hat{\mathbf{r}}
287 gezelter 3986 \nonumber \\
288     % 4
289     &+
290 gezelter 4198 \Bigl[\sum_l D_{al} \hat{\mathbf{A}}_l
291     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
292     Q_{bmn}
293     (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) +2 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
294     D_{al}
295     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
296     Q_{bmn} \hat{\mathbf{B}}_n \Bigr] w_i(r) \nonumber \\
297 gezelter 3986 % 6
298     & -
299 gezelter 4198 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) D_{al}
300     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
301     Q_{bmn}
302     (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) w_j(r) \hat{\mathbf{r}}
303 gezelter 3986 \\
304     %
305     % force qa cb
306     %
307     % 1
308 gezelter 4198 \mathbf{F}_{a \mathsf{Q}_a C_b} =&
309     C_b \text{Tr} \mathsf{Q}_a \hat{\mathbf{r}} w_d(r)
310     + 2C_b \sum_l \hat{\mathbf{A}}_l
311     Q_{aln} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_e(r) \nonumber \\
312 gezelter 3986 % 2
313 gezelter 4198 & +C_b
314     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_f(r) \hat{\mathbf{r}}
315 gezelter 3986 \end{align}
316    
317     \begin{align}
318     %
319     % f qa db
320     %
321     % 1
322 gezelter 4198 \mathbf{F}_{a \mathsf{Q}_a \mathbf{D}_b} =&
323 gezelter 3986 \Bigl[
324 gezelter 4198 \text{Tr}\mathsf{Q}_a
325     \sum_l D_{bl} \hat{\mathbf{B}}_l
326     +2\sum_{lmn} D_{bl}
327     (\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m)
328     Q_{amn} \hat{\mathbf{A}}_n \Bigr]
329 gezelter 3986 w_g(r) \nonumber \\
330     % 3
331     & + \Bigl[
332 gezelter 4198 \text{Tr}\mathsf{Q}_a
333     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn}
334     +2\sum_{lmn}D_{bl}
335     (\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m)
336     Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_h(r) \hat{\mathbf{r}}
337 gezelter 3986 \nonumber \\
338     % 4
339 gezelter 4198 & + \Bigl[ \sum_l D_{bl} \hat{\mathbf{B}}_l
340     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
341     Q_{amn}
342     (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) +2 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l)
343     D_{bl}
344     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
345     Q_{amn} \hat{\mathbf{A}}_n \Bigr] w_i(r) \nonumber \\
346 gezelter 3986 % 6
347 gezelter 4198 & +\sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl}
348     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
349     Q_{amn}
350     (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_j(r) \hat{\mathbf{r}}
351 gezelter 3986 \\
352     %
353     % f qa qb
354     %
355 gezelter 4198 \mathbf{F}_{a \mathsf{Q}_a \mathsf{Q}_b} =&
356 gezelter 3986 \Bigl[
357 gezelter 4198 \text{Tr}\mathsf{Q}_a \text{Tr} \mathsf{Q}_b
358     + 2 \sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p)
359     Q_{alm} Q_{bnp}
360     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) \Bigr] w_k(r) \hat{\mathbf{r}} \nonumber \\
361 gezelter 3986 &+ \Bigl[
362 gezelter 4198 2\text{Tr}\mathsf{Q}_b \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} \hat{\mathbf{A}}_m
363     + 2\text{Tr} \mathsf{Q}_a \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l)
364     Q_{blm} \hat{\mathbf{B}}_m \nonumber \\
365     &+ 4\sum_{lmnp} \hat{\mathbf{A}}_l Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
366     Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}})
367     + 4\sum_{lmnp} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm}
368     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) Q_{bnp} \hat{\mathbf{B}}_p
369 gezelter 3986 \Bigr] w_n(r) \nonumber \\
370     &+
371 gezelter 4198 \Bigl[ \text{Tr} \mathsf{Q}_a
372     \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) Q_{blm}
373     (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})
374     + \text{Tr} \mathsf{Q}_b
375     \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm}
376     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) \nonumber \\
377     &+4\sum_{lmnp} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
378     Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
379     Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) \Bigr] w_l(r) \hat{\mathbf{r}} \nonumber \\
380 gezelter 3986 %
381     &+ \Bigl[
382 gezelter 4198 2\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} \hat{\mathbf{A}}_m
383     \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) Q_{bnp}
384     (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) \nonumber \\
385     &+2 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm}
386     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
387     \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) Q_{bnp} \hat{\mathbf{B}}_n \Bigr]
388     w_o(r) \hat{\mathbf{r}} \nonumber \\
389 gezelter 3986 & +
390 gezelter 4198 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
391     Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
392     \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n)
393     Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) w_m(r) \hat{\mathbf{r}}
394 gezelter 3986 \end{align}
395     %
396     Here we list the form of the non-zero damped shifted multipole torques showing
397     explicitly dependences on body axes:
398     %
399     % t ca db
400     %
401     \begin{align}
402 gezelter 4198 \mathbf{\tau}_{b C_a \mathbf{D}_b} =&
403     C_a
404     \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn} \, v_{11}(r)
405 gezelter 3986 \\
406     %
407     % t ca qb
408     %
409 gezelter 4198 \mathbf{\tau}_{b C_a \mathsf{Q}_b} =&
410     2C_a
411     \sum_{lm} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_l)
412     Q_{blm} (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}}) v_{22}(r)
413 gezelter 3986 \\
414     %
415     % t da cb
416     %
417 gezelter 4198 \mathbf{\tau}_{a \mathbf{D}_a C_b} =&
418     -C_b
419     \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n) D_{an} \, v_{11}(r)
420 gezelter 3986 \\
421     %
422     %
423     % ta da db
424     %
425     % 1
426 gezelter 4198 \mathbf{\tau}_{a \mathbf{D}_a \mathbf{D}_b} =&
427     \sum_{mn} D_{am}
428     (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n)
429     D_{bn} v_{21}(r) \nonumber \\
430 gezelter 3986 % 2
431     &-
432 gezelter 4198 \sum_m (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m) D_{am}
433     \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} v_{22}(r)
434 gezelter 3986 \\
435     %
436     % tb da db
437     %
438     % 1
439 gezelter 4198 \mathbf{\tau}_{b \mathbf{D}_a \mathbf{D}_b} =&
440     - \sum_{mn} D_{am}
441     (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n)
442     D_{bn} v_{21}(r) \nonumber \\
443 gezelter 3986 % 2
444     &+
445 gezelter 4198 \sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
446     D_{am} \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn} v_{22}(r)
447 gezelter 3986 \\
448     % ta da qb
449     %
450     % 1
451 gezelter 4198 \mathbf{\tau}_{a \mathbf{D}_a \mathsf{Q}_b} =&
452 gezelter 3986 \left(
453 gezelter 4198 -\text{Tr} \mathsf{Q}_b
454     \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n) D_{an}
455     +2\sum_{lmn} D_{al}
456     (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m)
457     Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
458 gezelter 3986 \right) v_{31}(r) \nonumber \\
459     % 2
460     &-
461 gezelter 4198 \sum_l (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l) D_{al}
462     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
463     Q_{bmn}
464     (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) v_{32}(r) \\
465 gezelter 3986 %
466     % tb da qb
467     %
468     % 1
469 gezelter 4198 \mathbf{\tau}_{b \mathbf{D}_a \mathsf{Q}_b} =&
470 gezelter 3986 \left(
471 gezelter 4198 -2\sum_{lmn}D_{al}
472     (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m)
473     Q_{bmn} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n)
474     -2\sum_{lmn}D_{al}
475     (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m)
476     Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
477 gezelter 3986 \right) v_{31}(r) \nonumber \\
478     % 2
479     &-2
480 gezelter 4198 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
481     D_{al} \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
482     Q_{bmn} (\hat{\mathbf{r}}\times \hat{\mathbf{B}}_n) v_{32}(r)
483 gezelter 3986 \\
484     %
485     % ta qa cb
486     %
487 gezelter 4198 \mathbf{\tau}_{a \mathsf{Q}_a C_b} =&
488     2C_b \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
489     Q_{alm} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m) v_{22}(r)
490 gezelter 3986 \\
491     %
492     % ta qa db
493     %
494     % 1
495 gezelter 4198 \mathbf{\tau}_{a \mathsf{Q}_a \mathbf{D}_b} = &
496 gezelter 3986 \left(
497 gezelter 4198 2\sum_{lmn}D_{bl}
498     (\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m)
499     Q_{amn} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n)
500     +2\sum_{lmn}D_{bl}
501     (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m)
502     Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}})
503 gezelter 3986 \right) v_{31}(r) \nonumber \\
504     % 2
505     &+2
506 gezelter 4198 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl}
507     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
508     Q_{amn}
509     (\hat{\mathbf{r}}\times \hat{\mathbf{A}}_n) v_{32}(r)
510 gezelter 3986 \\
511     %
512     % tb qa db
513     %
514     % 1
515 gezelter 4198 \mathbf{\tau}_{b \mathsf{Q}_a \mathbf{D}_b} =&
516 gezelter 3986 \left(
517 gezelter 4198 \text{Tr} \mathsf{Q}_a
518     \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn}
519     +2\sum_{lmn}D_{bl}
520     (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m)
521     Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}})
522 gezelter 3986 \right) v_{31}(r) \nonumber \\
523     % 2
524 gezelter 4198 & \sum_l (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_l) D_{bl}
525     \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
526     Q_{amn}
527     (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{32}(r)
528 gezelter 3986 \end{align}
529    
530     %
531     % ta qa qb
532     %
533     \begin{align}
534     % 1
535 gezelter 4198 \mathbf{\tau}_{a \mathsf{Q}_a \mathsf{Q}_b} =&
536 gezelter 3986 -4
537 gezelter 4198 \sum_{lmnp} (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_p)
538     Q_{alm} Q_{bnp}
539     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) v_{41}(r) \nonumber \\
540 gezelter 3986 % 2
541     &+
542     \Bigl[
543 gezelter 4198 2\text{Tr} \mathsf{Q}_b
544     \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
545     Q_{alm}
546     (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m)
547 gezelter 3986 +4 \sum_{lmnp}
548 gezelter 4198 (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l )
549     Q_{alm}
550     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
551     Q_{bnp}
552     (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) \nonumber \\
553 gezelter 3986 % 3
554     &-4 \sum_{lmnp}
555 gezelter 4198 (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
556     Q_{alm}
557     (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n)
558     Q_{bnp}
559     (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}})
560 gezelter 3986 \Bigr] v_{42}(r) \nonumber \\
561     % 4
562     &+2
563 gezelter 4198 \sum_{lm} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l)
564     Q_{alm}
565     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
566     \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n)
567     Q_{bnp}
568     (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r)\\
569 gezelter 3986 %
570     % tb qa qb
571     %
572     % 1
573 gezelter 4198 \mathbf{\tau}_{b \mathsf{Q}_a \mathsf{Q}_b} =&
574     4 \sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p)
575     Q_{alm} Q_{bnp}
576     (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) v_{41}(r) \nonumber \\
577 gezelter 3986 % 2
578     &+
579     \Bigl[
580 gezelter 4198 2\text{Tr} \mathsf{Q}_a
581     \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l )
582     Q_{blm}
583     (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_m)
584 gezelter 3986 +4 \sum_{lmnp}
585 gezelter 4198 (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
586     Q_{alm}
587     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
588     Q_{bnp}
589     (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_p) \nonumber \\
590 gezelter 3986 % 3
591     &+4 \sum_{lmnp}
592 gezelter 4198 (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
593     Q_{alm}
594     (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n)
595     Q_{bnp}
596     (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}})
597 gezelter 3986 \Bigr] v_{42}(r) \nonumber \\
598     % 4
599     &+2
600 gezelter 4198 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
601     Q_{alm}
602     (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
603     \sum_{np} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n)
604     Q_{bnp}
605     (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r).
606 gezelter 3986 \end{align}
607    
608    
609     % \begin{table*}
610     % \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
611     % \begin{ruledtabular}
612     % \begin{tabular}{|l|l|l|}
613     % Generic&Taylor-shifted Force&Gradient-shifted Force
614     % \\ \hline
615     % %
616     % %
617     % %
618     % $w_a(r)$&
619     % $g_0(r)$&
620     % $g(r)-g(r_c)$ \\
621     % %
622     % %
623     % $w_b(r)$ &
624     % $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
625     % $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
626     % %
627     % $w_c(r)$ &
628     % $\frac{g_1(r)}{r} $ &
629     % $\frac{v_{11}(r)}{r}$ \\
630     % %
631     % %
632     % $w_d(r)$&
633     % $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
634     % $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
635     % -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
636     % %
637     % $w_e(r)$ &
638     % $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
639     % $\frac{v_{22}(r)}{r}$ \\
640     % %
641     % %
642     % $w_f(r)$&
643     % $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
644     % $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
645     % &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
646     % %
647     % $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
648     % $\frac{v_{31}(r)}{r}$\\
649     % %
650     % $w_h(r)$ &
651     % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
652     % $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
653     % &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
654     % &&$-\frac{v_{31}(r)}{r}$\\
655     % % 2
656     % $w_i(r)$ &
657     % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
658     % $\frac{v_{32}(r)}{r}$ \\
659     % %
660     % $w_j(r)$ &
661     % $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
662     % $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
663     % &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
664     % %
665     % $w_k(r)$ &
666     % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
667     % $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
668     % &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
669     % %
670     % $w_l(r)$ &
671     % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
672     % $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
673     % &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
674     % -\frac{2v_{42}(r)}{r}$ \\
675     % %
676     % $w_m(r)$ &
677     % $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
678     % $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
679     % &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
680     % +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
681     % &&$-\frac{4v_{43}(r)}{r}$ \\
682     % %
683     % $w_n(r)$ &
684     % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
685     % $\frac{v_{42}(r)}{r}$ \\
686     % %
687     % $w_o(r)$ &
688     % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
689     % $\frac{v_{43}(r)}{r}$ \\
690     % %
691     % \end{tabular}
692     % \end{ruledtabular}
693     % \end{table*}
694     %
695     % \newpage
696     %
697     % \bibliography{multipole}
698     %
699 gezelter 3990
700 gezelter 4198 \section{}
701    
702 gezelter 3990 To test the gradient-shifted force (GSF) and Taylor-shifted force
703     (TSF) methods against known energies for multipolar crystals, we
704     repeated the Luttinger \& Tisza series summations and have obtained
705     the energy constants (converged to one part in $10^9$) in table
706     \ref{tab:LT}.
707    
708 gezelter 4198
709 gezelter 3990 \begin{table*}[h]
710     \centering{
711     \caption{Luttinger \& Tisza arrays and their associated
712     energy constants. Type ``A'' arrays have nearest neighbor strings of
713     antiparallel dipoles. Type ``B'' arrays have nearest neighbor
714     strings of antiparallel dipoles if the dipoles are contained in a
715     plane perpendicular to the dipole direction that passes through
716     the dipole.}
717     }
718     \label{tab:LT}
719     \begin{ruledtabular}
720     \begin{tabular}{cccc}
721     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
722     A & SC & 001 & -2.676788684 \\
723     A & BCC & 001 & 0 \\
724     A & BCC & 111 & -1.770078733 \\
725     A & FCC & 001 & 2.166932835 \\
726     A & FCC & 011 & -1.083466417 \\
727     B & SC & 001 & -2.676788684 \\
728     B & BCC & 001 & -1.338394342 \\
729     B & BCC & 111 & -1.770078733 \\
730     B & FCC & 001 & -1.083466417 \\
731     B & FCC & 011 & -1.807573634 \\
732     -- & BCC & minimum & -1.985920929 \\
733     \end{tabular}
734     \end{ruledtabular}
735     \end{table*}
736    
737     We have also tested agains the energy constants for Quadrupolar
738     arrays. Nagai and Nakamura computed the energies of selected
739     quadrupole arrays based on extensions to the Luttinger and Tisza
740     approach. These energy constants are given in table \ref{tab:NNQ}.
741    
742     \begin{table*}
743     \centering{
744 gezelter 4179 \caption{Nagai and Nakamura Quadrupolar arrays. Note that these
745 gezelter 3996 take into account the factor of two corrections in
746     Ref. \onlinecite{Nagai01091963}}}
747 gezelter 3990 \label{tab:NNQ}
748     \begin{ruledtabular}
749     \begin{tabular}{ccc}
750     Lattice & Quadrupole Direction & Energy constants \\ \hline
751 gezelter 3996 SC & 111 & -16.6 \\
752     BCC & 011 & -43.4 \\
753     FCC & 111 & -161
754 gezelter 3990 \end{tabular}
755     \end{ruledtabular}
756     \end{table*}
757    
758 gezelter 3996 \newpage
759     \bibliography{multipole}
760 gezelter 3986 \end{document}
761     %
762     % ****** End of file multipole.tex ******