1 |
% ****** Start of file aipsamp.tex ****** |
2 |
% |
3 |
% This file is part of the AIP files in the AIP distribution for REVTeX 4. |
4 |
% Version 4.1 of REVTeX, October 2009 |
5 |
% |
6 |
% Copyright (c) 2009 American Institute of Physics. |
7 |
% |
8 |
% See the AIP README file for restrictions and more information. |
9 |
% |
10 |
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed |
11 |
% as well as the rest of the prerequisites for REVTeX 4.1 |
12 |
% |
13 |
% It also requires running BibTeX. The commands are as follows: |
14 |
% |
15 |
% 1) latex aipsamp |
16 |
% 2) bibtex aipsamp |
17 |
% 3) latex aipsamp |
18 |
% 4) latex aipsamp |
19 |
% |
20 |
% Use this file as a source of example code for your aip document. |
21 |
% Use the file aiptemplate.tex as a template for your document. |
22 |
\documentclass[% |
23 |
aip,jcp, |
24 |
amsmath,amssymb, |
25 |
preprint,% |
26 |
% reprint,% |
27 |
%author-year,% |
28 |
%author-numerical,% |
29 |
jcp]{revtex4-1} |
30 |
|
31 |
\usepackage{graphicx}% Include figure files |
32 |
\usepackage{dcolumn}% Align table columns on decimal point |
33 |
%\usepackage{bm}% bold math |
34 |
\usepackage{times} |
35 |
\usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions |
36 |
\usepackage{url} |
37 |
\usepackage{rotating} |
38 |
|
39 |
%\usepackage[mathlines]{lineno}% Enable numbering of text and display math |
40 |
%\linenumbers\relax % Commence numbering lines |
41 |
|
42 |
\begin{document} |
43 |
|
44 |
\title[Taylor-shifted and Gradient-shifted electrostatics for multipoles] |
45 |
{Supplemental Material for: Real space alternatives to the Ewald |
46 |
Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles} |
47 |
|
48 |
\author{Madan Lamichhane} |
49 |
\affiliation{Department of Physics, University |
50 |
of Notre Dame, Notre Dame, IN 46556} |
51 |
|
52 |
\author{J. Daniel Gezelter} |
53 |
\email{gezelter@nd.edu.} |
54 |
\affiliation{Department of Chemistry and Biochemistry, University |
55 |
of Notre Dame, Notre Dame, IN 46556} |
56 |
|
57 |
\author{Kathie E. Newman} |
58 |
\affiliation{Department of Physics, University |
59 |
of Notre Dame, Notre Dame, IN 46556} |
60 |
|
61 |
\date{\today}% It is always \today, today, |
62 |
% but any date may be explicitly specified |
63 |
|
64 |
\maketitle |
65 |
|
66 |
\section{Interaction Energies in body-frame coordiantes} |
67 |
% |
68 |
% |
69 |
%Energy in body coordinate form --------------------------------------------------------------- |
70 |
% |
71 |
Although they are not as widely used as space-frame coordinates, the |
72 |
body-frame versions may occasionally prove useful. In this section, |
73 |
we list the interaction energies, forces, and torques in terms of the |
74 |
body coordinates for both the Taylor-Shifted and Gradient-Shifted |
75 |
approximations. The radial functions ($v_{ij}(r)$ and $w_{\alpha}(r)$) |
76 |
are given in the Tables I and II in the paper. These functions depend |
77 |
on the choice of electrostatic kernel as well as the approximation |
78 |
method being utilized. Again, all energy, force, and torque equations |
79 |
have an an implied factor of $1/4\pi \epsilon_0$: |
80 |
% |
81 |
% u ca cb |
82 |
% |
83 |
\begin{align} |
84 |
U_{C_{\bf a}C_{\bf b}}(r)=& |
85 |
C_{\bf a} C_{\bf b} v_{01}(r) |
86 |
\\ |
87 |
% |
88 |
% u ca db |
89 |
% |
90 |
U_{C_{\bf a}D_{\bf b}}(r)=& |
91 |
C_{\bf a} |
92 |
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r) |
93 |
\\ |
94 |
% |
95 |
% u ca qb |
96 |
% |
97 |
U_{C_{\bf a}Q_{\bf b}}(r)=& |
98 |
C_{\bf a }\text{Tr}Q_{\bf b} |
99 |
v_{21}(r) +C_{\bf a} |
100 |
\sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) |
101 |
v_{22}(r) \\ |
102 |
% |
103 |
% u da cb |
104 |
% |
105 |
U_{D_{\bf a}C_{\bf b}}(r)=& |
106 |
-C_{\bf b} |
107 |
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r) |
108 |
\\ |
109 |
% |
110 |
% u da db |
111 |
% |
112 |
% 1 |
113 |
U_{D_{\bf a}D_{\bf b}}(r)=& |
114 |
- \sum_{mn} D_{\mathbf {a}m} |
115 |
(\hat{a}_m \cdot \hat{b}_n) |
116 |
D_{\mathbf{b}n} v_{21}(r) \nonumber \\ |
117 |
% 2 |
118 |
&- |
119 |
\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
120 |
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} |
121 |
v_{22}(r) |
122 |
\\ |
123 |
% |
124 |
% u da qb |
125 |
% |
126 |
% 1 |
127 |
U_{D_{\bf a}Q_{\bf b}}(r)=& |
128 |
-\left( |
129 |
\text{Tr}Q_{\mathbf{b}} |
130 |
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} |
131 |
+2\sum_{lmn}D_{\mathbf{a}l} |
132 |
(\hat{a}_l \cdot \hat{b}_m) |
133 |
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
134 |
\right) v_{31}(r) \nonumber \\ |
135 |
% 2 |
136 |
&- |
137 |
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
138 |
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
139 |
Q_{{\mathbf b}mn} |
140 |
(\hat{b}_n \cdot \hat{r}) v_{32}(r) |
141 |
\\ |
142 |
% |
143 |
% u qa cb |
144 |
% |
145 |
U_{Q_{\bf a}C_{\bf b}}(r)=& |
146 |
C_{\bf b }\text{Tr}Q_{\bf a} v_{21}(r) |
147 |
+C_{\bf b} |
148 |
\sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r) |
149 |
\\ |
150 |
% |
151 |
% u qa db |
152 |
% |
153 |
%1 |
154 |
U_{Q_{\bf a}D_{\bf b}}(r)=& |
155 |
\left( |
156 |
\text{Tr}Q_{\mathbf{a}} |
157 |
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} |
158 |
+2\sum_{lmn}D_{\mathbf{b}l} |
159 |
(\hat{b}_l \cdot \hat{a}_m) |
160 |
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
161 |
\right) v_{31}(r) \nonumber \\ |
162 |
% 2 |
163 |
&+ |
164 |
\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
165 |
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
166 |
Q_{{\mathbf a}mn} |
167 |
(\hat{a}_n \cdot \hat{r}) v_{32}(r) |
168 |
\end{align} |
169 |
|
170 |
\begin{align} |
171 |
% |
172 |
% u qa qb |
173 |
% |
174 |
%1 |
175 |
U_{Q_{\bf a}Q_{\bf b}}(r)=& |
176 |
\Bigl[ |
177 |
\text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}} |
178 |
+2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
179 |
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
180 |
(\hat{a}_m \cdot \hat{b}_n) \Bigr] |
181 |
v_{41}(r) \nonumber \\ |
182 |
% 2 |
183 |
&+ |
184 |
\Bigl[ \text{Tr}Q_{\mathbf{a}} |
185 |
\sum_{lm} (\hat{r} \cdot \hat{b}_l ) |
186 |
Q_{{\mathbf b}lm} |
187 |
(\hat{b}_m \cdot \hat{r}) |
188 |
+\text{Tr}Q_{\mathbf{b}} |
189 |
\sum_{lm} (\hat{r} \cdot \hat{a}_l ) |
190 |
Q_{{\mathbf a}lm} |
191 |
(\hat{a}_m \cdot \hat{r}) \nonumber \\ |
192 |
% 3 |
193 |
&+4 \sum_{lmnp} |
194 |
(\hat{r} \cdot \hat{a}_l ) |
195 |
Q_{{\mathbf a}lm} |
196 |
(\hat{a}_m \cdot \hat{b}_n) |
197 |
Q_{{\mathbf b}np} |
198 |
(\hat{b}_p \cdot \hat{r}) |
199 |
\Bigr] v_{42}(r) \nonumber \\ |
200 |
% 4 |
201 |
&+ |
202 |
\sum_{lm} (\hat{r} \cdot \hat{a}_l) |
203 |
Q_{{\mathbf a}lm} |
204 |
(\hat{a}_m \cdot \hat{r}) |
205 |
\sum_{np} (\hat{r} \cdot \hat{b}_n) |
206 |
Q_{{\mathbf b}np} |
207 |
(\hat{b}_p \cdot \hat{r}) v_{43}(r). |
208 |
\end{align} |
209 |
|
210 |
|
211 |
% BODY coordinates force equations -------------------------------------------- |
212 |
% |
213 |
% |
214 |
Here are the force equations written in terms of body coordinates. |
215 |
% |
216 |
% f ca cb |
217 |
% |
218 |
\begin{align} |
219 |
\mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =& |
220 |
C_{\bf a} C_{\bf b} w_a(r) \hat{r} |
221 |
\\ |
222 |
% |
223 |
% f ca db |
224 |
% |
225 |
\mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =& |
226 |
C_{\bf a} |
227 |
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r} |
228 |
+C_{\bf a} |
229 |
\sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r) |
230 |
\\ |
231 |
% |
232 |
% f ca qb |
233 |
% |
234 |
% 1 |
235 |
\mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =& |
236 |
C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r} |
237 |
+ 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot |
238 |
\hat{r}) w_e(r) \nonumber \\ |
239 |
% 2 |
240 |
&+C_{\bf a} |
241 |
\sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r} \\ |
242 |
% |
243 |
% f da cb |
244 |
% |
245 |
\mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =& |
246 |
-C_{\bf{b}} |
247 |
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r} |
248 |
-C_{\bf{b}} |
249 |
\sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r) |
250 |
\\ |
251 |
% |
252 |
% f da db |
253 |
% |
254 |
% 1 |
255 |
\mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =& |
256 |
-\sum_{mn} D_{\mathbf {a}m} |
257 |
(\hat{a}_m \cdot \hat{b}_n) |
258 |
D_{\mathbf{b}n} w_d(r) \hat{r} |
259 |
-\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
260 |
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} |
261 |
\nonumber \\ |
262 |
% 2 |
263 |
& + |
264 |
\Bigl[ \sum_m D_{\mathbf {a}m} |
265 |
\hat{a}_m \sum_n D_{\mathbf{b}n} |
266 |
(\hat{b}_n \cdot \hat{r}) |
267 |
+ \sum_m D_{\mathbf {b}m} |
268 |
\hat{b}_m \sum_n D_{\mathbf{a}n} |
269 |
(\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\ |
270 |
% |
271 |
% f da qb |
272 |
% |
273 |
% 1 |
274 |
\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& |
275 |
- \Bigl[ |
276 |
\text{Tr}Q_{\mathbf{b}} |
277 |
\sum_l D_{\mathbf{a}l} \hat{a}_l |
278 |
+2\sum_{lmn} D_{\mathbf{a}l} |
279 |
(\hat{a}_l \cdot \hat{b}_m) |
280 |
Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \nonumber \\ |
281 |
% 3 |
282 |
& - \Bigl[ |
283 |
\text{Tr}Q_{\mathbf{b}} |
284 |
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} |
285 |
+2\sum_{lmn}D_{\mathbf{a}l} |
286 |
(\hat{a}_l \cdot \hat{b}_m) |
287 |
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} |
288 |
\nonumber \\ |
289 |
% 4 |
290 |
&+ |
291 |
\Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l |
292 |
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
293 |
Q_{{\mathbf b}mn} |
294 |
(\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l) |
295 |
D_{\mathbf{a}l} |
296 |
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
297 |
Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r) \nonumber \\ |
298 |
% 6 |
299 |
& - |
300 |
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
301 |
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
302 |
Q_{{\mathbf b}mn} |
303 |
(\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r} |
304 |
\\ |
305 |
% |
306 |
% force qa cb |
307 |
% |
308 |
% 1 |
309 |
\mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =& |
310 |
C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r) |
311 |
+ 2C_{\bf b } \sum_l \hat{a}_l Q_{{\mathbf |
312 |
a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \nonumber \\ |
313 |
% 2 |
314 |
& +C_{\bf b} |
315 |
\sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r} |
316 |
\end{align} |
317 |
|
318 |
\begin{align} |
319 |
% |
320 |
% f qa db |
321 |
% |
322 |
% 1 |
323 |
\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =& |
324 |
\Bigl[ |
325 |
\text{Tr}Q_{\mathbf{a}} |
326 |
\sum_l D_{\mathbf{b}l} \hat{b}_l |
327 |
+2\sum_{lmn} D_{\mathbf{b}l} |
328 |
(\hat{b}_l \cdot \hat{a}_m) |
329 |
Q_{\mathbf{a}mn} \hat{a}_n \Bigr] |
330 |
w_g(r) \nonumber \\ |
331 |
% 3 |
332 |
& + \Bigl[ |
333 |
\text{Tr}Q_{\mathbf{a}} |
334 |
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} |
335 |
+2\sum_{lmn}D_{\mathbf{b}l} |
336 |
(\hat{b}_l \cdot \hat{a}_m) |
337 |
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} |
338 |
\nonumber \\ |
339 |
% 4 |
340 |
& + \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l |
341 |
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
342 |
Q_{{\mathbf a}mn} |
343 |
(\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l) |
344 |
D_{\mathbf{b}l} |
345 |
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
346 |
Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \nonumber \\ |
347 |
% 6 |
348 |
& +\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
349 |
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
350 |
Q_{{\mathbf a}mn} |
351 |
(\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r} |
352 |
\\ |
353 |
% |
354 |
% f qa qb |
355 |
% |
356 |
\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =& |
357 |
\Bigl[ |
358 |
\text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}} |
359 |
+ 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
360 |
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
361 |
(\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r} \nonumber \\ |
362 |
&+ \Bigl[ |
363 |
2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m |
364 |
+ 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) |
365 |
Q_{\mathbf{b}lm} \hat{b}_m \nonumber \\ |
366 |
&+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) |
367 |
+ 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p |
368 |
\Bigr] w_n(r) \nonumber \\ |
369 |
&+ |
370 |
\Bigl[ \text{Tr}Q_{\mathbf{a}} |
371 |
\sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r}) |
372 |
+ \text{Tr}Q_{\mathbf{b}} |
373 |
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\ |
374 |
&+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) |
375 |
Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \nonumber \\ |
376 |
% |
377 |
&+ \Bigl[ |
378 |
2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m |
379 |
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot |
380 |
\hat{r}) \nonumber \\ |
381 |
&+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) |
382 |
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] |
383 |
w_o(r) \hat{r} \nonumber \\ |
384 |
& + |
385 |
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) |
386 |
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r} |
387 |
\end{align} |
388 |
% |
389 |
Here we list the form of the non-zero damped shifted multipole torques showing |
390 |
explicitly dependences on body axes: |
391 |
% |
392 |
% t ca db |
393 |
% |
394 |
\begin{align} |
395 |
\mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =& |
396 |
C_{\bf a} |
397 |
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r) |
398 |
\\ |
399 |
% |
400 |
% t ca qb |
401 |
% |
402 |
\mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =& |
403 |
2C_{\bf a} |
404 |
\sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m |
405 |
\cdot \hat{r}) v_{22}(r) |
406 |
\\ |
407 |
% |
408 |
% t da cb |
409 |
% |
410 |
\mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =& |
411 |
-C_{\bf b} |
412 |
\sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r) |
413 |
\\ |
414 |
% |
415 |
% |
416 |
% ta da db |
417 |
% |
418 |
% 1 |
419 |
\mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =& |
420 |
\sum_{mn} D_{\mathbf {a}m} |
421 |
(\hat{a}_m \times \hat{b}_n) |
422 |
D_{\mathbf{b}n} v_{21}(r) \nonumber \\ |
423 |
% 2 |
424 |
&- |
425 |
\sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m} |
426 |
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r) |
427 |
\\ |
428 |
% |
429 |
% tb da db |
430 |
% |
431 |
% 1 |
432 |
\mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =& |
433 |
- \sum_{mn} D_{\mathbf {a}m} |
434 |
(\hat{a}_m \times \hat{b}_n) |
435 |
D_{\mathbf{b}n} v_{21}(r) \nonumber \\ |
436 |
% 2 |
437 |
&+ |
438 |
\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
439 |
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r) |
440 |
\\ |
441 |
% ta da qb |
442 |
% |
443 |
% 1 |
444 |
\mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =& |
445 |
\left( |
446 |
-\text{Tr}Q_{\mathbf{b}} |
447 |
\sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} |
448 |
+2\sum_{lmn}D_{\mathbf{a}l} |
449 |
(\hat{a}_l \times \hat{b}_m) |
450 |
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
451 |
\right) v_{31}(r) \nonumber \\ |
452 |
% 2 |
453 |
&- |
454 |
\sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l} |
455 |
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
456 |
Q_{{\mathbf b}mn} |
457 |
(\hat{b}_n \cdot \hat{r}) v_{32}(r) \\ |
458 |
% |
459 |
% tb da qb |
460 |
% |
461 |
% 1 |
462 |
\mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =& |
463 |
\left( |
464 |
-2\sum_{lmn}D_{\mathbf{a}l} |
465 |
(\hat{a}_l \cdot \hat{b}_m) |
466 |
Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n) |
467 |
-2\sum_{lmn}D_{\mathbf{a}l} |
468 |
(\hat{a}_l \times \hat{b}_m) |
469 |
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
470 |
\right) v_{31}(r) \nonumber \\ |
471 |
% 2 |
472 |
&-2 |
473 |
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
474 |
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
475 |
Q_{{\mathbf b}mn} |
476 |
(\hat{r}\times \hat{b}_n) v_{32}(r) |
477 |
\\ |
478 |
% |
479 |
% ta qa cb |
480 |
% |
481 |
\mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =& |
482 |
2C_{\bf a} |
483 |
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r) |
484 |
\\ |
485 |
% |
486 |
% ta qa db |
487 |
% |
488 |
% 1 |
489 |
\mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} = & |
490 |
\left( |
491 |
2\sum_{lmn}D_{\mathbf{b}l} |
492 |
(\hat{b}_l \cdot \hat{a}_m) |
493 |
Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n) |
494 |
+2\sum_{lmn}D_{\mathbf{b}l} |
495 |
(\hat{a}_l \times \hat{b}_m) |
496 |
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
497 |
\right) v_{31}(r) \nonumber \\ |
498 |
% 2 |
499 |
&+2 |
500 |
\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
501 |
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
502 |
Q_{{\mathbf a}mn} |
503 |
(\hat{r}\times \hat{a}_n) v_{32}(r) |
504 |
\\ |
505 |
% |
506 |
% tb qa db |
507 |
% |
508 |
% 1 |
509 |
\mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =& |
510 |
\left( |
511 |
\text{Tr}Q_{\mathbf{a}} |
512 |
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} |
513 |
+2\sum_{lmn}D_{\mathbf{b}l} |
514 |
(\hat{a}_l \times \hat{b}_m) |
515 |
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
516 |
\right) v_{31}(r) \nonumber \\ |
517 |
% 2 |
518 |
& \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l} |
519 |
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
520 |
Q_{{\mathbf a}mn} |
521 |
(\hat{a}_n \cdot \hat{r}) v_{32}(r) |
522 |
\end{align} |
523 |
|
524 |
% |
525 |
% ta qa qb |
526 |
% |
527 |
\begin{align} |
528 |
% 1 |
529 |
\mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =& |
530 |
-4 |
531 |
\sum_{lmnp} (\hat{a}_l \times \hat{b}_p) |
532 |
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
533 |
(\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \nonumber \\ |
534 |
% 2 |
535 |
&+ |
536 |
\Bigl[ |
537 |
2\text{Tr}Q_{\mathbf{b}} |
538 |
\sum_{lm} (\hat{r} \cdot \hat{a}_l ) |
539 |
Q_{{\mathbf a}lm} |
540 |
(\hat{r} \times \hat{a}_m) |
541 |
+4 \sum_{lmnp} |
542 |
(\hat{r} \times \hat{a}_l ) |
543 |
Q_{{\mathbf a}lm} |
544 |
(\hat{a}_m \cdot \hat{b}_n) |
545 |
Q_{{\mathbf b}np} |
546 |
(\hat{b}_p \cdot \hat{r}) \nonumber \\ |
547 |
% 3 |
548 |
&-4 \sum_{lmnp} |
549 |
(\hat{r} \cdot \hat{a}_l ) |
550 |
Q_{{\mathbf a}lm} |
551 |
(\hat{a}_m \times \hat{b}_n) |
552 |
Q_{{\mathbf b}np} |
553 |
(\hat{b}_p \cdot \hat{r}) |
554 |
\Bigr] v_{42}(r) \nonumber \\ |
555 |
% 4 |
556 |
&+2 |
557 |
\sum_{lm} (\hat{r} \times \hat{a}_l) |
558 |
Q_{{\mathbf a}lm} |
559 |
(\hat{a}_m \cdot \hat{r}) |
560 |
\sum_{np} (\hat{r} \cdot \hat{b}_n) |
561 |
Q_{{\mathbf b}np} |
562 |
(\hat{b}_p \cdot \hat{r}) v_{43}(r)\\ |
563 |
% |
564 |
% tb qa qb |
565 |
% |
566 |
% 1 |
567 |
\mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =& |
568 |
4 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
569 |
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
570 |
(\hat{a}_m \times \hat{b}_n) v_{41}(r) \nonumber \\ |
571 |
% 2 |
572 |
&+ |
573 |
\Bigl[ |
574 |
2\text{Tr}Q_{\mathbf{a}} |
575 |
\sum_{lm} (\hat{r} \cdot \hat{b}_l ) |
576 |
Q_{{\mathbf b}lm} |
577 |
(\hat{r} \times \hat{b}_m) |
578 |
+4 \sum_{lmnp} |
579 |
(\hat{r} \cdot \hat{a}_l ) |
580 |
Q_{{\mathbf a}lm} |
581 |
(\hat{a}_m \cdot \hat{b}_n) |
582 |
Q_{{\mathbf b}np} |
583 |
(\hat{r} \times \hat{b}_p) \nonumber \\ |
584 |
% 3 |
585 |
&+4 \sum_{lmnp} |
586 |
(\hat{r} \cdot \hat{a}_l ) |
587 |
Q_{{\mathbf a}lm} |
588 |
(\hat{a}_m \times \hat{b}_n) |
589 |
Q_{{\mathbf b}np} |
590 |
(\hat{b}_p \cdot \hat{r}) |
591 |
\Bigr] v_{42}(r) \nonumber \\ |
592 |
% 4 |
593 |
&+2 |
594 |
\sum_{lm} (\hat{r} \cdot \hat{a}_l) |
595 |
Q_{{\mathbf a}lm} |
596 |
(\hat{a}_m \cdot \hat{r}) |
597 |
\sum_{np} (\hat{r} \times \hat{b}_n) |
598 |
Q_{{\mathbf b}np} |
599 |
(\hat{b}_p \cdot \hat{r}) v_{43}(r). |
600 |
\end{align} |
601 |
|
602 |
|
603 |
% \begin{table*} |
604 |
% \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.} |
605 |
% \begin{ruledtabular} |
606 |
% \begin{tabular}{|l|l|l|} |
607 |
% Generic&Taylor-shifted Force&Gradient-shifted Force |
608 |
% \\ \hline |
609 |
% % |
610 |
% % |
611 |
% % |
612 |
% $w_a(r)$& |
613 |
% $g_0(r)$& |
614 |
% $g(r)-g(r_c)$ \\ |
615 |
% % |
616 |
% % |
617 |
% $w_b(r)$ & |
618 |
% $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ & |
619 |
% $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\ |
620 |
% % |
621 |
% $w_c(r)$ & |
622 |
% $\frac{g_1(r)}{r} $ & |
623 |
% $\frac{v_{11}(r)}{r}$ \\ |
624 |
% % |
625 |
% % |
626 |
% $w_d(r)$& |
627 |
% $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ & |
628 |
% $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right) |
629 |
% -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\ |
630 |
% % |
631 |
% $w_e(r)$ & |
632 |
% $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ & |
633 |
% $\frac{v_{22}(r)}{r}$ \\ |
634 |
% % |
635 |
% % |
636 |
% $w_f(r)$& |
637 |
% $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ & |
638 |
% $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\ |
639 |
% &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\ |
640 |
% % |
641 |
% $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$& |
642 |
% $\frac{v_{31}(r)}{r}$\\ |
643 |
% % |
644 |
% $w_h(r)$ & |
645 |
% $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ & |
646 |
% $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\ |
647 |
% &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\ |
648 |
% &&$-\frac{v_{31}(r)}{r}$\\ |
649 |
% % 2 |
650 |
% $w_i(r)$ & |
651 |
% $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ & |
652 |
% $\frac{v_{32}(r)}{r}$ \\ |
653 |
% % |
654 |
% $w_j(r)$ & |
655 |
% $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ & |
656 |
% $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\ |
657 |
% &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\ |
658 |
% % |
659 |
% $w_k(r)$ & |
660 |
% $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ & |
661 |
% $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\ |
662 |
% &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\ |
663 |
% % |
664 |
% $w_l(r)$ & |
665 |
% $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ & |
666 |
% $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\ |
667 |
% &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right) |
668 |
% -\frac{2v_{42}(r)}{r}$ \\ |
669 |
% % |
670 |
% $w_m(r)$ & |
671 |
% $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ & |
672 |
% $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\ |
673 |
% &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3} |
674 |
% +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\ |
675 |
% &&$-\frac{4v_{43}(r)}{r}$ \\ |
676 |
% % |
677 |
% $w_n(r)$ & |
678 |
% $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ & |
679 |
% $\frac{v_{42}(r)}{r}$ \\ |
680 |
% % |
681 |
% $w_o(r)$ & |
682 |
% $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ & |
683 |
% $\frac{v_{43}(r)}{r}$ \\ |
684 |
% % |
685 |
% \end{tabular} |
686 |
% \end{ruledtabular} |
687 |
% \end{table*} |
688 |
% |
689 |
% \newpage |
690 |
% |
691 |
% \bibliography{multipole} |
692 |
% |
693 |
\end{document} |
694 |
% |
695 |
% ****** End of file multipole.tex ****** |