ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Supplemental.tex
Revision: 4195
Committed: Thu Jul 17 18:24:41 2014 UTC (9 years, 11 months ago) by gezelter
Content type: application/x-tex
File size: 20976 byte(s)
Log Message:
Most recent version including dielectric stuff

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38
39 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40 %\linenumbers\relax % Commence numbering lines
41
42 \begin{document}
43
44 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
45 {Supplemental Material for: Real space alternatives to the Ewald
46 Sum. I. Shifted Electrostatics for Multipoles}
47
48 \author{Madan Lamichhane}
49 \affiliation{Department of Physics, University
50 of Notre Dame, Notre Dame, IN 46556}
51
52 \author{J. Daniel Gezelter}
53 \email{gezelter@nd.edu.}
54 \affiliation{Department of Chemistry and Biochemistry, University
55 of Notre Dame, Notre Dame, IN 46556}
56
57 \author{Kathie E. Newman}
58 \affiliation{Department of Physics, University
59 of Notre Dame, Notre Dame, IN 46556}
60
61 \date{\today}% It is always \today, today,
62 % but any date may be explicitly specified
63
64 \maketitle
65
66 \section{Interaction Energies in body-frame coordiantes}
67 %
68 %
69 %Energy in body coordinate form ---------------------------------------------------------------
70 %
71 Although they are not as widely used as space-frame coordinates, the
72 body-frame versions may occasionally prove useful. In this section,
73 we list the interaction energies, forces, and torques in terms of the
74 body coordinates for both the Taylor-Shifted and Gradient-Shifted
75 approximations. The radial functions ($v_{ij}(r)$ and $w_{\alpha}(r)$)
76 are given in the Tables I and II in the paper. These functions depend
77 on the choice of electrostatic kernel as well as the approximation
78 method being utilized. Again, all energy, force, and torque equations
79 have an an implied factor of $1/4\pi \epsilon_0$:
80 %
81 % u ca cb
82 %
83 \begin{align}
84 U_{C_{\bf a}C_{\bf b}}(r)=&
85 C_{\bf a} C_{\bf b} v_{01}(r)
86 \\
87 %
88 % u ca db
89 %
90 U_{C_{\bf a}D_{\bf b}}(r)=&
91 C_{\bf a}
92 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
93 \\
94 %
95 % u ca qb
96 %
97 U_{C_{\bf a}Q_{\bf b}}(r)=&
98 C_{\bf a }\text{Tr}Q_{\bf b}
99 v_{21}(r) +C_{\bf a}
100 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
101 v_{22}(r) \\
102 %
103 % u da cb
104 %
105 U_{D_{\bf a}C_{\bf b}}(r)=&
106 -C_{\bf b}
107 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
108 \\
109 %
110 % u da db
111 %
112 % 1
113 U_{D_{\bf a}D_{\bf b}}(r)=&
114 - \sum_{mn} D_{\mathbf {a}m}
115 (\hat{a}_m \cdot \hat{b}_n)
116 D_{\mathbf{b}n} v_{21}(r) \nonumber \\
117 % 2
118 &-
119 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
120 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
121 v_{22}(r)
122 \\
123 %
124 % u da qb
125 %
126 % 1
127 U_{D_{\bf a}Q_{\bf b}}(r)=&
128 -\left(
129 \text{Tr}Q_{\mathbf{b}}
130 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
131 +2\sum_{lmn}D_{\mathbf{a}l}
132 (\hat{a}_l \cdot \hat{b}_m)
133 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
134 \right) v_{31}(r) \nonumber \\
135 % 2
136 &-
137 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
138 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
139 Q_{{\mathbf b}mn}
140 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
141 \\
142 %
143 % u qa cb
144 %
145 U_{Q_{\bf a}C_{\bf b}}(r)=&
146 C_{\bf b }\text{Tr}Q_{\bf a} v_{21}(r)
147 +C_{\bf b}
148 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
149 \\
150 %
151 % u qa db
152 %
153 %1
154 U_{Q_{\bf a}D_{\bf b}}(r)=&
155 \left(
156 \text{Tr}Q_{\mathbf{a}}
157 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
158 +2\sum_{lmn}D_{\mathbf{b}l}
159 (\hat{b}_l \cdot \hat{a}_m)
160 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
161 \right) v_{31}(r) \nonumber \\
162 % 2
163 &+
164 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
165 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
166 Q_{{\mathbf a}mn}
167 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
168 \end{align}
169
170 \begin{align}
171 %
172 % u qa qb
173 %
174 %1
175 U_{Q_{\bf a}Q_{\bf b}}(r)=&
176 \Bigl[
177 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
178 +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
179 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
180 (\hat{a}_m \cdot \hat{b}_n) \Bigr]
181 v_{41}(r) \nonumber \\
182 % 2
183 &+
184 \Bigl[ \text{Tr}Q_{\mathbf{a}}
185 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
186 Q_{{\mathbf b}lm}
187 (\hat{b}_m \cdot \hat{r})
188 +\text{Tr}Q_{\mathbf{b}}
189 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
190 Q_{{\mathbf a}lm}
191 (\hat{a}_m \cdot \hat{r}) \nonumber \\
192 % 3
193 &+4 \sum_{lmnp}
194 (\hat{r} \cdot \hat{a}_l )
195 Q_{{\mathbf a}lm}
196 (\hat{a}_m \cdot \hat{b}_n)
197 Q_{{\mathbf b}np}
198 (\hat{b}_p \cdot \hat{r})
199 \Bigr] v_{42}(r) \nonumber \\
200 % 4
201 &+
202 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
203 Q_{{\mathbf a}lm}
204 (\hat{a}_m \cdot \hat{r})
205 \sum_{np} (\hat{r} \cdot \hat{b}_n)
206 Q_{{\mathbf b}np}
207 (\hat{b}_p \cdot \hat{r}) v_{43}(r).
208 \end{align}
209
210
211 % BODY coordinates force equations --------------------------------------------
212 %
213 %
214 Here are the force equations written in terms of body coordinates.
215 %
216 % f ca cb
217 %
218 \begin{align}
219 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
220 C_{\bf a} C_{\bf b} w_a(r) \hat{r}
221 \\
222 %
223 % f ca db
224 %
225 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
226 C_{\bf a}
227 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
228 +C_{\bf a}
229 \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
230 \\
231 %
232 % f ca qb
233 %
234 % 1
235 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
236 C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
237 + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot
238 \hat{r}) w_e(r) \nonumber \\
239 % 2
240 &+C_{\bf a}
241 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r} \\
242 %
243 % f da cb
244 %
245 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =&
246 -C_{\bf{b}}
247 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
248 -C_{\bf{b}}
249 \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
250 \\
251 %
252 % f da db
253 %
254 % 1
255 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
256 -\sum_{mn} D_{\mathbf {a}m}
257 (\hat{a}_m \cdot \hat{b}_n)
258 D_{\mathbf{b}n} w_d(r) \hat{r}
259 -\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
260 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r}
261 \nonumber \\
262 % 2
263 & +
264 \Bigl[ \sum_m D_{\mathbf {a}m}
265 \hat{a}_m \sum_n D_{\mathbf{b}n}
266 (\hat{b}_n \cdot \hat{r})
267 + \sum_m D_{\mathbf {b}m}
268 \hat{b}_m \sum_n D_{\mathbf{a}n}
269 (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
270 %
271 % f da qb
272 %
273 % 1
274 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
275 - \Bigl[
276 \text{Tr}Q_{\mathbf{b}}
277 \sum_l D_{\mathbf{a}l} \hat{a}_l
278 +2\sum_{lmn} D_{\mathbf{a}l}
279 (\hat{a}_l \cdot \hat{b}_m)
280 Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \nonumber \\
281 % 3
282 & - \Bigl[
283 \text{Tr}Q_{\mathbf{b}}
284 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
285 +2\sum_{lmn}D_{\mathbf{a}l}
286 (\hat{a}_l \cdot \hat{b}_m)
287 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r}
288 \nonumber \\
289 % 4
290 &+
291 \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
292 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
293 Q_{{\mathbf b}mn}
294 (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
295 D_{\mathbf{a}l}
296 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
297 Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r) \nonumber \\
298 % 6
299 & -
300 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
301 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
302 Q_{{\mathbf b}mn}
303 (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
304 \\
305 %
306 % force qa cb
307 %
308 % 1
309 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =&
310 C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
311 + 2C_{\bf b } \sum_l \hat{a}_l Q_{{\mathbf
312 a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \nonumber \\
313 % 2
314 & +C_{\bf b}
315 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
316 \end{align}
317
318 \begin{align}
319 %
320 % f qa db
321 %
322 % 1
323 \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =&
324 \Bigl[
325 \text{Tr}Q_{\mathbf{a}}
326 \sum_l D_{\mathbf{b}l} \hat{b}_l
327 +2\sum_{lmn} D_{\mathbf{b}l}
328 (\hat{b}_l \cdot \hat{a}_m)
329 Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
330 w_g(r) \nonumber \\
331 % 3
332 & + \Bigl[
333 \text{Tr}Q_{\mathbf{a}}
334 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
335 +2\sum_{lmn}D_{\mathbf{b}l}
336 (\hat{b}_l \cdot \hat{a}_m)
337 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r}
338 \nonumber \\
339 % 4
340 & + \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
341 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
342 Q_{{\mathbf a}mn}
343 (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
344 D_{\mathbf{b}l}
345 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
346 Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \nonumber \\
347 % 6
348 & +\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
349 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
350 Q_{{\mathbf a}mn}
351 (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
352 \\
353 %
354 % f qa qb
355 %
356 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
357 \Bigl[
358 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
359 + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
360 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
361 (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r} \nonumber \\
362 &+ \Bigl[
363 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
364 + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l)
365 Q_{\mathbf{b}lm} \hat{b}_m \nonumber \\
366 &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
367 + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
368 \Bigr] w_n(r) \nonumber \\
369 &+
370 \Bigl[ \text{Tr}Q_{\mathbf{a}}
371 \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
372 + \text{Tr}Q_{\mathbf{b}}
373 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
374 &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
375 Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \nonumber \\
376 %
377 &+ \Bigl[
378 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
379 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot
380 \hat{r}) \nonumber \\
381 &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
382 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr]
383 w_o(r) \hat{r} \nonumber \\
384 & +
385 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
386 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
387 \end{align}
388 %
389 Here we list the form of the non-zero damped shifted multipole torques showing
390 explicitly dependences on body axes:
391 %
392 % t ca db
393 %
394 \begin{align}
395 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
396 C_{\bf a}
397 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
398 \\
399 %
400 % t ca qb
401 %
402 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
403 2C_{\bf a}
404 \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m
405 \cdot \hat{r}) v_{22}(r)
406 \\
407 %
408 % t da cb
409 %
410 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =&
411 -C_{\bf b}
412 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
413 \\
414 %
415 %
416 % ta da db
417 %
418 % 1
419 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
420 \sum_{mn} D_{\mathbf {a}m}
421 (\hat{a}_m \times \hat{b}_n)
422 D_{\mathbf{b}n} v_{21}(r) \nonumber \\
423 % 2
424 &-
425 \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
426 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
427 \\
428 %
429 % tb da db
430 %
431 % 1
432 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =&
433 - \sum_{mn} D_{\mathbf {a}m}
434 (\hat{a}_m \times \hat{b}_n)
435 D_{\mathbf{b}n} v_{21}(r) \nonumber \\
436 % 2
437 &+
438 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
439 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
440 \\
441 % ta da qb
442 %
443 % 1
444 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
445 \left(
446 -\text{Tr}Q_{\mathbf{b}}
447 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
448 +2\sum_{lmn}D_{\mathbf{a}l}
449 (\hat{a}_l \times \hat{b}_m)
450 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
451 \right) v_{31}(r) \nonumber \\
452 % 2
453 &-
454 \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
455 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
456 Q_{{\mathbf b}mn}
457 (\hat{b}_n \cdot \hat{r}) v_{32}(r) \\
458 %
459 % tb da qb
460 %
461 % 1
462 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
463 \left(
464 -2\sum_{lmn}D_{\mathbf{a}l}
465 (\hat{a}_l \cdot \hat{b}_m)
466 Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
467 -2\sum_{lmn}D_{\mathbf{a}l}
468 (\hat{a}_l \times \hat{b}_m)
469 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
470 \right) v_{31}(r) \nonumber \\
471 % 2
472 &-2
473 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
474 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
475 Q_{{\mathbf b}mn}
476 (\hat{r}\times \hat{b}_n) v_{32}(r)
477 \\
478 %
479 % ta qa cb
480 %
481 \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =&
482 2C_{\bf a}
483 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
484 \\
485 %
486 % ta qa db
487 %
488 % 1
489 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} = &
490 \left(
491 2\sum_{lmn}D_{\mathbf{b}l}
492 (\hat{b}_l \cdot \hat{a}_m)
493 Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
494 +2\sum_{lmn}D_{\mathbf{b}l}
495 (\hat{a}_l \times \hat{b}_m)
496 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
497 \right) v_{31}(r) \nonumber \\
498 % 2
499 &+2
500 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
501 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
502 Q_{{\mathbf a}mn}
503 (\hat{r}\times \hat{a}_n) v_{32}(r)
504 \\
505 %
506 % tb qa db
507 %
508 % 1
509 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =&
510 \left(
511 \text{Tr}Q_{\mathbf{a}}
512 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
513 +2\sum_{lmn}D_{\mathbf{b}l}
514 (\hat{a}_l \times \hat{b}_m)
515 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
516 \right) v_{31}(r) \nonumber \\
517 % 2
518 & \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
519 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
520 Q_{{\mathbf a}mn}
521 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
522 \end{align}
523
524 %
525 % ta qa qb
526 %
527 \begin{align}
528 % 1
529 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
530 -4
531 \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
532 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
533 (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \nonumber \\
534 % 2
535 &+
536 \Bigl[
537 2\text{Tr}Q_{\mathbf{b}}
538 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
539 Q_{{\mathbf a}lm}
540 (\hat{r} \times \hat{a}_m)
541 +4 \sum_{lmnp}
542 (\hat{r} \times \hat{a}_l )
543 Q_{{\mathbf a}lm}
544 (\hat{a}_m \cdot \hat{b}_n)
545 Q_{{\mathbf b}np}
546 (\hat{b}_p \cdot \hat{r}) \nonumber \\
547 % 3
548 &-4 \sum_{lmnp}
549 (\hat{r} \cdot \hat{a}_l )
550 Q_{{\mathbf a}lm}
551 (\hat{a}_m \times \hat{b}_n)
552 Q_{{\mathbf b}np}
553 (\hat{b}_p \cdot \hat{r})
554 \Bigr] v_{42}(r) \nonumber \\
555 % 4
556 &+2
557 \sum_{lm} (\hat{r} \times \hat{a}_l)
558 Q_{{\mathbf a}lm}
559 (\hat{a}_m \cdot \hat{r})
560 \sum_{np} (\hat{r} \cdot \hat{b}_n)
561 Q_{{\mathbf b}np}
562 (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
563 %
564 % tb qa qb
565 %
566 % 1
567 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =&
568 4 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
569 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
570 (\hat{a}_m \times \hat{b}_n) v_{41}(r) \nonumber \\
571 % 2
572 &+
573 \Bigl[
574 2\text{Tr}Q_{\mathbf{a}}
575 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
576 Q_{{\mathbf b}lm}
577 (\hat{r} \times \hat{b}_m)
578 +4 \sum_{lmnp}
579 (\hat{r} \cdot \hat{a}_l )
580 Q_{{\mathbf a}lm}
581 (\hat{a}_m \cdot \hat{b}_n)
582 Q_{{\mathbf b}np}
583 (\hat{r} \times \hat{b}_p) \nonumber \\
584 % 3
585 &+4 \sum_{lmnp}
586 (\hat{r} \cdot \hat{a}_l )
587 Q_{{\mathbf a}lm}
588 (\hat{a}_m \times \hat{b}_n)
589 Q_{{\mathbf b}np}
590 (\hat{b}_p \cdot \hat{r})
591 \Bigr] v_{42}(r) \nonumber \\
592 % 4
593 &+2
594 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
595 Q_{{\mathbf a}lm}
596 (\hat{a}_m \cdot \hat{r})
597 \sum_{np} (\hat{r} \times \hat{b}_n)
598 Q_{{\mathbf b}np}
599 (\hat{b}_p \cdot \hat{r}) v_{43}(r).
600 \end{align}
601
602
603 % \begin{table*}
604 % \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
605 % \begin{ruledtabular}
606 % \begin{tabular}{|l|l|l|}
607 % Generic&Taylor-shifted Force&Gradient-shifted Force
608 % \\ \hline
609 % %
610 % %
611 % %
612 % $w_a(r)$&
613 % $g_0(r)$&
614 % $g(r)-g(r_c)$ \\
615 % %
616 % %
617 % $w_b(r)$ &
618 % $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
619 % $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
620 % %
621 % $w_c(r)$ &
622 % $\frac{g_1(r)}{r} $ &
623 % $\frac{v_{11}(r)}{r}$ \\
624 % %
625 % %
626 % $w_d(r)$&
627 % $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
628 % $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
629 % -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
630 % %
631 % $w_e(r)$ &
632 % $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
633 % $\frac{v_{22}(r)}{r}$ \\
634 % %
635 % %
636 % $w_f(r)$&
637 % $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
638 % $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
639 % &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
640 % %
641 % $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
642 % $\frac{v_{31}(r)}{r}$\\
643 % %
644 % $w_h(r)$ &
645 % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
646 % $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
647 % &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
648 % &&$-\frac{v_{31}(r)}{r}$\\
649 % % 2
650 % $w_i(r)$ &
651 % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
652 % $\frac{v_{32}(r)}{r}$ \\
653 % %
654 % $w_j(r)$ &
655 % $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
656 % $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
657 % &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
658 % %
659 % $w_k(r)$ &
660 % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
661 % $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
662 % &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
663 % %
664 % $w_l(r)$ &
665 % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
666 % $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
667 % &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
668 % -\frac{2v_{42}(r)}{r}$ \\
669 % %
670 % $w_m(r)$ &
671 % $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
672 % $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
673 % &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
674 % +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
675 % &&$-\frac{4v_{43}(r)}{r}$ \\
676 % %
677 % $w_n(r)$ &
678 % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
679 % $\frac{v_{42}(r)}{r}$ \\
680 % %
681 % $w_o(r)$ &
682 % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
683 % $\frac{v_{43}(r)}{r}$ \\
684 % %
685 % \end{tabular}
686 % \end{ruledtabular}
687 % \end{table*}
688 %
689 % \newpage
690 %
691 % \bibliography{multipole}
692 %
693
694 To test the gradient-shifted force (GSF) and Taylor-shifted force
695 (TSF) methods against known energies for multipolar crystals, we
696 repeated the Luttinger \& Tisza series summations and have obtained
697 the energy constants (converged to one part in $10^9$) in table
698 \ref{tab:LT}.
699
700 \section{}
701 \begin{table*}[h]
702 \centering{
703 \caption{Luttinger \& Tisza arrays and their associated
704 energy constants. Type ``A'' arrays have nearest neighbor strings of
705 antiparallel dipoles. Type ``B'' arrays have nearest neighbor
706 strings of antiparallel dipoles if the dipoles are contained in a
707 plane perpendicular to the dipole direction that passes through
708 the dipole.}
709 }
710 \label{tab:LT}
711 \begin{ruledtabular}
712 \begin{tabular}{cccc}
713 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
714 A & SC & 001 & -2.676788684 \\
715 A & BCC & 001 & 0 \\
716 A & BCC & 111 & -1.770078733 \\
717 A & FCC & 001 & 2.166932835 \\
718 A & FCC & 011 & -1.083466417 \\
719 B & SC & 001 & -2.676788684 \\
720 B & BCC & 001 & -1.338394342 \\
721 B & BCC & 111 & -1.770078733 \\
722 B & FCC & 001 & -1.083466417 \\
723 B & FCC & 011 & -1.807573634 \\
724 -- & BCC & minimum & -1.985920929 \\
725 \end{tabular}
726 \end{ruledtabular}
727 \end{table*}
728
729 We have also tested agains the energy constants for Quadrupolar
730 arrays. Nagai and Nakamura computed the energies of selected
731 quadrupole arrays based on extensions to the Luttinger and Tisza
732 approach. These energy constants are given in table \ref{tab:NNQ}.
733
734 \begin{table*}
735 \centering{
736 \caption{Nagai and Nakamura Quadrupolar arrays. Note that these
737 take into account the factor of two corrections in
738 Ref. \onlinecite{Nagai01091963}}}
739 \label{tab:NNQ}
740 \begin{ruledtabular}
741 \begin{tabular}{ccc}
742 Lattice & Quadrupole Direction & Energy constants \\ \hline
743 SC & 111 & -16.6 \\
744 BCC & 011 & -43.4 \\
745 FCC & 111 & -161
746 \end{tabular}
747 \end{ruledtabular}
748 \end{table*}
749
750 \newpage
751 \bibliography{multipole}
752 \end{document}
753 %
754 % ****** End of file multipole.tex ******