ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Supplemental.tex
Revision: 4198
Committed: Wed Jul 23 17:10:59 2014 UTC (10 years, 9 months ago) by gezelter
Content type: application/x-tex
File size: 22644 byte(s)
Log Message:
Latest version

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38
39 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40 %\linenumbers\relax % Commence numbering lines
41
42 \begin{document}
43
44 \title{Supplemental Material for: Real space electrostatics for
45 multipoles. I. Development of Methods}
46
47 \author{Madan Lamichhane}
48 \affiliation{Department of Physics, University
49 of Notre Dame, Notre Dame, IN 46556}
50
51 \author{J. Daniel Gezelter}
52 \email{gezelter@nd.edu.}
53 \affiliation{Department of Chemistry and Biochemistry, University
54 of Notre Dame, Notre Dame, IN 46556}
55
56 \author{Kathie E. Newman}
57 \affiliation{Department of Physics, University
58 of Notre Dame, Notre Dame, IN 46556}
59
60 \date{\today}% It is always \today, today,
61 % but any date may be explicitly specified
62
63 \maketitle
64
65 \section{Interaction Energies in body-frame coordiantes}
66 %
67 %
68 %Energy in body coordinate form ---------------------------------------------------------------
69 %
70 Although they are not as widely used as space-frame coordinates, the
71 body-frame versions may occasionally prove useful. In this section,
72 we list the interaction energies, forces, and torques in terms of the
73 body coordinates for both the Taylor-Shifted and Gradient-Shifted
74 approximations. The radial functions ($v_{ij}(r)$ and $w_{\alpha}(r)$)
75 are given in the Tables I and II in the paper. These functions depend
76 on the choice of electrostatic kernel as well as the approximation
77 method being utilized. Again, all energy, force, and torque equations
78 have an an implied factor of $1/4\pi \epsilon_0$:
79 %
80 % u ca cb
81 %
82 \begin{align}
83 U_{C_a C_b}(r)=&
84 C_a C_b v_{01}(r)
85 \\
86 %
87 % u ca db
88 %
89 U_{C_a \mathbf{D}_b}(r)=&
90 C_a
91 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} \, v_{11}(r)
92 \\
93 %
94 % u ca qb
95 %
96 U_{C_a \mathsf{Q}_b}(r)=&
97 C_a \text{Tr} \mathsf{Q}_b
98 v_{21}(r) +C_a
99 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
100 v_{22}(r) \\
101 %
102 % u da cb
103 %
104 U_{\mathbf{D}_a C_b}(r)=&
105 -C_b
106 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an} \, v_{11}(r)
107 \\
108 %
109 % u da db
110 %
111 % 1
112 U_{\mathbf{D}_a \mathbf{D}_b}(r)=&
113 - \sum_{mn} D_{am}
114 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
115 D_{bn} v_{21}(r) \nonumber \\
116 % 2
117 &-
118 \sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) D_{am}
119 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn}
120 v_{22}(r)
121 \\
122 %
123 % u da qb
124 %
125 % 1
126 U_{\mathbf{D}_a \mathsf{Q}_b}(r)=&
127 -\left(
128 \text{Tr}\mathsf{Q}_b
129 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an}
130 +2\sum_{lmn}D_{al}
131 (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m)
132 Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
133 \right) v_{31}(r) \nonumber \\
134 % 2
135 &-
136 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) D_{al}
137 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
138 Q_{bmn}
139 (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) v_{32}(r)
140 \\
141 %
142 % u qa cb
143 %
144 U_{\mathsf{Q}_a C_b}(r)=&
145 C_b \text{Tr}\mathsf{Q}_a v_{21}(r)
146 +C_b
147 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{22}(r)
148 \\
149 %
150 % u qa db
151 %
152 %1
153 U_{\mathsf{Q}_a \mathbf{D}_b}(r)=&
154 \left(
155 \text{Tr}\mathsf{Q}_a
156 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn}
157 +2\sum_{lmn}D_{bl}
158 (\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m)
159 Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}})
160 \right) v_{31}(r) \nonumber \\
161 % 2
162 &+
163 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl}
164 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
165 Q_{amn}
166 (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{32}(r)
167 \end{align}
168
169 \begin{align}
170 %
171 % u qa qb
172 %
173 %1
174 U_{\mathsf{Q}_a \mathsf{Q}_b}(r)=&
175 \Bigl[
176 \text{Tr}\mathsf{Q}_a \text{Tr}\mathsf{Q}_b
177 +2\sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p)
178 Q_{alm} Q_{bnp}
179 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) \Bigr]
180 v_{41}(r) \nonumber \\
181 % 2
182 &+
183 \Bigl[ \text{Tr}\mathsf{Q}_a
184 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l )
185 Q_{blm}
186 (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})
187 +\text{Tr}\mathsf{Q}_b
188 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
189 Q_{alm}
190 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) \nonumber \\
191 % 3
192 &+4 \sum_{lmnp}
193 (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
194 Q_{alm}
195 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
196 Q_{bnp}
197 (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}})
198 \Bigr] v_{42}(r) \nonumber \\
199 % 4
200 &+
201 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
202 Q_{alm}
203 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
204 \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n)
205 Q_{bnp}
206 (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r).
207 \end{align}
208
209
210 % BODY coordinates force equations --------------------------------------------
211 %
212 %
213 Here are the force equations written in terms of body coordinates.
214 %
215 % f ca cb
216 %
217 \begin{align}
218 \mathbf{F}_{a C_a C_b} =&
219 C_a C_b w_a(r) \hat{\mathbf{r}}
220 \\
221 %
222 % f ca db
223 %
224 \mathbf{F}_{a C_a \mathbf{D}_b} =&
225 C_a
226 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} w_b(r) \hat{\mathbf{r}}
227 +C_a
228 \sum_n D_{bn} \hat{\mathbf{B}}_n w_c(r)
229 \\
230 %
231 % f ca qb
232 %
233 % 1
234 \mathbf{F}_{a C_a \mathsf{Q}_b} =&
235 C_a \text{Tr}\mathsf{Q}_b w_d(r) \hat{\mathbf{r}}
236 + 2C_a \sum_l \hat{\mathbf{B}}_l Q_{bln} (\hat{\mathbf{B}}_n \cdot
237 \hat{\mathbf{r}}) w_e(r) \nonumber \\
238 % 2
239 &+C_a
240 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) w_f(r) \hat{\mathbf{r}} \\
241 %
242 % f da cb
243 %
244 \mathbf{F}_{a \mathbf{D}_a C_b} =&
245 -C_b
246 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an} w_b(r) \hat{\mathbf{r}}
247 -C_b
248 \sum_n D_{an} \hat{\mathbf{A}}_n w_c(r)
249 \\
250 %
251 % f da db
252 %
253 % 1
254 \mathbf{F}_{a \mathbf{D}_a \mathbf{D}_b} =&
255 -\sum_{mn} D_{am}
256 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
257 D_{bn} w_d(r) \hat{\mathbf{r}}
258 -\sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) D_{am}
259 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} w_f(r) \hat{\mathbf{r}}
260 \nonumber \\
261 % 2
262 & +
263 \Bigl[ \sum_m D_{am}
264 \hat{\mathbf{A}}_m \sum_n D_{bn}
265 (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
266 + \sum_m D_{bm}
267 \hat{\mathbf{B}}_m \sum_n D_{an}
268 (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_e(r) \\
269 %
270 % f da qb
271 %
272 % 1
273 \mathbf{F}_{a \mathbf{D}_a \mathsf{Q}_b} =&
274 - \Bigl[
275 \text{Tr}\mathsf{Q}_b
276 \sum_l D_{al} \hat{\mathbf{A}}_l
277 +2\sum_{lmn} D_{al}
278 (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m)
279 Q_{bmn} \hat{\mathbf{B}}_n \Bigr] w_g(r) \nonumber \\
280 % 3
281 & - \Bigl[
282 \text{Tr}\mathsf{Q}_b
283 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an}
284 +2\sum_{lmn}D_{al}
285 (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m)
286 Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_h(r) \hat{\mathbf{r}}
287 \nonumber \\
288 % 4
289 &+
290 \Bigl[\sum_l D_{al} \hat{\mathbf{A}}_l
291 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
292 Q_{bmn}
293 (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) +2 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
294 D_{al}
295 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
296 Q_{bmn} \hat{\mathbf{B}}_n \Bigr] w_i(r) \nonumber \\
297 % 6
298 & -
299 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) D_{al}
300 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
301 Q_{bmn}
302 (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) w_j(r) \hat{\mathbf{r}}
303 \\
304 %
305 % force qa cb
306 %
307 % 1
308 \mathbf{F}_{a \mathsf{Q}_a C_b} =&
309 C_b \text{Tr} \mathsf{Q}_a \hat{\mathbf{r}} w_d(r)
310 + 2C_b \sum_l \hat{\mathbf{A}}_l
311 Q_{aln} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_e(r) \nonumber \\
312 % 2
313 & +C_b
314 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_f(r) \hat{\mathbf{r}}
315 \end{align}
316
317 \begin{align}
318 %
319 % f qa db
320 %
321 % 1
322 \mathbf{F}_{a \mathsf{Q}_a \mathbf{D}_b} =&
323 \Bigl[
324 \text{Tr}\mathsf{Q}_a
325 \sum_l D_{bl} \hat{\mathbf{B}}_l
326 +2\sum_{lmn} D_{bl}
327 (\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m)
328 Q_{amn} \hat{\mathbf{A}}_n \Bigr]
329 w_g(r) \nonumber \\
330 % 3
331 & + \Bigl[
332 \text{Tr}\mathsf{Q}_a
333 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn}
334 +2\sum_{lmn}D_{bl}
335 (\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m)
336 Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_h(r) \hat{\mathbf{r}}
337 \nonumber \\
338 % 4
339 & + \Bigl[ \sum_l D_{bl} \hat{\mathbf{B}}_l
340 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
341 Q_{amn}
342 (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) +2 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l)
343 D_{bl}
344 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
345 Q_{amn} \hat{\mathbf{A}}_n \Bigr] w_i(r) \nonumber \\
346 % 6
347 & +\sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl}
348 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
349 Q_{amn}
350 (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_j(r) \hat{\mathbf{r}}
351 \\
352 %
353 % f qa qb
354 %
355 \mathbf{F}_{a \mathsf{Q}_a \mathsf{Q}_b} =&
356 \Bigl[
357 \text{Tr}\mathsf{Q}_a \text{Tr} \mathsf{Q}_b
358 + 2 \sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p)
359 Q_{alm} Q_{bnp}
360 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) \Bigr] w_k(r) \hat{\mathbf{r}} \nonumber \\
361 &+ \Bigl[
362 2\text{Tr}\mathsf{Q}_b \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} \hat{\mathbf{A}}_m
363 + 2\text{Tr} \mathsf{Q}_a \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l)
364 Q_{blm} \hat{\mathbf{B}}_m \nonumber \\
365 &+ 4\sum_{lmnp} \hat{\mathbf{A}}_l Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
366 Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}})
367 + 4\sum_{lmnp} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm}
368 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) Q_{bnp} \hat{\mathbf{B}}_p
369 \Bigr] w_n(r) \nonumber \\
370 &+
371 \Bigl[ \text{Tr} \mathsf{Q}_a
372 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) Q_{blm}
373 (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})
374 + \text{Tr} \mathsf{Q}_b
375 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm}
376 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) \nonumber \\
377 &+4\sum_{lmnp} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
378 Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
379 Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) \Bigr] w_l(r) \hat{\mathbf{r}} \nonumber \\
380 %
381 &+ \Bigl[
382 2\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} \hat{\mathbf{A}}_m
383 \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) Q_{bnp}
384 (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) \nonumber \\
385 &+2 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm}
386 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
387 \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) Q_{bnp} \hat{\mathbf{B}}_n \Bigr]
388 w_o(r) \hat{\mathbf{r}} \nonumber \\
389 & +
390 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
391 Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
392 \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n)
393 Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) w_m(r) \hat{\mathbf{r}}
394 \end{align}
395 %
396 Here we list the form of the non-zero damped shifted multipole torques showing
397 explicitly dependences on body axes:
398 %
399 % t ca db
400 %
401 \begin{align}
402 \mathbf{\tau}_{b C_a \mathbf{D}_b} =&
403 C_a
404 \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn} \, v_{11}(r)
405 \\
406 %
407 % t ca qb
408 %
409 \mathbf{\tau}_{b C_a \mathsf{Q}_b} =&
410 2C_a
411 \sum_{lm} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_l)
412 Q_{blm} (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}}) v_{22}(r)
413 \\
414 %
415 % t da cb
416 %
417 \mathbf{\tau}_{a \mathbf{D}_a C_b} =&
418 -C_b
419 \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n) D_{an} \, v_{11}(r)
420 \\
421 %
422 %
423 % ta da db
424 %
425 % 1
426 \mathbf{\tau}_{a \mathbf{D}_a \mathbf{D}_b} =&
427 \sum_{mn} D_{am}
428 (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n)
429 D_{bn} v_{21}(r) \nonumber \\
430 % 2
431 &-
432 \sum_m (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m) D_{am}
433 \sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} v_{22}(r)
434 \\
435 %
436 % tb da db
437 %
438 % 1
439 \mathbf{\tau}_{b \mathbf{D}_a \mathbf{D}_b} =&
440 - \sum_{mn} D_{am}
441 (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n)
442 D_{bn} v_{21}(r) \nonumber \\
443 % 2
444 &+
445 \sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
446 D_{am} \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn} v_{22}(r)
447 \\
448 % ta da qb
449 %
450 % 1
451 \mathbf{\tau}_{a \mathbf{D}_a \mathsf{Q}_b} =&
452 \left(
453 -\text{Tr} \mathsf{Q}_b
454 \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n) D_{an}
455 +2\sum_{lmn} D_{al}
456 (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m)
457 Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
458 \right) v_{31}(r) \nonumber \\
459 % 2
460 &-
461 \sum_l (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l) D_{al}
462 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
463 Q_{bmn}
464 (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) v_{32}(r) \\
465 %
466 % tb da qb
467 %
468 % 1
469 \mathbf{\tau}_{b \mathbf{D}_a \mathsf{Q}_b} =&
470 \left(
471 -2\sum_{lmn}D_{al}
472 (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m)
473 Q_{bmn} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n)
474 -2\sum_{lmn}D_{al}
475 (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m)
476 Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}})
477 \right) v_{31}(r) \nonumber \\
478 % 2
479 &-2
480 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
481 D_{al} \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m)
482 Q_{bmn} (\hat{\mathbf{r}}\times \hat{\mathbf{B}}_n) v_{32}(r)
483 \\
484 %
485 % ta qa cb
486 %
487 \mathbf{\tau}_{a \mathsf{Q}_a C_b} =&
488 2C_b \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
489 Q_{alm} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m) v_{22}(r)
490 \\
491 %
492 % ta qa db
493 %
494 % 1
495 \mathbf{\tau}_{a \mathsf{Q}_a \mathbf{D}_b} = &
496 \left(
497 2\sum_{lmn}D_{bl}
498 (\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m)
499 Q_{amn} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n)
500 +2\sum_{lmn}D_{bl}
501 (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m)
502 Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}})
503 \right) v_{31}(r) \nonumber \\
504 % 2
505 &+2
506 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl}
507 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
508 Q_{amn}
509 (\hat{\mathbf{r}}\times \hat{\mathbf{A}}_n) v_{32}(r)
510 \\
511 %
512 % tb qa db
513 %
514 % 1
515 \mathbf{\tau}_{b \mathsf{Q}_a \mathbf{D}_b} =&
516 \left(
517 \text{Tr} \mathsf{Q}_a
518 \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn}
519 +2\sum_{lmn}D_{bl}
520 (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m)
521 Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}})
522 \right) v_{31}(r) \nonumber \\
523 % 2
524 & \sum_l (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_l) D_{bl}
525 \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m)
526 Q_{amn}
527 (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{32}(r)
528 \end{align}
529
530 %
531 % ta qa qb
532 %
533 \begin{align}
534 % 1
535 \mathbf{\tau}_{a \mathsf{Q}_a \mathsf{Q}_b} =&
536 -4
537 \sum_{lmnp} (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_p)
538 Q_{alm} Q_{bnp}
539 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) v_{41}(r) \nonumber \\
540 % 2
541 &+
542 \Bigl[
543 2\text{Tr} \mathsf{Q}_b
544 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
545 Q_{alm}
546 (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m)
547 +4 \sum_{lmnp}
548 (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l )
549 Q_{alm}
550 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
551 Q_{bnp}
552 (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) \nonumber \\
553 % 3
554 &-4 \sum_{lmnp}
555 (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
556 Q_{alm}
557 (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n)
558 Q_{bnp}
559 (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}})
560 \Bigr] v_{42}(r) \nonumber \\
561 % 4
562 &+2
563 \sum_{lm} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l)
564 Q_{alm}
565 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
566 \sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n)
567 Q_{bnp}
568 (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r)\\
569 %
570 % tb qa qb
571 %
572 % 1
573 \mathbf{\tau}_{b \mathsf{Q}_a \mathsf{Q}_b} =&
574 4 \sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p)
575 Q_{alm} Q_{bnp}
576 (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) v_{41}(r) \nonumber \\
577 % 2
578 &+
579 \Bigl[
580 2\text{Tr} \mathsf{Q}_a
581 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l )
582 Q_{blm}
583 (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_m)
584 +4 \sum_{lmnp}
585 (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
586 Q_{alm}
587 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)
588 Q_{bnp}
589 (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_p) \nonumber \\
590 % 3
591 &+4 \sum_{lmnp}
592 (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l )
593 Q_{alm}
594 (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n)
595 Q_{bnp}
596 (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}})
597 \Bigr] v_{42}(r) \nonumber \\
598 % 4
599 &+2
600 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l)
601 Q_{alm}
602 (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})
603 \sum_{np} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n)
604 Q_{bnp}
605 (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r).
606 \end{align}
607
608
609 % \begin{table*}
610 % \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
611 % \begin{ruledtabular}
612 % \begin{tabular}{|l|l|l|}
613 % Generic&Taylor-shifted Force&Gradient-shifted Force
614 % \\ \hline
615 % %
616 % %
617 % %
618 % $w_a(r)$&
619 % $g_0(r)$&
620 % $g(r)-g(r_c)$ \\
621 % %
622 % %
623 % $w_b(r)$ &
624 % $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
625 % $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
626 % %
627 % $w_c(r)$ &
628 % $\frac{g_1(r)}{r} $ &
629 % $\frac{v_{11}(r)}{r}$ \\
630 % %
631 % %
632 % $w_d(r)$&
633 % $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
634 % $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
635 % -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
636 % %
637 % $w_e(r)$ &
638 % $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
639 % $\frac{v_{22}(r)}{r}$ \\
640 % %
641 % %
642 % $w_f(r)$&
643 % $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
644 % $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
645 % &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
646 % %
647 % $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
648 % $\frac{v_{31}(r)}{r}$\\
649 % %
650 % $w_h(r)$ &
651 % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
652 % $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
653 % &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
654 % &&$-\frac{v_{31}(r)}{r}$\\
655 % % 2
656 % $w_i(r)$ &
657 % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
658 % $\frac{v_{32}(r)}{r}$ \\
659 % %
660 % $w_j(r)$ &
661 % $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
662 % $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
663 % &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
664 % %
665 % $w_k(r)$ &
666 % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
667 % $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
668 % &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
669 % %
670 % $w_l(r)$ &
671 % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
672 % $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
673 % &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
674 % -\frac{2v_{42}(r)}{r}$ \\
675 % %
676 % $w_m(r)$ &
677 % $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
678 % $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
679 % &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
680 % +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
681 % &&$-\frac{4v_{43}(r)}{r}$ \\
682 % %
683 % $w_n(r)$ &
684 % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
685 % $\frac{v_{42}(r)}{r}$ \\
686 % %
687 % $w_o(r)$ &
688 % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
689 % $\frac{v_{43}(r)}{r}$ \\
690 % %
691 % \end{tabular}
692 % \end{ruledtabular}
693 % \end{table*}
694 %
695 % \newpage
696 %
697 % \bibliography{multipole}
698 %
699
700 \section{}
701
702 To test the gradient-shifted force (GSF) and Taylor-shifted force
703 (TSF) methods against known energies for multipolar crystals, we
704 repeated the Luttinger \& Tisza series summations and have obtained
705 the energy constants (converged to one part in $10^9$) in table
706 \ref{tab:LT}.
707
708
709 \begin{table*}[h]
710 \centering{
711 \caption{Luttinger \& Tisza arrays and their associated
712 energy constants. Type ``A'' arrays have nearest neighbor strings of
713 antiparallel dipoles. Type ``B'' arrays have nearest neighbor
714 strings of antiparallel dipoles if the dipoles are contained in a
715 plane perpendicular to the dipole direction that passes through
716 the dipole.}
717 }
718 \label{tab:LT}
719 \begin{ruledtabular}
720 \begin{tabular}{cccc}
721 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
722 A & SC & 001 & -2.676788684 \\
723 A & BCC & 001 & 0 \\
724 A & BCC & 111 & -1.770078733 \\
725 A & FCC & 001 & 2.166932835 \\
726 A & FCC & 011 & -1.083466417 \\
727 B & SC & 001 & -2.676788684 \\
728 B & BCC & 001 & -1.338394342 \\
729 B & BCC & 111 & -1.770078733 \\
730 B & FCC & 001 & -1.083466417 \\
731 B & FCC & 011 & -1.807573634 \\
732 -- & BCC & minimum & -1.985920929 \\
733 \end{tabular}
734 \end{ruledtabular}
735 \end{table*}
736
737 We have also tested agains the energy constants for Quadrupolar
738 arrays. Nagai and Nakamura computed the energies of selected
739 quadrupole arrays based on extensions to the Luttinger and Tisza
740 approach. These energy constants are given in table \ref{tab:NNQ}.
741
742 \begin{table*}
743 \centering{
744 \caption{Nagai and Nakamura Quadrupolar arrays. Note that these
745 take into account the factor of two corrections in
746 Ref. \onlinecite{Nagai01091963}}}
747 \label{tab:NNQ}
748 \begin{ruledtabular}
749 \begin{tabular}{ccc}
750 Lattice & Quadrupole Direction & Energy constants \\ \hline
751 SC & 111 & -16.6 \\
752 BCC & 011 & -43.4 \\
753 FCC & 111 & -161
754 \end{tabular}
755 \end{ruledtabular}
756 \end{table*}
757
758 \newpage
759 \bibliography{multipole}
760 \end{document}
761 %
762 % ****** End of file multipole.tex ******