1 |
% ****** Start of file aipsamp.tex ****** |
2 |
% |
3 |
% This file is part of the AIP files in the AIP distribution for REVTeX 4. |
4 |
% Version 4.1 of REVTeX, October 2009 |
5 |
% |
6 |
% Copyright (c) 2009 American Institute of Physics. |
7 |
% |
8 |
% See the AIP README file for restrictions and more information. |
9 |
% |
10 |
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed |
11 |
% as well as the rest of the prerequisites for REVTeX 4.1 |
12 |
% |
13 |
% It also requires running BibTeX. The commands are as follows: |
14 |
% |
15 |
% 1) latex aipsamp |
16 |
% 2) bibtex aipsamp |
17 |
% 3) latex aipsamp |
18 |
% 4) latex aipsamp |
19 |
% |
20 |
% Use this file as a source of example code for your aip document. |
21 |
% Use the file aiptemplate.tex as a template for your document. |
22 |
\documentclass[% |
23 |
aip,jcp, |
24 |
amsmath,amssymb, |
25 |
preprint,% |
26 |
% reprint,% |
27 |
%author-year,% |
28 |
%author-numerical,% |
29 |
jcp]{revtex4-1} |
30 |
|
31 |
\usepackage{graphicx}% Include figure files |
32 |
\usepackage{dcolumn}% Align table columns on decimal point |
33 |
%\usepackage{bm}% bold math |
34 |
\usepackage{times} |
35 |
\usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions |
36 |
\usepackage{url} |
37 |
\usepackage{rotating} |
38 |
|
39 |
%\usepackage[mathlines]{lineno}% Enable numbering of text and display math |
40 |
%\linenumbers\relax % Commence numbering lines |
41 |
|
42 |
\begin{document} |
43 |
|
44 |
\title{Supplemental Material for: Real space electrostatics for |
45 |
multipoles. I. Development of Methods} |
46 |
|
47 |
\author{Madan Lamichhane} |
48 |
\affiliation{Department of Physics, University |
49 |
of Notre Dame, Notre Dame, IN 46556} |
50 |
|
51 |
\author{J. Daniel Gezelter} |
52 |
\email{gezelter@nd.edu.} |
53 |
\affiliation{Department of Chemistry and Biochemistry, University |
54 |
of Notre Dame, Notre Dame, IN 46556} |
55 |
|
56 |
\author{Kathie E. Newman} |
57 |
\affiliation{Department of Physics, University |
58 |
of Notre Dame, Notre Dame, IN 46556} |
59 |
|
60 |
\date{\today}% It is always \today, today, |
61 |
% but any date may be explicitly specified |
62 |
|
63 |
\maketitle |
64 |
|
65 |
\section{Interaction Energies in body-frame coordiantes} |
66 |
% |
67 |
% |
68 |
%Energy in body coordinate form --------------------------------------------------------------- |
69 |
% |
70 |
Although they are not as widely used as space-frame coordinates, the |
71 |
body-frame versions may occasionally prove useful. In this section, |
72 |
we list the interaction energies, forces, and torques in terms of the |
73 |
body coordinates for both the Taylor-Shifted and Gradient-Shifted |
74 |
approximations. The radial functions ($v_{ij}(r)$ and $w_{\alpha}(r)$) |
75 |
are given in the Tables I and II in the paper. These functions depend |
76 |
on the choice of electrostatic kernel as well as the approximation |
77 |
method being utilized. Again, all energy, force, and torque equations |
78 |
have an an implied factor of $1/4\pi \epsilon_0$: |
79 |
% |
80 |
% u ca cb |
81 |
% |
82 |
\begin{align} |
83 |
U_{C_a C_b}(r)=& |
84 |
C_a C_b v_{01}(r) |
85 |
\\ |
86 |
% |
87 |
% u ca db |
88 |
% |
89 |
U_{C_a \mathbf{D}_b}(r)=& |
90 |
C_a |
91 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} \, v_{11}(r) |
92 |
\\ |
93 |
% |
94 |
% u ca qb |
95 |
% |
96 |
U_{C_a \mathsf{Q}_b}(r)=& |
97 |
C_a \text{Tr} \mathsf{Q}_b |
98 |
v_{21}(r) +C_a |
99 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) |
100 |
v_{22}(r) \\ |
101 |
% |
102 |
% u da cb |
103 |
% |
104 |
U_{\mathbf{D}_a C_b}(r)=& |
105 |
-C_b |
106 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an} \, v_{11}(r) |
107 |
\\ |
108 |
% |
109 |
% u da db |
110 |
% |
111 |
% 1 |
112 |
U_{\mathbf{D}_a \mathbf{D}_b}(r)=& |
113 |
- \sum_{mn} D_{am} |
114 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) |
115 |
D_{bn} v_{21}(r) \nonumber \\ |
116 |
% 2 |
117 |
&- |
118 |
\sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) D_{am} |
119 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} |
120 |
v_{22}(r) |
121 |
\\ |
122 |
% |
123 |
% u da qb |
124 |
% |
125 |
% 1 |
126 |
U_{\mathbf{D}_a \mathsf{Q}_b}(r)=& |
127 |
-\left( |
128 |
\text{Tr}\mathsf{Q}_b |
129 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an} |
130 |
+2\sum_{lmn}D_{al} |
131 |
(\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m) |
132 |
Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) |
133 |
\right) v_{31}(r) \nonumber \\ |
134 |
% 2 |
135 |
&- |
136 |
\sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) D_{al} |
137 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) |
138 |
Q_{bmn} |
139 |
(\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) v_{32}(r) |
140 |
\\ |
141 |
% |
142 |
% u qa cb |
143 |
% |
144 |
U_{\mathsf{Q}_a C_b}(r)=& |
145 |
C_b \text{Tr}\mathsf{Q}_a v_{21}(r) |
146 |
+C_b |
147 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{22}(r) |
148 |
\\ |
149 |
% |
150 |
% u qa db |
151 |
% |
152 |
%1 |
153 |
U_{\mathsf{Q}_a \mathbf{D}_b}(r)=& |
154 |
\left( |
155 |
\text{Tr}\mathsf{Q}_a |
156 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} |
157 |
+2\sum_{lmn}D_{bl} |
158 |
(\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m) |
159 |
Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) |
160 |
\right) v_{31}(r) \nonumber \\ |
161 |
% 2 |
162 |
&+ |
163 |
\sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl} |
164 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) |
165 |
Q_{amn} |
166 |
(\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{32}(r) |
167 |
\end{align} |
168 |
|
169 |
\begin{align} |
170 |
% |
171 |
% u qa qb |
172 |
% |
173 |
%1 |
174 |
U_{\mathsf{Q}_a \mathsf{Q}_b}(r)=& |
175 |
\Bigl[ |
176 |
\text{Tr}\mathsf{Q}_a \text{Tr}\mathsf{Q}_b |
177 |
+2\sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p) |
178 |
Q_{alm} Q_{bnp} |
179 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) \Bigr] |
180 |
v_{41}(r) \nonumber \\ |
181 |
% 2 |
182 |
&+ |
183 |
\Bigl[ \text{Tr}\mathsf{Q}_a |
184 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l ) |
185 |
Q_{blm} |
186 |
(\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}}) |
187 |
+\text{Tr}\mathsf{Q}_b |
188 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l ) |
189 |
Q_{alm} |
190 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) \nonumber \\ |
191 |
% 3 |
192 |
&+4 \sum_{lmnp} |
193 |
(\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l ) |
194 |
Q_{alm} |
195 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) |
196 |
Q_{bnp} |
197 |
(\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) |
198 |
\Bigr] v_{42}(r) \nonumber \\ |
199 |
% 4 |
200 |
&+ |
201 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) |
202 |
Q_{alm} |
203 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) |
204 |
\sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) |
205 |
Q_{bnp} |
206 |
(\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r). |
207 |
\end{align} |
208 |
|
209 |
|
210 |
% BODY coordinates force equations -------------------------------------------- |
211 |
% |
212 |
% |
213 |
Here are the force equations written in terms of body coordinates. |
214 |
% |
215 |
% f ca cb |
216 |
% |
217 |
\begin{align} |
218 |
\mathbf{F}_{a C_a C_b} =& |
219 |
C_a C_b w_a(r) \hat{\mathbf{r}} |
220 |
\\ |
221 |
% |
222 |
% f ca db |
223 |
% |
224 |
\mathbf{F}_{a C_a \mathbf{D}_b} =& |
225 |
C_a |
226 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} w_b(r) \hat{\mathbf{r}} |
227 |
+C_a |
228 |
\sum_n D_{bn} \hat{\mathbf{B}}_n w_c(r) |
229 |
\\ |
230 |
% |
231 |
% f ca qb |
232 |
% |
233 |
% 1 |
234 |
\mathbf{F}_{a C_a \mathsf{Q}_b} =& |
235 |
C_a \text{Tr}\mathsf{Q}_b w_d(r) \hat{\mathbf{r}} |
236 |
+ 2C_a \sum_l \hat{\mathbf{B}}_l Q_{bln} (\hat{\mathbf{B}}_n \cdot |
237 |
\hat{\mathbf{r}}) w_e(r) \nonumber \\ |
238 |
% 2 |
239 |
&+C_a |
240 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) w_f(r) \hat{\mathbf{r}} \\ |
241 |
% |
242 |
% f da cb |
243 |
% |
244 |
\mathbf{F}_{a \mathbf{D}_a C_b} =& |
245 |
-C_b |
246 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an} w_b(r) \hat{\mathbf{r}} |
247 |
-C_b |
248 |
\sum_n D_{an} \hat{\mathbf{A}}_n w_c(r) |
249 |
\\ |
250 |
% |
251 |
% f da db |
252 |
% |
253 |
% 1 |
254 |
\mathbf{F}_{a \mathbf{D}_a \mathbf{D}_b} =& |
255 |
-\sum_{mn} D_{am} |
256 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) |
257 |
D_{bn} w_d(r) \hat{\mathbf{r}} |
258 |
-\sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) D_{am} |
259 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} w_f(r) \hat{\mathbf{r}} |
260 |
\nonumber \\ |
261 |
% 2 |
262 |
& + |
263 |
\Bigl[ \sum_m D_{am} |
264 |
\hat{\mathbf{A}}_m \sum_n D_{bn} |
265 |
(\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) |
266 |
+ \sum_m D_{bm} |
267 |
\hat{\mathbf{B}}_m \sum_n D_{an} |
268 |
(\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_e(r) \\ |
269 |
% |
270 |
% f da qb |
271 |
% |
272 |
% 1 |
273 |
\mathbf{F}_{a \mathbf{D}_a \mathsf{Q}_b} =& |
274 |
- \Bigl[ |
275 |
\text{Tr}\mathsf{Q}_b |
276 |
\sum_l D_{al} \hat{\mathbf{A}}_l |
277 |
+2\sum_{lmn} D_{al} |
278 |
(\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m) |
279 |
Q_{bmn} \hat{\mathbf{B}}_n \Bigr] w_g(r) \nonumber \\ |
280 |
% 3 |
281 |
& - \Bigl[ |
282 |
\text{Tr}\mathsf{Q}_b |
283 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_n) D_{an} |
284 |
+2\sum_{lmn}D_{al} |
285 |
(\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m) |
286 |
Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_h(r) \hat{\mathbf{r}} |
287 |
\nonumber \\ |
288 |
% 4 |
289 |
&+ |
290 |
\Bigl[\sum_l D_{al} \hat{\mathbf{A}}_l |
291 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) |
292 |
Q_{bmn} |
293 |
(\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) +2 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) |
294 |
D_{al} |
295 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) |
296 |
Q_{bmn} \hat{\mathbf{B}}_n \Bigr] w_i(r) \nonumber \\ |
297 |
% 6 |
298 |
& - |
299 |
\sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) D_{al} |
300 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) |
301 |
Q_{bmn} |
302 |
(\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) w_j(r) \hat{\mathbf{r}} |
303 |
\\ |
304 |
% |
305 |
% force qa cb |
306 |
% |
307 |
% 1 |
308 |
\mathbf{F}_{a \mathsf{Q}_a C_b} =& |
309 |
C_b \text{Tr} \mathsf{Q}_a \hat{\mathbf{r}} w_d(r) |
310 |
+ 2C_b \sum_l \hat{\mathbf{A}}_l |
311 |
Q_{aln} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_e(r) \nonumber \\ |
312 |
% 2 |
313 |
& +C_b |
314 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_f(r) \hat{\mathbf{r}} |
315 |
\end{align} |
316 |
|
317 |
\begin{align} |
318 |
% |
319 |
% f qa db |
320 |
% |
321 |
% 1 |
322 |
\mathbf{F}_{a \mathsf{Q}_a \mathbf{D}_b} =& |
323 |
\Bigl[ |
324 |
\text{Tr}\mathsf{Q}_a |
325 |
\sum_l D_{bl} \hat{\mathbf{B}}_l |
326 |
+2\sum_{lmn} D_{bl} |
327 |
(\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m) |
328 |
Q_{amn} \hat{\mathbf{A}}_n \Bigr] |
329 |
w_g(r) \nonumber \\ |
330 |
% 3 |
331 |
& + \Bigl[ |
332 |
\text{Tr}\mathsf{Q}_a |
333 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} |
334 |
+2\sum_{lmn}D_{bl} |
335 |
(\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m) |
336 |
Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) \Bigr] w_h(r) \hat{\mathbf{r}} |
337 |
\nonumber \\ |
338 |
% 4 |
339 |
& + \Bigl[ \sum_l D_{bl} \hat{\mathbf{B}}_l |
340 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) |
341 |
Q_{amn} |
342 |
(\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) +2 \sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) |
343 |
D_{bl} |
344 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) |
345 |
Q_{amn} \hat{\mathbf{A}}_n \Bigr] w_i(r) \nonumber \\ |
346 |
% 6 |
347 |
& +\sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl} |
348 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) |
349 |
Q_{amn} |
350 |
(\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) w_j(r) \hat{\mathbf{r}} |
351 |
\\ |
352 |
% |
353 |
% f qa qb |
354 |
% |
355 |
\mathbf{F}_{a \mathsf{Q}_a \mathsf{Q}_b} =& |
356 |
\Bigl[ |
357 |
\text{Tr}\mathsf{Q}_a \text{Tr} \mathsf{Q}_b |
358 |
+ 2 \sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p) |
359 |
Q_{alm} Q_{bnp} |
360 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) \Bigr] w_k(r) \hat{\mathbf{r}} \nonumber \\ |
361 |
&+ \Bigl[ |
362 |
2\text{Tr}\mathsf{Q}_b \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} \hat{\mathbf{A}}_m |
363 |
+ 2\text{Tr} \mathsf{Q}_a \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) |
364 |
Q_{blm} \hat{\mathbf{B}}_m \nonumber \\ |
365 |
&+ 4\sum_{lmnp} \hat{\mathbf{A}}_l Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) |
366 |
Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) |
367 |
+ 4\sum_{lmnp} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} |
368 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) Q_{bnp} \hat{\mathbf{B}}_p |
369 |
\Bigr] w_n(r) \nonumber \\ |
370 |
&+ |
371 |
\Bigl[ \text{Tr} \mathsf{Q}_a |
372 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) Q_{blm} |
373 |
(\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}}) |
374 |
+ \text{Tr} \mathsf{Q}_b |
375 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} |
376 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) \nonumber \\ |
377 |
&+4\sum_{lmnp} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) |
378 |
Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) |
379 |
Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) \Bigr] w_l(r) \hat{\mathbf{r}} \nonumber \\ |
380 |
% |
381 |
&+ \Bigl[ |
382 |
2\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} \hat{\mathbf{A}}_m |
383 |
\sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) Q_{bnp} |
384 |
(\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) \nonumber \\ |
385 |
&+2 \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) Q_{alm} |
386 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) |
387 |
\sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) Q_{bnp} \hat{\mathbf{B}}_n \Bigr] |
388 |
w_o(r) \hat{\mathbf{r}} \nonumber \\ |
389 |
& + |
390 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) |
391 |
Q_{alm} (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) |
392 |
\sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) |
393 |
Q_{bnp} (\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) w_m(r) \hat{\mathbf{r}} |
394 |
\end{align} |
395 |
% |
396 |
Here we list the form of the non-zero damped shifted multipole torques showing |
397 |
explicitly dependences on body axes: |
398 |
% |
399 |
% t ca db |
400 |
% |
401 |
\begin{align} |
402 |
\mathbf{\tau}_{b C_a \mathbf{D}_b} =& |
403 |
C_a |
404 |
\sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn} \, v_{11}(r) |
405 |
\\ |
406 |
% |
407 |
% t ca qb |
408 |
% |
409 |
\mathbf{\tau}_{b C_a \mathsf{Q}_b} =& |
410 |
2C_a |
411 |
\sum_{lm} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_l) |
412 |
Q_{blm} (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}}) v_{22}(r) |
413 |
\\ |
414 |
% |
415 |
% t da cb |
416 |
% |
417 |
\mathbf{\tau}_{a \mathbf{D}_a C_b} =& |
418 |
-C_b |
419 |
\sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n) D_{an} \, v_{11}(r) |
420 |
\\ |
421 |
% |
422 |
% |
423 |
% ta da db |
424 |
% |
425 |
% 1 |
426 |
\mathbf{\tau}_{a \mathbf{D}_a \mathbf{D}_b} =& |
427 |
\sum_{mn} D_{am} |
428 |
(\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) |
429 |
D_{bn} v_{21}(r) \nonumber \\ |
430 |
% 2 |
431 |
&- |
432 |
\sum_m (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m) D_{am} |
433 |
\sum_n (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) D_{bn} v_{22}(r) |
434 |
\\ |
435 |
% |
436 |
% tb da db |
437 |
% |
438 |
% 1 |
439 |
\mathbf{\tau}_{b \mathbf{D}_a \mathbf{D}_b} =& |
440 |
- \sum_{mn} D_{am} |
441 |
(\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) |
442 |
D_{bn} v_{21}(r) \nonumber \\ |
443 |
% 2 |
444 |
&+ |
445 |
\sum_m (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) |
446 |
D_{am} \sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn} v_{22}(r) |
447 |
\\ |
448 |
% ta da qb |
449 |
% |
450 |
% 1 |
451 |
\mathbf{\tau}_{a \mathbf{D}_a \mathsf{Q}_b} =& |
452 |
\left( |
453 |
-\text{Tr} \mathsf{Q}_b |
454 |
\sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n) D_{an} |
455 |
+2\sum_{lmn} D_{al} |
456 |
(\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m) |
457 |
Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) |
458 |
\right) v_{31}(r) \nonumber \\ |
459 |
% 2 |
460 |
&- |
461 |
\sum_l (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l) D_{al} |
462 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) |
463 |
Q_{bmn} |
464 |
(\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) v_{32}(r) \\ |
465 |
% |
466 |
% tb da qb |
467 |
% |
468 |
% 1 |
469 |
\mathbf{\tau}_{b \mathbf{D}_a \mathsf{Q}_b} =& |
470 |
\left( |
471 |
-2\sum_{lmn}D_{al} |
472 |
(\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_m) |
473 |
Q_{bmn} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) |
474 |
-2\sum_{lmn}D_{al} |
475 |
(\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m) |
476 |
Q_{bmn} (\hat{\mathbf{B}}_n \cdot \hat{\mathbf{r}}) |
477 |
\right) v_{31}(r) \nonumber \\ |
478 |
% 2 |
479 |
&-2 |
480 |
\sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) |
481 |
D_{al} \sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_m) |
482 |
Q_{bmn} (\hat{\mathbf{r}}\times \hat{\mathbf{B}}_n) v_{32}(r) |
483 |
\\ |
484 |
% |
485 |
% ta qa cb |
486 |
% |
487 |
\mathbf{\tau}_{a \mathsf{Q}_a C_b} =& |
488 |
2C_b \sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) |
489 |
Q_{alm} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m) v_{22}(r) |
490 |
\\ |
491 |
% |
492 |
% ta qa db |
493 |
% |
494 |
% 1 |
495 |
\mathbf{\tau}_{a \mathsf{Q}_a \mathbf{D}_b} = & |
496 |
\left( |
497 |
2\sum_{lmn}D_{bl} |
498 |
(\hat{\mathbf{B}}_l \cdot \hat{\mathbf{A}}_m) |
499 |
Q_{amn} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_n) |
500 |
+2\sum_{lmn}D_{bl} |
501 |
(\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m) |
502 |
Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) |
503 |
\right) v_{31}(r) \nonumber \\ |
504 |
% 2 |
505 |
&+2 |
506 |
\sum_l (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l) D_{bl} |
507 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) |
508 |
Q_{amn} |
509 |
(\hat{\mathbf{r}}\times \hat{\mathbf{A}}_n) v_{32}(r) |
510 |
\\ |
511 |
% |
512 |
% tb qa db |
513 |
% |
514 |
% 1 |
515 |
\mathbf{\tau}_{b \mathsf{Q}_a \mathbf{D}_b} =& |
516 |
\left( |
517 |
\text{Tr} \mathsf{Q}_a |
518 |
\sum_n (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) D_{bn} |
519 |
+2\sum_{lmn}D_{bl} |
520 |
(\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_m) |
521 |
Q_{amn} (\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) |
522 |
\right) v_{31}(r) \nonumber \\ |
523 |
% 2 |
524 |
& \sum_l (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_l) D_{bl} |
525 |
\sum_{mn} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_m) |
526 |
Q_{amn} |
527 |
(\hat{\mathbf{A}}_n \cdot \hat{\mathbf{r}}) v_{32}(r) |
528 |
\end{align} |
529 |
|
530 |
% |
531 |
% ta qa qb |
532 |
% |
533 |
\begin{align} |
534 |
% 1 |
535 |
\mathbf{\tau}_{a \mathsf{Q}_a \mathsf{Q}_b} =& |
536 |
-4 |
537 |
\sum_{lmnp} (\hat{\mathbf{A}}_l \times \hat{\mathbf{B}}_p) |
538 |
Q_{alm} Q_{bnp} |
539 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) v_{41}(r) \nonumber \\ |
540 |
% 2 |
541 |
&+ |
542 |
\Bigl[ |
543 |
2\text{Tr} \mathsf{Q}_b |
544 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l ) |
545 |
Q_{alm} |
546 |
(\hat{\mathbf{r}} \times \hat{\mathbf{A}}_m) |
547 |
+4 \sum_{lmnp} |
548 |
(\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l ) |
549 |
Q_{alm} |
550 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) |
551 |
Q_{bnp} |
552 |
(\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) \nonumber \\ |
553 |
% 3 |
554 |
&-4 \sum_{lmnp} |
555 |
(\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l ) |
556 |
Q_{alm} |
557 |
(\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) |
558 |
Q_{bnp} |
559 |
(\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) |
560 |
\Bigr] v_{42}(r) \nonumber \\ |
561 |
% 4 |
562 |
&+2 |
563 |
\sum_{lm} (\hat{\mathbf{r}} \times \hat{\mathbf{A}}_l) |
564 |
Q_{alm} |
565 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) |
566 |
\sum_{np} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_n) |
567 |
Q_{bnp} |
568 |
(\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r)\\ |
569 |
% |
570 |
% tb qa qb |
571 |
% |
572 |
% 1 |
573 |
\mathbf{\tau}_{b \mathsf{Q}_a \mathsf{Q}_b} =& |
574 |
4 \sum_{lmnp} (\hat{\mathbf{A}}_l \cdot \hat{\mathbf{B}}_p) |
575 |
Q_{alm} Q_{bnp} |
576 |
(\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) v_{41}(r) \nonumber \\ |
577 |
% 2 |
578 |
&+ |
579 |
\Bigl[ |
580 |
2\text{Tr} \mathsf{Q}_a |
581 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{B}}_l ) |
582 |
Q_{blm} |
583 |
(\hat{\mathbf{r}} \times \hat{\mathbf{B}}_m) |
584 |
+4 \sum_{lmnp} |
585 |
(\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l ) |
586 |
Q_{alm} |
587 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n) |
588 |
Q_{bnp} |
589 |
(\hat{\mathbf{r}} \times \hat{\mathbf{B}}_p) \nonumber \\ |
590 |
% 3 |
591 |
&+4 \sum_{lmnp} |
592 |
(\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l ) |
593 |
Q_{alm} |
594 |
(\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) |
595 |
Q_{bnp} |
596 |
(\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) |
597 |
\Bigr] v_{42}(r) \nonumber \\ |
598 |
% 4 |
599 |
&+2 |
600 |
\sum_{lm} (\hat{\mathbf{r}} \cdot \hat{\mathbf{A}}_l) |
601 |
Q_{alm} |
602 |
(\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}}) |
603 |
\sum_{np} (\hat{\mathbf{r}} \times \hat{\mathbf{B}}_n) |
604 |
Q_{bnp} |
605 |
(\hat{\mathbf{B}}_p \cdot \hat{\mathbf{r}}) v_{43}(r). |
606 |
\end{align} |
607 |
|
608 |
|
609 |
% \begin{table*} |
610 |
% \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.} |
611 |
% \begin{ruledtabular} |
612 |
% \begin{tabular}{|l|l|l|} |
613 |
% Generic&Taylor-shifted Force&Gradient-shifted Force |
614 |
% \\ \hline |
615 |
% % |
616 |
% % |
617 |
% % |
618 |
% $w_a(r)$& |
619 |
% $g_0(r)$& |
620 |
% $g(r)-g(r_c)$ \\ |
621 |
% % |
622 |
% % |
623 |
% $w_b(r)$ & |
624 |
% $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ & |
625 |
% $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\ |
626 |
% % |
627 |
% $w_c(r)$ & |
628 |
% $\frac{g_1(r)}{r} $ & |
629 |
% $\frac{v_{11}(r)}{r}$ \\ |
630 |
% % |
631 |
% % |
632 |
% $w_d(r)$& |
633 |
% $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ & |
634 |
% $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right) |
635 |
% -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\ |
636 |
% % |
637 |
% $w_e(r)$ & |
638 |
% $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ & |
639 |
% $\frac{v_{22}(r)}{r}$ \\ |
640 |
% % |
641 |
% % |
642 |
% $w_f(r)$& |
643 |
% $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ & |
644 |
% $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\ |
645 |
% &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\ |
646 |
% % |
647 |
% $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$& |
648 |
% $\frac{v_{31}(r)}{r}$\\ |
649 |
% % |
650 |
% $w_h(r)$ & |
651 |
% $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ & |
652 |
% $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\ |
653 |
% &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\ |
654 |
% &&$-\frac{v_{31}(r)}{r}$\\ |
655 |
% % 2 |
656 |
% $w_i(r)$ & |
657 |
% $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ & |
658 |
% $\frac{v_{32}(r)}{r}$ \\ |
659 |
% % |
660 |
% $w_j(r)$ & |
661 |
% $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ & |
662 |
% $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\ |
663 |
% &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\ |
664 |
% % |
665 |
% $w_k(r)$ & |
666 |
% $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ & |
667 |
% $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\ |
668 |
% &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\ |
669 |
% % |
670 |
% $w_l(r)$ & |
671 |
% $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ & |
672 |
% $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\ |
673 |
% &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right) |
674 |
% -\frac{2v_{42}(r)}{r}$ \\ |
675 |
% % |
676 |
% $w_m(r)$ & |
677 |
% $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ & |
678 |
% $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\ |
679 |
% &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3} |
680 |
% +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\ |
681 |
% &&$-\frac{4v_{43}(r)}{r}$ \\ |
682 |
% % |
683 |
% $w_n(r)$ & |
684 |
% $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ & |
685 |
% $\frac{v_{42}(r)}{r}$ \\ |
686 |
% % |
687 |
% $w_o(r)$ & |
688 |
% $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ & |
689 |
% $\frac{v_{43}(r)}{r}$ \\ |
690 |
% % |
691 |
% \end{tabular} |
692 |
% \end{ruledtabular} |
693 |
% \end{table*} |
694 |
% |
695 |
% \newpage |
696 |
% |
697 |
% \bibliography{multipole} |
698 |
% |
699 |
|
700 |
\section{} |
701 |
|
702 |
To test the gradient-shifted force (GSF) and Taylor-shifted force |
703 |
(TSF) methods against known energies for multipolar crystals, we |
704 |
repeated the Luttinger \& Tisza series summations and have obtained |
705 |
the energy constants (converged to one part in $10^9$) in table |
706 |
\ref{tab:LT}. |
707 |
|
708 |
|
709 |
\begin{table*}[h] |
710 |
\centering{ |
711 |
\caption{Luttinger \& Tisza arrays and their associated |
712 |
energy constants. Type ``A'' arrays have nearest neighbor strings of |
713 |
antiparallel dipoles. Type ``B'' arrays have nearest neighbor |
714 |
strings of antiparallel dipoles if the dipoles are contained in a |
715 |
plane perpendicular to the dipole direction that passes through |
716 |
the dipole.} |
717 |
} |
718 |
\label{tab:LT} |
719 |
\begin{ruledtabular} |
720 |
\begin{tabular}{cccc} |
721 |
Array Type & Lattice & Dipole Direction & Energy constants \\ \hline |
722 |
A & SC & 001 & -2.676788684 \\ |
723 |
A & BCC & 001 & 0 \\ |
724 |
A & BCC & 111 & -1.770078733 \\ |
725 |
A & FCC & 001 & 2.166932835 \\ |
726 |
A & FCC & 011 & -1.083466417 \\ |
727 |
B & SC & 001 & -2.676788684 \\ |
728 |
B & BCC & 001 & -1.338394342 \\ |
729 |
B & BCC & 111 & -1.770078733 \\ |
730 |
B & FCC & 001 & -1.083466417 \\ |
731 |
B & FCC & 011 & -1.807573634 \\ |
732 |
-- & BCC & minimum & -1.985920929 \\ |
733 |
\end{tabular} |
734 |
\end{ruledtabular} |
735 |
\end{table*} |
736 |
|
737 |
We have also tested agains the energy constants for Quadrupolar |
738 |
arrays. Nagai and Nakamura computed the energies of selected |
739 |
quadrupole arrays based on extensions to the Luttinger and Tisza |
740 |
approach. These energy constants are given in table \ref{tab:NNQ}. |
741 |
|
742 |
\begin{table*} |
743 |
\centering{ |
744 |
\caption{Nagai and Nakamura Quadrupolar arrays. Note that these |
745 |
take into account the factor of two corrections in |
746 |
Ref. \onlinecite{Nagai01091963}}} |
747 |
\label{tab:NNQ} |
748 |
\begin{ruledtabular} |
749 |
\begin{tabular}{ccc} |
750 |
Lattice & Quadrupole Direction & Energy constants \\ \hline |
751 |
SC & 111 & -16.6 \\ |
752 |
BCC & 011 & -43.4 \\ |
753 |
FCC & 111 & -161 |
754 |
\end{tabular} |
755 |
\end{ruledtabular} |
756 |
\end{table*} |
757 |
|
758 |
\newpage |
759 |
\bibliography{multipole} |
760 |
\end{document} |
761 |
% |
762 |
% ****** End of file multipole.tex ****** |