ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric.tex
Revision: 4196
Committed: Tue Jul 22 15:52:55 2014 UTC (10 years, 1 month ago) by gezelter
Content type: application/x-tex
File size: 7710 byte(s)
Log Message:
Latest changes

File Contents

# User Rev Content
1 gezelter 4195 \documentclass[%
2     aip,
3     jcp,
4     amsmath,amssymb,
5     preprint,%
6     % reprint,%
7     %author-year,%
8     %author-numerical,%
9     ]{revtex4-1}
10    
11     \usepackage{graphicx}% Include figure files
12     \usepackage{dcolumn}% Align table columns on decimal point
13     \usepackage{multirow}
14     \usepackage{bm}% bold math
15     \usepackage{natbib}
16     \usepackage{times}
17     \usepackage{mathptmx}
18     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
19     \usepackage{url}
20    
21     \begin{document}
22    
23     \title{Notes on the Dielectric}
24    
25     \author{J. Daniel Gezelter}
26     \email{gezelter@nd.edu.}
27     \affiliation{Department of Chemistry and Biochemistry, University
28     of Notre Dame, Notre Dame, IN 46556}
29    
30     \date{\today}% It is always \today, today,
31     % but any date may be explicitly specified
32    
33     \maketitle
34    
35    
36     \section{Dielectric constants}
37    
38     The new real-space methods require some care when computing dielectric
39     properties because the interaction between molecular dipoles depends
40     on the level of approximation being utilized. Consider the cases of
41     Stockmayer (dipolar) soft spheres that are represented either by two
42     closely-spaced point charges or by a single point dipole (see
43     Fig. \ref{fig:stockmayer}).
44     \begin{figure}
45     \includegraphics[width=3in]{DielectricFigure}
46     \caption{With the real-space electrostatic methods, the effective
47     dipole tensor, $\mathbf{T}$, governing interactions between
48     molecular dipoles is not the same for charge-charge interactions as
49     for point dipoles.}
50     \label{fig:stockmayer}
51     \end{figure}
52     In the case where point charges are interacting via an electrostatic
53     kernel, $v(r)$, the effective {\it molecular} dipole tensor,
54     $\mathbf{T}$ is obtained from two successive applications of the
55     gradient operator to the electrostatic kernel,
56     \begin{equation}
57     \mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta}
58     \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
59     r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
60     v^{\prime}(r) \right)
61     \end{equation}
62     where $v(r)$ may be either the bare kernel ($1/r$) or one of the
63     modified (Wolf or DSF) kernels. This tensor describes the effective
64 gezelter 4196 interaction between molecular dipoles ($\mathbf{D}$) in Gaussian
65 gezelter 4195 units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
66    
67     When utilizing the new real-space methods for point dipoles, the
68     tensor is explicitly constructed,
69     \begin{equation}
70     \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
71     \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
72     \end{equation}
73     where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
74     the approximation. Although the Taylor-shifted (TSF) and
75     gradient-shifted (GSF) models produce to the same $v(r)$ function for
76     point charges, they have distinct forms for the dipole-dipole
77     interactions.
78    
79     Neumann and Steinhauser showed~\cite{Neumann:1983mz,Neumann:1983yq}
80     that the relative dielectric permittivity $\epsilon$ is given by the
81     general fluctuation formula,
82     \begin{equation}
83     \frac{\epsilon - 1}{\epsilon +2} = \frac{4 \pi}{3} \frac{\left<M^2\right>}{3 V k_B
84     T} \left( 1 - \frac{3}{4 \pi} \frac{\epsilon -1}{\epsilon + 2}
85     \tilde{T}(0) \right)
86     \end{equation}
87     where $\left<M^2\right>$ is the mean fluctuation of the square of the
88     net dipole moment of the simulation cell, $V$ is the volume of the
89     cell, and $\tilde{T}(0) = \tilde{T̃}_{xx}(0) = \tilde{T̃}_{yy}(0) =
90     \tilde{T̃}_{zz}(0)$ is the $\mathbf{k} = 0$ limit of Fourier transform
91     of the diagonal term of the effective molecular dipolar tensor,
92     \begin{equation}
93     \tilde{T}(0) = \int_V \mathbf{T}(\mathbf{r}) d\mathbf{r}
94     \end{equation}
95     where the integral is carried out over the relevant geometry for the
96     interaction. For the real-space methods, the integration can be done
97     easily up to the imposed cutoff radius, while for the Ewald sum, the
98     results also depend on details of the $k$-space
99     calculation.\cite{Neumann:1983yq}
100    
101     For molecules composed of point charges interacting via the bare
102     $(1/r)$ kernel, the simple cutoff (SC) and minimum image (MI)
103     approaches give $\tilde{T}(0) = 0$ which means that the
104     Clausius-Mosotti equation,
105     \begin{equation}
106     \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon
107     -1}{\epsilon+2}
108     \end{equation}
109     is the relevant fluctuation formula for the relative permittivity.
110    
111     Zahn {\it et al.}\cite{Zahn02} showed that for the damped shifted
112     force charge-charge kernel, $\tilde{T}(0) = 4 \pi / 3$. This was later
113     generalized by Izvekov {\it et al.} for all point-charge kernels which
114     have forces that go to zero at a cutoff radius and which maintain a
115     pole of first order at $r=0$.\cite{Izvekov:2008wo} When $\tilde{T}(0)
116     = 4 \pi/ 3$, the expression for the dielectric constant reduces to the
117     widely-used {\it conducting boundary} formula,
118     \begin{equation}
119     \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon -
120     1}{3}
121     \end{equation}
122     It is convenient to define a quantity $Q = \frac{3}{4 \pi}
123     \tilde{T}(0)$, and to combine all of the fluctuation formulae
124     together:
125     \begin{equation}
126     \frac{4 \pi}{3} \frac{\left< M^2 \right>}{3 V k_B T} =
127     \left\{\begin{array}{ll}
128     \frac{\epsilon-1}{\epsilon+2} \left[1- \frac{\epsilon-1}{\epsilon+2}
129     Q\right]^{-1} & \mathrm{General~Case} \\
130     \frac{\epsilon-1}{\epsilon+2} & Q \rightarrow 0 \mathrm{~limit} \\
131     \frac{\epsilon-1}{3} & Q \rightarrow 1 \mathrm{~limit}
132     \end{array}\right.
133     \end{equation}
134    
135     The Clausius-Mossotti $(Q\rightarrow 0)$ approach is subject to noise
136     and error magnification,\cite{Allen:1989fp} and the conducting
137     boundary approach $(Q \rightarrow 1)$ has become widely used as a
138     result. If the electrostatic method being used has $Q < 1$, the
139     relative dielectric permittivity $\epsilon$ can be estimated once the
140     conducting boundary fluctuation result has been found,
141     \begin{equation}
142     \epsilon = \frac{(Q+2) (\epsilon_\text{CB}-1)+3} {(Q-1) (\epsilon_\text{CB}-1)+3}
143     \end{equation}
144     Note that this expression becomes quite numerically sensitive when the
145     value of $Q$ deviates significantly from 1.
146    
147     We have derived a set of expressions for the value of $Q$ for the new
148     real space methods that are shown in Table \ref{tab:Q}.
149    
150     \begin{table}
151     \caption{Expressions for the dielectric correction factor ($Q$) for the
152     real-space electrostatic methods in terms of the damping parameter
153     ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
154     derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann:1983yq} is shown for comparison using the Ewald
155     convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). }
156     \label{tab:Q}
157     \begin{tabular}{l|c|c|c|c|}
158     & \multicolumn{2}{c|}{damped} & \multicolumn{2}{c|}{undamped} \\ \cline{2-3} \cline{4-5}
159     Method & $Q_\mathrm{charges}$ & $Q_\mathrm{dipoles}$ & $Q_\mathrm{charges}$ & $Q_\mathrm{dipoles}$ \\
160     \hline
161     Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ &0 &0\\
162     Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c }{\sqrt{\pi }} \left(1 + \frac{2 \alpha^2 r_c^2}{3} \right) e^{-\alpha ^2 r_c^2} $ &0 &0\\
163     Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha ^2 r_c^2} $ &1 &1\\
164     Taylor-shifted (TSF) & 1 & 1 & 1 & 1\\
165     Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & - & - \\\hline
166     \end{tabular}
167     \end{table}
168     \newpage
169    
170    
171     \bibliography{multipole}
172    
173     \end{document}