ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric.tex
Revision: 4196
Committed: Tue Jul 22 15:52:55 2014 UTC (10 years, 1 month ago) by gezelter
Content type: application/x-tex
File size: 7710 byte(s)
Log Message:
Latest changes

File Contents

# Content
1 \documentclass[%
2 aip,
3 jcp,
4 amsmath,amssymb,
5 preprint,%
6 % reprint,%
7 %author-year,%
8 %author-numerical,%
9 ]{revtex4-1}
10
11 \usepackage{graphicx}% Include figure files
12 \usepackage{dcolumn}% Align table columns on decimal point
13 \usepackage{multirow}
14 \usepackage{bm}% bold math
15 \usepackage{natbib}
16 \usepackage{times}
17 \usepackage{mathptmx}
18 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
19 \usepackage{url}
20
21 \begin{document}
22
23 \title{Notes on the Dielectric}
24
25 \author{J. Daniel Gezelter}
26 \email{gezelter@nd.edu.}
27 \affiliation{Department of Chemistry and Biochemistry, University
28 of Notre Dame, Notre Dame, IN 46556}
29
30 \date{\today}% It is always \today, today,
31 % but any date may be explicitly specified
32
33 \maketitle
34
35
36 \section{Dielectric constants}
37
38 The new real-space methods require some care when computing dielectric
39 properties because the interaction between molecular dipoles depends
40 on the level of approximation being utilized. Consider the cases of
41 Stockmayer (dipolar) soft spheres that are represented either by two
42 closely-spaced point charges or by a single point dipole (see
43 Fig. \ref{fig:stockmayer}).
44 \begin{figure}
45 \includegraphics[width=3in]{DielectricFigure}
46 \caption{With the real-space electrostatic methods, the effective
47 dipole tensor, $\mathbf{T}$, governing interactions between
48 molecular dipoles is not the same for charge-charge interactions as
49 for point dipoles.}
50 \label{fig:stockmayer}
51 \end{figure}
52 In the case where point charges are interacting via an electrostatic
53 kernel, $v(r)$, the effective {\it molecular} dipole tensor,
54 $\mathbf{T}$ is obtained from two successive applications of the
55 gradient operator to the electrostatic kernel,
56 \begin{equation}
57 \mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta}
58 \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
59 r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
60 v^{\prime}(r) \right)
61 \end{equation}
62 where $v(r)$ may be either the bare kernel ($1/r$) or one of the
63 modified (Wolf or DSF) kernels. This tensor describes the effective
64 interaction between molecular dipoles ($\mathbf{D}$) in Gaussian
65 units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
66
67 When utilizing the new real-space methods for point dipoles, the
68 tensor is explicitly constructed,
69 \begin{equation}
70 \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
71 \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
72 \end{equation}
73 where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
74 the approximation. Although the Taylor-shifted (TSF) and
75 gradient-shifted (GSF) models produce to the same $v(r)$ function for
76 point charges, they have distinct forms for the dipole-dipole
77 interactions.
78
79 Neumann and Steinhauser showed~\cite{Neumann:1983mz,Neumann:1983yq}
80 that the relative dielectric permittivity $\epsilon$ is given by the
81 general fluctuation formula,
82 \begin{equation}
83 \frac{\epsilon - 1}{\epsilon +2} = \frac{4 \pi}{3} \frac{\left<M^2\right>}{3 V k_B
84 T} \left( 1 - \frac{3}{4 \pi} \frac{\epsilon -1}{\epsilon + 2}
85 \tilde{T}(0) \right)
86 \end{equation}
87 where $\left<M^2\right>$ is the mean fluctuation of the square of the
88 net dipole moment of the simulation cell, $V$ is the volume of the
89 cell, and $\tilde{T}(0) = \tilde{T̃}_{xx}(0) = \tilde{T̃}_{yy}(0) =
90 \tilde{T̃}_{zz}(0)$ is the $\mathbf{k} = 0$ limit of Fourier transform
91 of the diagonal term of the effective molecular dipolar tensor,
92 \begin{equation}
93 \tilde{T}(0) = \int_V \mathbf{T}(\mathbf{r}) d\mathbf{r}
94 \end{equation}
95 where the integral is carried out over the relevant geometry for the
96 interaction. For the real-space methods, the integration can be done
97 easily up to the imposed cutoff radius, while for the Ewald sum, the
98 results also depend on details of the $k$-space
99 calculation.\cite{Neumann:1983yq}
100
101 For molecules composed of point charges interacting via the bare
102 $(1/r)$ kernel, the simple cutoff (SC) and minimum image (MI)
103 approaches give $\tilde{T}(0) = 0$ which means that the
104 Clausius-Mosotti equation,
105 \begin{equation}
106 \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon
107 -1}{\epsilon+2}
108 \end{equation}
109 is the relevant fluctuation formula for the relative permittivity.
110
111 Zahn {\it et al.}\cite{Zahn02} showed that for the damped shifted
112 force charge-charge kernel, $\tilde{T}(0) = 4 \pi / 3$. This was later
113 generalized by Izvekov {\it et al.} for all point-charge kernels which
114 have forces that go to zero at a cutoff radius and which maintain a
115 pole of first order at $r=0$.\cite{Izvekov:2008wo} When $\tilde{T}(0)
116 = 4 \pi/ 3$, the expression for the dielectric constant reduces to the
117 widely-used {\it conducting boundary} formula,
118 \begin{equation}
119 \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon -
120 1}{3}
121 \end{equation}
122 It is convenient to define a quantity $Q = \frac{3}{4 \pi}
123 \tilde{T}(0)$, and to combine all of the fluctuation formulae
124 together:
125 \begin{equation}
126 \frac{4 \pi}{3} \frac{\left< M^2 \right>}{3 V k_B T} =
127 \left\{\begin{array}{ll}
128 \frac{\epsilon-1}{\epsilon+2} \left[1- \frac{\epsilon-1}{\epsilon+2}
129 Q\right]^{-1} & \mathrm{General~Case} \\
130 \frac{\epsilon-1}{\epsilon+2} & Q \rightarrow 0 \mathrm{~limit} \\
131 \frac{\epsilon-1}{3} & Q \rightarrow 1 \mathrm{~limit}
132 \end{array}\right.
133 \end{equation}
134
135 The Clausius-Mossotti $(Q\rightarrow 0)$ approach is subject to noise
136 and error magnification,\cite{Allen:1989fp} and the conducting
137 boundary approach $(Q \rightarrow 1)$ has become widely used as a
138 result. If the electrostatic method being used has $Q < 1$, the
139 relative dielectric permittivity $\epsilon$ can be estimated once the
140 conducting boundary fluctuation result has been found,
141 \begin{equation}
142 \epsilon = \frac{(Q+2) (\epsilon_\text{CB}-1)+3} {(Q-1) (\epsilon_\text{CB}-1)+3}
143 \end{equation}
144 Note that this expression becomes quite numerically sensitive when the
145 value of $Q$ deviates significantly from 1.
146
147 We have derived a set of expressions for the value of $Q$ for the new
148 real space methods that are shown in Table \ref{tab:Q}.
149
150 \begin{table}
151 \caption{Expressions for the dielectric correction factor ($Q$) for the
152 real-space electrostatic methods in terms of the damping parameter
153 ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
154 derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann:1983yq} is shown for comparison using the Ewald
155 convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). }
156 \label{tab:Q}
157 \begin{tabular}{l|c|c|c|c|}
158 & \multicolumn{2}{c|}{damped} & \multicolumn{2}{c|}{undamped} \\ \cline{2-3} \cline{4-5}
159 Method & $Q_\mathrm{charges}$ & $Q_\mathrm{dipoles}$ & $Q_\mathrm{charges}$ & $Q_\mathrm{dipoles}$ \\
160 \hline
161 Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ &0 &0\\
162 Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c }{\sqrt{\pi }} \left(1 + \frac{2 \alpha^2 r_c^2}{3} \right) e^{-\alpha ^2 r_c^2} $ &0 &0\\
163 Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha ^2 r_c^2} $ &1 &1\\
164 Taylor-shifted (TSF) & 1 & 1 & 1 & 1\\
165 Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & - & - \\\hline
166 \end{tabular}
167 \end{table}
168 \newpage
169
170
171 \bibliography{multipole}
172
173 \end{document}