ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric_new.tex
Revision: 4408
Committed: Wed Mar 30 20:12:46 2016 UTC (8 years, 3 months ago) by gezelter
Content type: application/x-tex
File size: 67567 byte(s)
Log Message:
New figures, some edits

File Contents

# User Rev Content
1 gezelter 4396 \documentclass[aip,jcp,amsmath,amssymb,preprint]{revtex4-1}
2 mlamichh 4353
3     \usepackage{graphicx}% Include figure files
4     \usepackage{dcolumn}% Align table columns on decimal point
5     \usepackage{multirow}
6 gezelter 4396 \usepackage{bm}
7 mlamichh 4353 \usepackage{natbib}
8     \usepackage{times}
9     \usepackage{mathptmx}
10     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
11     \usepackage{url}
12     \usepackage{braket}
13 mlamichh 4389 \usepackage{tabularx}
14 gezelter 4400 \usepackage{rotating}
15 gezelter 4408 \usepackage{multirow}
16     \usepackage{booktabs}
17 gezelter 4396
18 mlamichh 4389 \newcolumntype{Y}{>{\centering\arraybackslash}X}
19 mlamichh 4353
20     \begin{document}
21    
22     \title{Real space electrostatics for multipoles. III. Dielectric Properties}
23    
24     \author{Madan Lamichhane}
25     \affiliation{Department of Physics, University
26     of Notre Dame, Notre Dame, IN 46556}
27     \author{Thomas Parsons}
28     \affiliation{Department of Chemistry and Biochemistry, University
29     of Notre Dame, Notre Dame, IN 46556}
30     \author{Kathie E. Newman}
31     \affiliation{Department of Physics, University
32     of Notre Dame, Notre Dame, IN 46556}
33     \author{J. Daniel Gezelter}
34     \email{gezelter@nd.edu.}
35     \affiliation{Department of Chemistry and Biochemistry, University
36     of Notre Dame, Notre Dame, IN 46556}
37    
38     \date{\today}% It is always \today, today,
39     % but any date may be explicitly specified
40    
41 mlamichh 4393 \begin{abstract}
42 gezelter 4399 In the first two papers in this series, we developed new shifted
43     potential (SP), gradient shifted force (GSF), and Taylor shifted
44     force (TSF) real-space methods for multipole interactions in
45     condensed phase simulations. Here, we discuss the dielectric
46     properties of fluids that emerge from simulations using these
47     methods. Most electrostatic methods (including the Ewald sum)
48     require correction to the conducting boundary fluctuation formula
49     for the static dielectric constants, and we discuss the derivation
50     of these corrections for the new real space methods. For quadrupolar
51     fluids, the analogous material property is the quadrupolar
52     susceptibility. As in the dipolar case, the fluctuation formula for
53     the quadrupolar susceptibility has corrections that depend on the
54     electrostatic method being utillized. One of the most important
55     effects measured by both the static dielectric and quadrupolar
56     susceptibility is the ability to screen charges embedded in the
57     fluid. We use potentials of mean force between solvated ions to
58     discuss how geometric factors can lead to distance-dependent
59     screening in both quadrupolar and dipolar fluids.
60 mlamichh 4353 \end{abstract}
61    
62     \maketitle
63    
64     \section{Introduction}
65    
66     Over the past several years, there has been increasing interest in
67 gezelter 4396 pairwise or ``real space'' methods for computing electrostatic
68     interactions in condensed phase
69 gezelter 4401 simulations.\cite{Wolf99,Zahn02,Kast03,Beckd05,Ma05,Wu:2005nr,Fennell06,Fukuda:2013uq,Wang:2016kx}
70 gezelter 4396 These techniques were initially developed by Wolf {\it et al.} in
71     their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
72     Wolf's method of using cutoff neutralization and electrostatic damping
73     is able to obtain excellent agreement with Madelung energies in ionic
74 gezelter 4401 crystals.\cite{Wolf99}
75 mlamichh 4353
76 gezelter 4396 Zahn \textit{et al.}\cite{Zahn02} and Fennell and Gezelter extended
77     this method using shifted force approximations at the cutoff distance
78     in order to conserve total energy in molecular dynamics
79 gezelter 4399 simulations.\cite{Fennell06} Other recent advances in real-space
80 gezelter 4400 methods for systems of point charges have included explicit
81 gezelter 4401 elimination of the net multipole moments inside the cutoff sphere
82     around each charge site.\cite{Fukuda:2013uq,Wang:2016kx}
83 mlamichh 4353
84 gezelter 4399 In the previous two papers in this series, we developed three
85     generalized real space methods: shifted potential (SP), gradient
86     shifted force (GSF), and Taylor shifted force (TSF).\cite{PaperI,
87     PaperII} These methods evaluate electrostatic interactions for
88     charges and higher order multipoles using a finite-radius cutoff
89     sphere. The neutralization and damping of local moments within the
90     cutoff sphere is a multipolar generalization of Wolf's sum. In the
91     GSF and TSF methods, additional terms are added to the potential
92     energy so that forces and torques also vanish smoothly at the cutoff
93     radius. This ensures that the total energy is conserved in molecular
94     dynamics simulations.
95    
96 gezelter 4400 One of the most stringent tests of any new electrostatic method is the
97 gezelter 4390 fidelity with which that method can reproduce the bulk-phase
98     polarizability or equivalently, the dielectric properties of a
99 gezelter 4396 fluid. Before the advent of computer simulations, Kirkwood and Onsager
100     developed fluctuation formulae for the dielectric properties of
101 gezelter 4399 dipolar fluids.\cite{Kirkwood39,Onsagar36} Along with projections of
102     the frequency-dependent dielectric to zero frequency, these
103 gezelter 4400 fluctuation formulae are now widely used to predict the static
104     dielectric constant of simulated materials.
105 gezelter 4396
106 gezelter 4399 If we consider a system of dipolar or quadrupolar molecules under the
107     influence of an external field or field gradient, the net polarization
108     of the system will largely be proportional to the applied
109     perturbation.\cite{Chitanvis96, Stern-Feller03, SalvchovI14,
110     SalvchovII14} In simulations, the net polarization of the system is
111     also determined by the interactions \textit{between} the
112 gezelter 4400 molecules. Therefore the macroscopic polarizablity obtained from a
113 gezelter 4399 simulation depends on the details of the electrostatic interaction
114 gezelter 4400 methods that were employed in the simulation. To determine the
115 gezelter 4399 relevant physical properties of the multipolar fluid from the system
116     fluctuations, the interactions between molecules must be incorporated
117     into the formalism for the bulk properties.
118 gezelter 4396
119 gezelter 4400 In most simulations, bulk materials are treated using periodic
120     replicas of small regions, and this level of approximation requires
121     corrections to the fluctuation formulae that were derived for the bulk
122     fluids. In 1983 Neumann proposed a general formula for evaluating
123     dielectric properties of dipolar fluids using both Ewald and
124     real-space cutoff methods.\cite{NeumannI83} Steinhauser and Neumann
125     used this formula to evaluate the corrected dielectric constant for
126 gezelter 4404 the Stockmayer fluid using two different methods: Ewald-Kornfeld (EK)
127 gezelter 4400 and reaction field (RF) methods.\cite{NeumannII83}
128 gezelter 4390
129 gezelter 4392 Zahn \textit{et al.}\cite{Zahn02} utilized this approach and evaluated
130     the correction factor for using damped shifted charge-charge
131     kernel. This was later generalized by Izvekov \textit{et
132 gezelter 4400 al.},\cite{Izvekov08} who noted that the expression for the
133 gezelter 4401 dielectric constant reduces to widely-used conducting boundary formula
134     for real-space methods that have first derivatives that vanish at the
135     cutoff radius.
136 gezelter 4390
137 gezelter 4400 One of the primary topics of this paper is the derivation of
138     correction factors for the three new real space methods. We find that
139     the correction formulae for dipolar molecules depends not only on the
140 gezelter 4399 methodology being used, but also on whether the molecular dipoles are
141     treated using point charges or point dipoles. We derive correction
142     factors for both cases.
143    
144 gezelter 4392 In quadrupolar fluids, the relationship between quadrupolar
145     susceptibility and the dielectric constant is not as straightforward
146 gezelter 4399 as in the dipolar case. The effective dielectric constant depends on
147     the geometry of the external (or internal) field
148     perturbation.\cite{Ernst92} Significant efforts have been made to
149     increase our understanding the dielectric properties of these
150 gezelter 4400 fluids,\cite{JeonI03,JeonII03,Chitanvis96} although a general
151     correction formula has not yet been developed.
152 gezelter 4390
153 gezelter 4392 In this paper we derive general formulae for calculating the
154 gezelter 4400 quadrupolar susceptibility of quadrupolar fluids. We also evaluate the
155     correction factor for SP, GSF, and TSF methods for quadrupolar fluids
156     interacting via point charges, point dipoles or directly through
157     quadrupole-quadrupole interactions.
158 gezelter 4390
159 gezelter 4400 We also calculate the screening behavior for two ions immersed in
160     multipolar fluids to estimate the distance dependence of charge
161     screening in both dipolar and quadrupolar fluids. We use three
162     distinct methods to compare our analytical results with computer
163     simulations:
164 gezelter 4390 \begin{enumerate}
165 gezelter 4396 \item responses of the fluid to external perturbations,
166 gezelter 4399 \item fluctuations of system multipole moments, and
167 gezelter 4396 \item potentials of mean force between solvated ions,
168 gezelter 4390 \end{enumerate}
169    
170 gezelter 4408 \begin{figure}
171     \includegraphics[width=\linewidth]{Schematic}
172     \caption{Dielectric properties of a fluid measure the response to
173     external electric fields and gradients (left panel), or internal
174     fields and gradients generated by the molecules themselves (central
175     panel), or fields produced by embedded ions (right panel). The
176     dielectric constant measures all three responses in dipolar fluids.
177     In quadrupolar liquids, the relevant bulk property is the
178     quadrupolar susceptibility, and the geometry of the perturbation
179     determines the effective dielectric screening.}
180     \label{fig:schematic}
181     \end{figure}
182    
183 gezelter 4400 Under the influence of weak external fields, the bulk polarization of
184     the system is primarily a linear response to the perturbation, where
185     proportionality constant depends on the electrostatic interactions
186     between the multipoles. The fluctuation formulae connect bulk
187     properties of the fluid to equilibrium fluctuations in the system
188     multipolar moments during a simulation. These fluctuations also depend
189     on the form of the electrostatic interactions between molecules.
190     Therefore, the connections between the actual bulk properties and both
191     the computed fluctuation and external field responses must be modified
192     accordingly.
193 gezelter 4390
194 gezelter 4400 The potential of mean force (PMF) allows calculation of an effective
195 gezelter 4399 dielectric constant or screening factor from the potential energy
196     between ions before and after dielectric material is introduced.
197 gezelter 4400 Computing the PMF between embedded point charges is an additional
198     check on the bulk properties computed via the other two methods.
199 mlamichh 4363
200 gezelter 4400 \section{The Real-Space Methods}
201    
202 gezelter 4404 In the first paper in this series, we derived interaction energies, as
203     well as expressions for the forces and torques for point multipoles
204     interacting via three new real-space methods.\cite{PaperI} The Taylor
205     shifted-force (TSF) method modifies the electrostatic kernel,
206     $f(r) = 1/r$, so that all forces and torques go smoothly to zero at
207     the cutoff radius,
208     \begin{equation}
209     U^{\text{TSF}}_{ab} = M_{a} M_{b} f_n(r).
210     \label{TSF}
211     \end{equation}
212     Here the multipole operator for site $a$, $M_{a}$, is expressed in
213     terms of the point charge, $C_{a}$, dipole, ${\bf D}_{a}$, and
214     quadrupole, $\mathsf{Q}_{a}$, for object $a$, etc. Because each of
215     the multipole operators includes a set of implied gradient operators,
216     an approximate electrostatic kernel, $f_n(r)$ is Taylor-expanded
217     around the cutoff radius, so that $n + 1$ derivatives vanish as
218     $r \rightarrow r_c$. This ensures smooth convergence of the energy,
219     forces, and torques as molecules leave and reenter each others cutoff
220     spheres. The order of the Taylor expansion is determined by the
221     multipolar order of the interaction. That is, smooth
222     quadrupole-quadrupole forces require the fifth derivative to vanish at
223     the cutoff radius, so the appropriate function Taylor expansion will
224     be of fifth order.
225    
226     Following this procedure results in separate radial functions for each
227     of the distinct orientational contributions to the potential. For
228     example, in dipole-dipole interactions, the direct dipole dot product
229     ($\mathbf{D}_{a} \cdot \mathbf{D}_{b}$) is treated differently than
230     the dipole-distance dot products:
231     \begin{equation}
232     U_{\mathbf{D}_{a}\mathbf{D}_{b}}(r)= -\frac{1}{4\pi \epsilon_0} \left[ \left(
233     \mathbf{D}_{a} \cdot
234     \mathbf{D}_{b} \right) v_{21}(r) +
235     \left( \mathbf{D}_{a} \cdot \hat{\mathbf{r}} \right)
236     \left( \mathbf{D}_{b} \cdot \hat{\mathbf{r}} \right) v_{22}(r) \right]
237     \end{equation}
238     The two radial functions, $v_{21}(r)$ and $v_{22}(r)$ are both $1/r^3$
239     in standard electrostatics, but they become distinct in the TSF
240     method, the relative orientations for interacting molecules so that
241     forces and torques vanish smoothly as the molecules drift beyond the
242     cutoff radius.
243    
244     A second and somewhat simpler approach involves shifting the gradient
245     of the Coulomb potential for each particular multipole order,
246     \begin{equation}
247     U^{\text{GSF}}_{ab} = \sum \left[ U(\mathbf{r}, \mathsf{A}, \mathsf{B}) -
248     U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) - (r-r_c)
249     \hat{\mathbf{r}} \cdot \nabla U(r_c \hat{\mathbf{r}},\mathsf{A},
250     \mathsf{B}) \right]
251     \label{generic2}
252     \end{equation}
253     where the sum describes a separate force-shifting that is applied to
254     each orientational contribution to the energy, i.e. $v_{21}$ and
255     $v_{22}$ are shifted separately. In this expression,
256     $\hat{\mathbf{r}}$ is the unit vector connecting the two multipoles
257     ($a$ and $b$) in space, and $\mathsf{A}$ and $\mathsf{B}$ represent
258     the orientations the multipoles. Because this procedure is equivalent
259     to using the gradient of an image multipole placed at the cutoff
260     sphere for shifting the force, this method is called the gradient
261     shifted-force (GSF) approach.
262    
263     Both the TSF and GSF approaches can be thought of as multipolar
264     extensions of the original damped shifted-force (DSF) approach that
265     was developed for point charges. There is also a multipolar extension
266     of the Wolf sum that is obtained by projecting an image multipole onto
267     the surface of the cutoff sphere, and including the interactions with
268     the central multipole and the image. This effectively shifts only the
269     total potential to zero at the cutoff radius,
270     \begin{equation}
271     U^{\text{SP}}_{ab} = \sum \left[ U(\mathbf{r}, \mathsf{A}, \mathsf{B}) -
272     U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) \right]
273     \label{eq:SP}
274     \end{equation}
275     where the sum again describes separate potential shifting that is done
276     for each orientational contribution to the energy. The potential
277     energy between a central multipole and other multipolar sites goes
278     smoothly to zero as $r \rightarrow r_c$, but the forces and torques
279     obtained from this shifted potential (SP) approach are discontinuous
280     at $r_c$.
281    
282     All three of the new real space methods share a common structure: the
283     various orientational contributions to multipolar interaction energies
284     require separate treatment of their radial functions, and these are
285     tabulated for both the raw Coulombic kernel ($1/r$) as well as the
286     damped kernel ($\mathrm{erfc}(\alpha r)/r$), in the first paper of this
287     series.\cite{PaperI} The second paper in this series evaluated the
288     fidelity with which the three new methods reproduced Ewald-based
289     results for a number of model systems.\cite{PaperII} One of the major
290     findings was that moderately-damped GSF simulations produced nearly
291     identical behavior with Ewald-based simulations, but the real-space
292     methods scale linearly with system size.
293    
294 gezelter 4399 \section{Dipolar Fluids and the Dielectric Constant}
295 mlamichh 4353
296 gezelter 4399 Dielectric properties of a fluid arise mainly from responses of the
297     fluid to either applied fields or transient fields internal to the
298     fluid. In response to an applied field, the molecules have electronic
299     polarizabilities, changes to internal bond lengths, and reorientations
300     towards the direction of the applied field. There is an added
301     complication that in the presence of external field, the perturbation
302     experienced by any single molecule is not only due to external field
303     but also to the fields produced by the all other molecules in the
304     system.
305 mlamichh 4353
306 gezelter 4399 \subsection{Response to External Perturbations}
307    
308     In the presence of uniform electric field $\mathbf{E}$, an individual
309     molecule with a permanent dipole moment $p_o$ will realign along the
310     direction of the field with an average polarization given by
311 mlamichh 4353 \begin{equation}
312 gezelter 4400 \braket{\mathbf{p}} = \epsilon_0 \alpha_p \mathbf{E},
313 mlamichh 4353 \end{equation}
314 gezelter 4400 where $\alpha_p = {p_o}^2 / 3 \epsilon_0 k_B T$ is the contribution to
315     molecular polarizability due solely to reorientation dynamics.
316     Because the applied field must overcome thermal motion, the
317     orientational polarization depends inversely on the temperature.
318 mlamichh 4353
319 gezelter 4400 Likewise, a condensed phase system of permanent dipoles will also
320     polarize along the direction of an applied field. The polarization
321     density of the system is
322 mlamichh 4353 \begin{equation}
323 gezelter 4399 \textbf{P} = \epsilon_o \alpha_{D} \mathbf{E}.
324 mlamichh 4353 \label{pertDipole}
325     \end{equation}
326 gezelter 4400 The constant $\alpha_D$ is the macroscopic polarizability, which is an
327     emergent property of the dipolar fluid. Note that the polarizability,
328     $\alpha_D$ is distinct from the dipole susceptibility, $\chi_D$,
329     which is the quantity most directly related to the static dielectric
330     constant, $\epsilon = 1 + \chi_D$.
331 mlamichh 4363
332 gezelter 4399 \subsection{Fluctuation Formula}
333 gezelter 4400 % Using the Ewald sum under tin-foil boundary conditions, $\epsilon$ can
334     % be calculated for systems of orientationally-polarized molecules,
335     % \begin{equation}
336     % \epsilon = 1 + \frac{\langle M^2\rangle}{3\epsilon_0k_\textrm{B}TV},
337     % \label{eq:staticDielectric}
338     % \end{equation}
339     % where $\epsilon_0$ is the permittivity of free space and
340     % $\langle M^2\rangle$ is the fluctuation of the system dipole
341     % moment.\cite{Allen89} The numerator in the fractional term in
342     % equation (\ref{eq:staticDielectric}) is identical to the quantity
343     % calculated in the finite-system Kirkwood $g$ factor ($G_k$):
344     % \begin{equation}
345     % G_k = \frac{\langle M^2\rangle}{N\mu^2},
346     % \label{eq:KirkwoodFactor}
347     % \end{equation}
348     % where $\mu$ is the dipole moment of a single molecule of the
349     % homogeneous system.\cite{NeumannI83,NeumannII83,Neumann84,Neumann85} The
350     % fluctuation term in both equation (\ref{eq:staticDielectric}) and
351     % (\ref{eq:KirkwoodFactor}) is calculated as follows,
352     % \begin{equation}
353     % \begin{split}
354     % \langle M^2\rangle &= \langle\bm{M}\cdot\bm{M}\rangle
355     % - \langle\bm{M}\rangle\cdot\langle\bm{M}\rangle \\
356     % &= \langle M_x^2+M_y^2+M_z^2\rangle
357     % - (\langle M_x\rangle^2 + \langle M_x\rangle^2
358     % + \langle M_x\rangle^2).
359     % \end{split}
360     % \label{eq:fluctBoxDipole}
361     % \end{equation}
362     % This fluctuation term can be accumulated during a simulation; however,
363     % it converges rather slowly, thus requiring multi-nanosecond simulation
364     % times.\cite{Horn04} In the case of tin-foil boundary conditions, the
365     % dielectric/surface term of the Ewald summation is equal to zero.
366 mlamichh 4353
367 gezelter 4400 For a system of dipolar molecules at thermal equilibrium, we can
368     define both a system dipole moment, $\mathbf{M} = \sum_i \mathbf{p}_i$
369     as well as a dipole polarization density,
370     $\mathbf{P} = \braket{\mathbf{M}}/V$.
371 mlamichh 4353
372 gezelter 4400 In the presence of applied field $\mathbf{E}$, the polarization
373     density can be expressed in terms of fluctuations in the net dipole
374     moment,
375 mlamichh 4353 \begin{equation}
376 gezelter 4400 \mathbf{P} = \epsilon_o \frac{\braket{\mathbf{M}^2}-{\braket{\mathbf{M}}}^2}{3 \epsilon_o V k_B T}\bf{E}
377 gezelter 4399 \label{flucDipole}
378 mlamichh 4353 \end{equation}
379 gezelter 4400 This has structural similarity with the Boltzmann average for the
380     polarization of a single molecule. Here
381     $ \braket{\mathbf{M}^2}-{\braket{\mathbf{M}}}^2$ measures fluctuations
382 gezelter 4401 in the net dipole moment,
383 mlamichh 4353 \begin{equation}
384 gezelter 4401 \langle \mathbf{M}^2 \rangle - \langle \mathbf{M} \rangle^2 =
385     \langle M_x^2+M_y^2+M_z^2 \rangle - \left( \langle M_x \rangle^2 +
386     \langle M_y \rangle^2 +
387     \langle M_z \rangle^2 \right).
388     \label{eq:flucDip}
389     \end{equation}
390     For the limiting case $\textbf{E} \rightarrow 0 $, the ensemble
391     average of both the net dipole moment $\braket{\mathbf{M}}$ and
392     dipolar polarization $\bf{P}$ tends to vanish but
393     $\braket{\mathbf{M}^2}$ does not. The macroscopic dipole
394     polarizability can therefore be written as,
395     \begin{equation}
396 gezelter 4400 \alpha_D = \frac{\braket{\mathbf{M}^2}-{\braket{\mathbf{M}}}^2}{3 \epsilon_o V k_B T}
397 mlamichh 4353 \end{equation}
398 gezelter 4400 This relationship between a macroscopic property of dipolar material
399     and microscopic fluctuations is true even when the applied field
400     $ \textbf{E} \rightarrow 0 $.
401    
402 gezelter 4399 \subsection{Correction Factors}
403 gezelter 4408 \label{sec:corrFactor}
404 gezelter 4400 In the presence of a uniform external field $ \mathbf{E}^\circ$, the
405     total electric field at $\mathbf{r}$ depends on the polarization
406     density at all other points in the system,\cite{NeumannI83}
407 mlamichh 4353 \begin{equation}
408 gezelter 4400 \mathbf{E}(\mathbf{r}) = \mathbf{E}^\circ(\mathbf{r}) +
409     \frac{1}{4\pi\epsilon_o} \int d\mathbf{r}^\prime
410     \mathbf{T}(\mathbf{r}-\mathbf{r}^\prime)\cdot
411     {\mathbf{P}(\mathbf{r}^\prime)}.
412     \label{eq:localField}
413 mlamichh 4353 \end{equation}
414 gezelter 4400 $\mathbf{T}$ is the dipole interaction tensor connecting dipoles at
415     $\mathbf{r}^\prime$ with the point of interest ($\mathbf{r}$).
416 mlamichh 4353
417 gezelter 4400 In simulations of dipolar fluids, the molecular dipoles may be
418     represented either by closely-spaced point charges or by
419 gezelter 4408 point dipoles (see Fig. \ref{fig:tensor}).
420 mlamichh 4353 \begin{figure}
421 gezelter 4408 \includegraphics[width=\linewidth]{Tensors}
422     \caption{In the real-space electrostatic methods, the molecular dipole
423     tensor, $\mathbf{T}_{\alpha\beta}(r)$, is not the same for
424     charge-charge interactions as for point dipoles (left panel). The
425     same holds true for the molecular quadrupole tensor (right panel),
426     $\mathbf{T}_{\alpha\beta\gamma\delta}(r)$, which can have distinct
427     forms if the molecule is represented by charges, dipoles, or point
428     quadrupoles.}
429     \label{fig:tensor}
430 mlamichh 4353 \end{figure}
431     In the case where point charges are interacting via an electrostatic
432     kernel, $v(r)$, the effective {\it molecular} dipole tensor,
433     $\mathbf{T}$ is obtained from two successive applications of the
434     gradient operator to the electrostatic kernel,
435 gezelter 4400 \begin{align}
436     \mathbf{T}_{\alpha \beta}(r) =& \nabla_\alpha \nabla_\beta
437     \left(v(r)\right) \\
438     =& \delta_{\alpha \beta}
439 mlamichh 4353 \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
440     r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
441     v^{\prime}(r) \right)
442     \label{dipole-chargeTensor}
443 gezelter 4400 \end{align}
444 mlamichh 4353 where $v(r)$ may be either the bare kernel ($1/r$) or one of the
445     modified (Wolf or DSF) kernels. This tensor describes the effective
446 gezelter 4400 interaction between molecular dipoles ($\mathbf{D}$) in Gaussian units
447     as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
448 mlamichh 4353
449 gezelter 4400 When utilizing any of the three new real-space methods for point
450     \textit{dipoles}, the tensor is explicitly constructed,
451 mlamichh 4353 \begin{equation}
452     \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
453     \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
454     \label{dipole-diopleTensor}
455     \end{equation}
456     where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
457 gezelter 4400 the approximation.\cite{PaperI,PaperII} Although the Taylor-shifted
458     (TSF) and gradient-shifted (GSF) models produce to the same $v(r)$
459     function for point charges, they have distinct forms for the
460     dipole-dipole interaction.
461 mlamichh 4353
462 gezelter 4400 Using a constitutive relation, the polarization density
463     $\mathbf{P}(\mathbf{r})$ is given by,
464 mlamichh 4353 \begin{equation}
465 gezelter 4400 \mathbf{P}(\mathbf{r}) = \epsilon_o \chi_D
466     \left(\mathbf{E}^\circ(\mathbf{r}) + \frac{1}{4\pi\epsilon_o} \int
467     d\mathbf{r}^\prime \mathbf{T}(\mathbf{r}-\mathbf{r}^\prime ) \cdot \mathbf{P}(\mathbf{r}^\prime)\right).
468 mlamichh 4353 \label{constDipole}
469     \end{equation}
470 gezelter 4400 Note that $\chi_D$ explicitly depends on the details of the dipole
471     interaction tensor. Neumann \textit{et al.}
472     \cite{NeumannI83,NeumannII83,Neumann84,Neumann85} derived an elegant
473     way to modify the fluctuation formula to correct for approximate
474     interaction tensors. This correction was derived using a Fourier
475     representation of the interaction tensor,
476     $\tilde{\mathbf{T}}(\mathbf{k})$, and involves the quantity,
477 mlamichh 4353 \begin{equation}
478 gezelter 4400 A = \frac{3}{4\pi}\tilde{\mathbf{T}}(0) = \frac{3}{4\pi} \int_V
479     d\mathbf{r} \mathbf{T}(\mathbf{r})
480 mlamichh 4353 \end{equation}
481 gezelter 4400 which is the $k \rightarrow 0$ limit of $\tilde{\mathbf{T}}$. Using
482     this quantity (originally called $Q$ in
483     refs. \onlinecite{NeumannI83,NeumannII83,Neumann84,Neumann85}), the
484     dielectric constant can be computed
485 mlamichh 4353 \begin{equation}
486 gezelter 4400 \epsilon = \frac{3+(A + 2)(\epsilon_{CB}-1)}{3 + (A -1)(\epsilon_{CB}-1)}
487     \label{correctionFormula}
488 mlamichh 4353 \end{equation}
489 gezelter 4400 where $\epsilon_{CB}$ is the widely-used conducting boundary
490     expression for the dielectric constant,
491 mlamichh 4353 \begin{equation}
492 gezelter 4400 \epsilon_{CB} = 1 + \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3
493     \epsilon_o V k_B T}
494 gezelter 4408 \label{conductingBoundary}
495 mlamichh 4353 \end{equation}
496 gezelter 4408 Eqs. (\ref{correctionFormula}) and (\ref{conductingBoundary}) allows
497     estimation of the static dielectric constant from fluctuations easily
498     computed directly from simulations.
499 gezelter 4400
500     % Here $\chi^*_D$ is a dipolar susceptibility can be expressed in terms of dielectric constant as $ \chi^*_D = \epsilon - 1$ which different than macroscopic dipolar polarizability $\alpha_D$ in the sections \ref{subsec:perturbation} and \ref{subsec:fluctuation}. We can split integral into two parts: singular part i.e $|\textbf{r}-\textbf{r}'|\rightarrow 0 $ and non-singular part i.e $|\textbf{r}-\textbf{r}'| > 0 $ . The singular part of the integral can be written as,\cite{NeumannI83, Jackson98}
501     % \begin{equation}
502     % \frac{1}{4\pi\epsilon_o} \int_{|\textbf{r}-\textbf{r}'| \rightarrow 0} d^3r'\; \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')} = - \frac{\textbf{P}(\textbf{r})}{3\epsilon_o}
503     % \label{singular}
504     % \end{equation}
505     % Substituting equation (\ref{singular}) in the equation (\ref{constDipole}) we get,
506     % \begin{equation}
507     % \textbf{P}(\textbf{r}) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(\textbf{E}^o(\textbf{r}) + \frac{1}{4\pi\epsilon_o} \int_{|\textbf{r}-\textbf{r}'| > 0} d^3r'\; \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')}\right).
508     % \end{equation}
509     % For both polarization and electric field homogeneous, this can be easily solved using Fourier transformation,
510     % \begin{equation}
511     % \textbf{P}(\mathbf{k}) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(1- \frac{3}{4\pi}\;\frac{\chi^*_D}{\chi^*_D + 3}\; \textbf{T}(\mathbf{k})\right)^{-1}\textbf{E}^o(\mathbf{k}).
512     % \end{equation}
513     % For homogeneous applied field Fourier component is non-zero only if $\kappa = 0$. Therefore,
514     % \begin{equation}
515     % \textbf{P}(0) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(1- \frac{\chi^*_D}{\chi^*_D + 3}\; A_{dipole})\right)^{-1}\textbf{E}^o({0}).
516     % \label{fourierDipole}
517     % \end{equation}
518     % where $A_{dipole}=\frac{3}{4\pi}T(0) = \frac{3}{4\pi} \int_V d^3r\;T(r)$. Now equation (\ref{fourierDipole}) can be compared with equation (\ref{flucDipole}). Therefore,
519     % \begin{equation}
520     % \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T} = \frac{3\;\chi^*_D}{\chi^*_D + 3} \left(1- \frac{\chi^*_D}{\chi^*_D + 3}\; A_{dipole})\right)^{-1}
521     % \end{equation}
522     % Substituting $\chi^*_D = \epsilon-1$ and $ \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T} = \epsilon_{CB}-1 = \alpha_D$ in above equation we get,
523     % \begin{equation}
524     % \epsilon = \frac{3+(A_{dipole} + 2)(\epsilon_{CB}-1)}{3+(A_{dipole} -1)(\epsilon_{CB}-1)} = \frac{3+(A_{dipole} + 2)\alpha_D}{3+(A_{dipole} -1)\alpha_D}
525     % \label{correctionFormula}
526     % \end{equation}
527    
528 gezelter 4404 We have utilized the Neumann \textit{et al.} approach for the three
529 gezelter 4400 new real-space methods, and obtain method-dependent correction
530     factors. The expression for the correction factor also depends on
531     whether the simulation involves point charges or point dipoles to
532     represent the molecular dipoles. These corrections factors are
533     listed in Table \ref{tab:A}.
534 mlamichh 4353 \begin{table}
535 gezelter 4400 \caption{Expressions for the dipolar correction factor ($A$) for the
536     real-space electrostatic methods in terms of the damping parameter
537 mlamichh 4353 ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
538 gezelter 4400 derived in Refs. \onlinecite{Adams80,Adams81,NeumannI83} is shown
539     for comparison using the Ewald convergence parameter ($\kappa$)
540     and the real-space cutoff value ($r_c$). }
541 mlamichh 4353 \label{tab:A}
542 gezelter 4408 \begin{tabular}{l|c|c}
543     \toprule
544 gezelter 4400 Method & point charges & point dipoles \\
545 gezelter 4408 \colrule
546 mlamichh 4353 Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
547     Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) -\frac{2 \alpha r_c}{\sqrt{\pi}}\left(1+\frac{2\alpha^2 {r_c}^2}{3} \right)e^{-\alpha^2{r_c}^2} $\\
548     Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha^2 r_c^2} $ \\
549 gezelter 4408 Taylor-shifted (TSF) & 1 & 1 \\ \colrule
550     Ewald-Kornfeld (EK) & \multicolumn{2}{c}{$\mathrm{erf}(r_c \kappa) -
551     \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2
552     r_c^2}$} \\
553     \botrule
554     \end{tabular}
555 mlamichh 4353 \end{table}
556 gezelter 4400 Note that for point charges, the GSF and TSF methods produce estimates
557     of the dielectric that need no correction, and the TSF method likewise
558     needs no correction for point dipoles.
559 gezelter 4399
560     \section{Quadrupolar Fluids and the Quadrupolar Susceptibility}
561     \subsection{Response to External Perturbations}
562    
563 gezelter 4400 A molecule with a permanent quadrupole, $\mathsf{q}$, will align in
564     the presence of an electric field gradient $\nabla\mathbf{E}$. The
565     anisotropic polarization of the quadrupole is given
566     by,\cite{AduGyamfi78,AduGyamfi81}
567 gezelter 4399 \begin{equation}
568 gezelter 4400 \braket{\mathsf{q}} - \frac{\mathbf{I}}{3}
569     \mathrm{Tr}(\mathsf{q}) = \epsilon_o \alpha_q \nabla\mathbf{E},
570 gezelter 4399 \end{equation}
571 gezelter 4400 where $\alpha_q = q_o^2 / 15 \epsilon_o k_B T $ is a molecular quadrupole
572     polarizablity and $q_o$ is an effective quadrupole moment for the molecule,
573     \begin{equation}
574     q_o^2 = 3 \mathsf{q}:\mathsf{q} - \mathrm{Tr}(\mathsf{q})^2.
575     \end{equation}
576 gezelter 4399
577 gezelter 4400 In the presence of an external field gradient, a system of quadrupolar
578     molecules also organizes with an anisotropic polarization,
579 gezelter 4399 \begin{equation}
580 gezelter 4400 \mathsf{Q} - \frac{\mathbf{I}}{3} \mathrm{Tr}(\mathsf{Q}) = \epsilon_o
581     \alpha_Q \nabla\mathbf{E}
582     \end{equation}
583     where $\mathsf{Q}$ is the traced quadrupole density of the system and
584     $\alpha_Q$ is a macroscopic quadrupole polarizability which has
585     dimensions of $\mathrm{length}^{-2}$. Equivalently, the traceless form
586     may be used,
587     \begin{equation}
588     \mathsf{\Theta} = 3 \epsilon_o \alpha_Q \nabla\mathbf{E},
589 gezelter 4399 \label{pertQuad}
590     \end{equation}
591 gezelter 4400 where
592     $\mathsf{\Theta} = 3\mathsf{Q} - \mathbf{I} \mathrm{Tr}(\mathsf{Q})$
593     is the traceless tensor that also describes the system quadrupole
594     density. It is this tensor that will be utilized to derive correction
595     factors below.
596    
597 gezelter 4399 \subsection{Fluctuation Formula}
598 gezelter 4400 As in the dipolar case, we may define a system quadrupole moment,
599     $\mathsf{M}_Q = \sum_i \mathsf{q}_i$ and the traced quadrupolar
600     density, $\mathsf{Q} = \mathsf{M}_Q / V$. A fluctuation formula can
601     be written for a system comprising quadrupolar
602     molecules,\cite{LoganI81,LoganII82,LoganIII82}
603 gezelter 4399 \begin{equation}
604 gezelter 4400 \mathsf{Q} - \frac{\mathbf{I}}{3} \mathrm{Tr}(\mathsf{Q}) = \epsilon_o
605     \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o
606     V k_B T} \cdot \nabla\mathbf{E}.
607 gezelter 4399 \label{flucQuad}
608     \end{equation}
609 gezelter 4400 Some care is needed in the definitions of the averaged quantities. These
610     refer to the effective quadrupole moment of the system, and they are
611     computed as follows,
612     \begin{align}
613     \braket{\mathsf{M}_Q^2} &= \braket{3 \mathsf{M}_Q:\mathsf{M}_Q -
614     \mathrm{Tr}(\mathsf{M}_Q)^2 }\\
615     \braket{\mathsf{M}_Q}^2 &= 3 \braket{\mathsf{M}_Q}:\braket{\mathsf{M}_Q} -
616     \mathrm{Tr}(\braket{\mathsf{M}_Q})^2
617 gezelter 4401 \label{eq:flucQuad}
618 gezelter 4400 \end{align}
619     The macroscopic quadrupolarizability is given by,
620 gezelter 4399 \begin{equation}
621 gezelter 4400 \alpha_Q = \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o V k_B T}
622 gezelter 4399 \label{propConstQuad}
623     \end{equation}
624 gezelter 4400 This relationship between a macroscopic property of a quadrupolar
625     fluid and microscopic fluctuations should be true even when the
626     applied field gradient $\nabla \mathbf{E} \rightarrow 0$.
627 gezelter 4399
628     \subsection{Correction Factors}
629 gezelter 4400 In this section we generalize the treatment of Neumann \textit{et al.}
630     for quadrupolar fluids. Interactions involving multiple quadrupoles
631     are rank 4 tensors, and we therefore describe quantities in this
632     section using Einstein notation.
633    
634     In the presence of a uniform external field gradient,
635     $\partial_\alpha {E}^\circ_\beta $, the total field gradient at
636     $\mathbf{r}$ depends on the quadrupole polarization density at all
637     other points in the system,
638 mlamichh 4353 \begin{equation}
639 gezelter 4400 \partial_\alpha E_\beta(\mathbf{r}) = \partial_\alpha
640     {E}^\circ_\beta(\mathbf{r}) + \frac{1}{4\pi \epsilon_o}\int
641     T_{\alpha\beta\gamma\delta}({\mathbf{r}-\mathbf{r}^\prime})
642     Q_{\gamma\delta}(\mathbf{r}^\prime) d\mathbf{r}^\prime
643 mlamichh 4353 \label{gradMaxwell}
644     \end{equation}
645 gezelter 4400 where and $T_{\alpha\beta\gamma\delta}$ is the quadrupole interaction
646     tensor connecting quadrupoles at $\mathbf{r}^\prime$ with the point of
647     interest ($\mathbf{r}$).
648 mlamichh 4353
649 gezelter 4408 % \begin{figure}
650     % \includegraphics[width=3in]{QuadrupoleFigure}
651     % \caption{With the real-space electrostatic methods, the molecular
652     % quadrupole tensor, $\mathbf{T}_{\alpha\beta\gamma\delta}(r)$,
653     % governing interactions between molecules is not the same for
654     % quadrupoles represented via sets of charges, point dipoles, or by
655     % single point quadrupoles.}
656     % \label{fig:quadrupolarFluid}
657     % \end{figure}
658 gezelter 4400
659     In simulations of quadrupolar fluids, the molecular quadrupoles may be
660     represented by closely-spaced point charges, by multiple point
661     dipoles, or by a single point quadrupole (see
662 gezelter 4408 Fig. \ref{fig:tensor}). In the case where point charges are
663 gezelter 4400 interacting via an electrostatic kernel, $v(r)$, the effective
664     molecular quadrupole tensor can obtained from four successive
665     applications of the gradient operator to the electrostatic kernel,
666     \begin{eqnarray}
667     T_{\alpha\beta\gamma\delta}(\mathbf{r}) &=& \nabla_\alpha \nabla_\beta
668     \nabla_\gamma \nabla_\delta v(r) \\
669     &=& \left(\delta_{\alpha\beta}\delta_{\gamma\delta} +
670     \delta_{\alpha\gamma}\delta_{\beta\delta}+
671     \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\left(-\frac{v^\prime(r)}{r^3}
672     + \frac{v^{\prime \prime}(r)}{r^2}\right) \nonumber \\
673     & &+ \left(\delta_{\alpha\beta} r_\gamma r_\delta + 5 \mathrm{~permutations}
674     \right) \left(\frac{3v^\prime(r)}{r^5}-\frac{3v^{\prime \prime}(r)}{r^4} +
675     \frac{v^{\prime \prime \prime}(r)}{r^3}\right) \nonumber \\
676     & &+ r_\alpha r_\beta r_\gamma r_\delta
677     \left(-\frac{15v^\prime(r)}{r^7}+\frac{15v^{\prime \prime}(r)}{r^6}-\frac{6v^{\prime
678     \prime \prime}(r)}{r^5} + \frac{v^{\prime \prime \prime \prime}(r)}{r^4}\right),
679 mlamichh 4353 \label{quadCharge}
680 gezelter 4400 \end{eqnarray}
681     where $v(r)$ can either be the electrostatic kernel ($1/r$) or one of
682     the modified (Wolf or DSF) kernels.
683 mlamichh 4353
684 gezelter 4400 Similarly, when representing quadrupolar molecules with multiple point
685     dipoles, the molecular quadrupole interaction tensor can be obtained
686     using two successive applications of the gradient operator to the
687     dipole interaction tensor,
688     \begin{eqnarray}
689     T_{\alpha\beta\gamma\delta}(\mathbf{r}) &=& \nabla_\alpha \nabla_\beta
690     v_{\gamma\delta}(\mathbf{r}) \\
691     & = & \delta_{\alpha\beta}\delta_{\gamma\delta} \frac{v^\prime_{21}(r)}{r} +
692     \left(\delta_{\alpha\gamma}\delta_{\beta\delta}+
693     \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\frac{v_{22}(r)}{r^2}
694     \nonumber\\
695     & &+ \delta_{\gamma\delta} r_\alpha r_\beta
696     \left(\frac{v^{\prime \prime}_{21}(r)}{r^2}-\frac{v^\prime_{21}(r)}{r^3} \right)\nonumber \\
697     & &+\left(\delta_{\alpha\beta} r_\gamma r_\delta +
698     \delta_{\alpha\gamma} r_\beta r_\delta +\delta_{\alpha\delta}
699     r_\gamma r_\beta + \delta_{\beta\gamma} r_\alpha r_\delta
700     +\delta_{\beta\delta} r_\alpha r_\gamma \right)
701     \left(\frac{v^\prime_{22}(r)}{r^3}-\frac{2v_{22}(r)}{r^4}\right)
702     \nonumber \\
703     & &+ r_\alpha r_\beta r_\gamma r_\delta
704     \left(\frac{v^{\prime
705     \prime}_{22}(r)}{r^4}-\frac{5v^\prime_{22}(r)}{r^5}+\frac{8v_{22}(r)}{r^6}\right),
706 mlamichh 4353 \label{quadDip}
707 gezelter 4400 \end{eqnarray}
708     where $v_{\gamma\delta}(\mathbf{r})$ is a dipole-dipole interaction
709     tensor that depends on the level of the
710     approximation.\cite{PaperI,PaperII} Similarly $v_{21}(r)$ and
711     $v_{22}(r)$ are the radial function for different real space cutoff
712     methods defined in the first paper in this series.\cite{PaperI}
713    
714     For quadrupolar liquids modeled using point quadrupoles, the
715     interaction tensor can be constructed as,
716     \begin{eqnarray}
717     T_{\alpha\beta\gamma\delta}(\mathbf{r}) & = &
718     \left(\delta_{\alpha\beta}\delta_{\gamma\delta}
719     +
720     \delta_{\alpha\gamma}\delta_{\beta\delta}+
721     \delta_{\alpha\delta}\delta_{\beta\gamma}\right)v_{41}(r)
722     + \delta_{\gamma\delta}
723     r_\alpha r_\beta
724     \frac{v_{42}(r)}{r^2}
725     \nonumber \\
726     & & + r_\alpha r_\beta r_\gamma r_\delta \left(\frac{v_{43}(r)}{r^4}\right),
727 mlamichh 4353 \label{quadRadial}
728 gezelter 4400 \end{eqnarray}
729     where again $v_{41}(r)$, $v_{42}(r)$, and $v_{43}(r)$ are radial
730     functions defined in Paper I of the series. \cite{PaperI} Note that
731     these radial functions have different functional forms depending on
732     the level of approximation being employed.
733    
734     The integral in equation (\ref{gradMaxwell}) can be divided into two
735     parts, $|\mathbf{r}-\mathbf{r}^\prime|\rightarrow 0 $ and
736     $|\mathbf{r}-\mathbf{r}^\prime|> 0$. Since the self-contribution to
737 gezelter 4408 the field gradient vanishes at the singularity (see the supporting
738     information), equation (\ref{gradMaxwell}) can be written as,
739 mlamichh 4353 \begin{equation}
740 gezelter 4400 \partial_\alpha E_\beta(\mathbf{r}) = \partial_\alpha {E}^\circ_\beta(\mathbf{r}) +
741     \frac{1}{4\pi \epsilon_o}\int\limits_{|\mathbf{r}-\mathbf{r}^\prime|> 0 }
742     T_{\alpha\beta\gamma\delta}(\mathbf{r}-\mathbf{r}^\prime)
743     {Q}_{\gamma\delta}(\mathbf{r}^\prime) d\mathbf{r}^\prime.
744 mlamichh 4353 \end{equation}
745 gezelter 4400 If $\mathbf{r} = \mathbf{r}^\prime$ is excluded from the integration,
746     the total gradient can be most easily expressed in terms of
747     traceless quadrupole density as below,\cite{LoganI81}
748 mlamichh 4353 \begin{equation}
749 gezelter 4400 \partial_\alpha E_\beta(\mathbf{r}) = \partial_\alpha
750     {E}^\circ_\beta(\mathbf{r}) + \frac{1}{12\pi
751     \epsilon_o}\int\limits_{|\mathbf{r}-\mathbf{r}^\prime|> 0 }
752     T_{\alpha\beta\gamma\delta}(\mathbf{r}-\mathbf{r}^\prime) \Theta_{\gamma\delta}(\mathbf{r}') d\mathbf{r}^\prime,
753 mlamichh 4353 \end{equation}
754 gezelter 4400 where
755     $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$
756     is the traceless quadrupole density. In analogy to
757     Eq. (\ref{pertQuad}) above, the quadrupolarization density may now be
758     related to the actual quadrupolar susceptibility, $\chi_Q$,
759 mlamichh 4353 \begin{equation}
760 gezelter 4400 \frac{1}{3}{\Theta}_{\alpha\beta}(\mathbf{r}) = \epsilon_o {\chi}_Q
761     \left(\partial_\alpha {E}^\circ_\beta(\mathbf{r}) + \frac{1}{12\pi
762     \epsilon_o}\int\limits_{|\mathbf{r}-\mathbf{r}^\prime|> 0 }
763     T_{\alpha\beta\gamma\delta}(\mathbf{r}-\mathbf{r}^\prime)
764     \Theta_{\gamma\delta}(\mathbf{r}^\prime) d\mathbf{r}^\prime \right).
765 mlamichh 4353 \end{equation}
766 gezelter 4400 For toroidal boundaries and with a uniform imposed
767     $\partial_\alpha E^\circ_\beta$, the quadrupole density
768     ${\Theta}_{\alpha\beta}$ will be uniform over the entire space. After
769     performing a Fourier transform (see the Appendix in
770     ref. \onlinecite{NeumannI83}) we obtain,
771 mlamichh 4353 \begin{equation}
772 gezelter 4400 \frac{1}{3}\tilde{\Theta}_{\alpha\beta}(\mathbf{k})=
773     \epsilon_o {\chi}_Q \left[{\partial_\alpha
774     \tilde{E}^\circ_\beta}(\mathbf{k})+ \frac{1}{12\pi
775     \epsilon_o} \tilde{T}_{\alpha\beta\gamma\delta}(\mathbf{k})
776     \tilde{\Theta}_{\gamma\delta}(\mathbf{k})\right].
777 mlamichh 4353 \end{equation}
778 gezelter 4400
779     The only surviving components of the quadrupole polarization will be
780     in the direction of the applied field gradient, so we may simplify
781     this expression considerably. That is, the only relevant polarization
782     term is $\tilde{\Theta}_{\alpha\beta}(\mathbf{k})$ and the only relevant
783     tensor contributions will have doubly-repeated indices, e.g.
784     $\tilde{T}_{\alpha\beta\alpha\beta}(\mathbf{k})$. Therefore we may
785     consider each component of the interaction tensor separately in a
786     scalar expression,
787     \begin{eqnarray}
788     \frac{1}{3}\tilde{\Theta}_{\alpha\beta}(\mathbf{k}) &=& \epsilon_o
789     {\chi}_Q
790     \left[{\partial_\alpha
791     \tilde{E}^\circ_\beta}(\mathbf{k})+
792     \frac{1}{12\pi
793     \epsilon_o}\tilde{T}_{\alpha\beta\alpha\beta}(\mathbf{k})
794     {\tilde{\Theta}}_{\alpha\beta}(\mathbf{k})\right]
795     \nonumber \\
796     &=& \epsilon_o {\chi}_Q \left(1-\frac{1}{4\pi} {\chi}_Q \tilde{T}_{\alpha\beta\alpha\beta}(\mathbf{k})\right)^{-1}
797     {\partial_\alpha \tilde{E}^\circ_\beta}(\mathbf{k})
798 mlamichh 4353 \label{fourierQuad}
799 gezelter 4400 \end{eqnarray}
800     If the applied field gradient is homogeneous over the
801     entire volume, ${\partial_ \alpha \tilde{E}^\circ_\beta}(\mathbf{k}) = 0 $ except at
802     $ \mathbf{k} = 0$. As in the dipolar case, the only relevant
803     contribution of the interaction tensor will also be when $\mathbf{k} = 0$.
804     Therefore equation (\ref{fourierQuad}) can be written as,
805 mlamichh 4353 \begin{equation}
806 gezelter 4400 \frac{1}{3}{\tilde{\Theta}}_{\alpha\beta}({0}) = \epsilon_o {\chi}_Q
807     \left(1-\frac{1}{4\pi} {\chi}_Q \tilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} \partial_\alpha \tilde{E}^\circ_\beta({0})
808 mlamichh 4353 \label{fourierQuad2}
809     \end{equation}
810 gezelter 4400 where $\tilde{T}_{\alpha\beta\alpha\beta}({0})$ can be evaluated as,
811 mlamichh 4353 \begin{equation}
812 gezelter 4400 \tilde{T}_{\alpha\beta\alpha\beta}({0}) = \int_V {T}_{\alpha\beta\alpha\beta}(\mathbf{r})d\mathbf{r}
813 mlamichh 4353 \label{realTensorQaud}
814     \end{equation}
815 gezelter 4400 We may now define a quantity to represent the contribution from the
816     $\mathbf{k} = 0$ portion of the interaction tensor,
817     \begin{equation}
818     B = \frac{1}{4 \pi} \int_V T_{\alpha \beta \alpha \beta}(\mathbf{r})
819     d\mathbf{r}
820     \end{equation}
821     which has been integrated over the interaction volume $V$ and has
822     units of $\mathrm{length}^{-2}$.
823 mlamichh 4353
824 gezelter 4400 In terms of traced quadrupole moment, equation (\ref{fourierQuad2})
825     can be written as,
826 mlamichh 4353 \begin{equation}
827 gezelter 4400 \mathsf{Q} - \frac{\mathbf{I}}{3} \mathrm{Tr}(\mathsf{Q})
828     = \epsilon_o {\chi}_Q\left(1- {\chi}_Q B \right)^{-1} \nabla \mathbf{E}^\circ
829 mlamichh 4353 \label{tracedConstQuad}
830     \end{equation}
831 gezelter 4400 Comparing (\ref{tracedConstQuad}) and (\ref{flucQuad}) we obtain,
832 mlamichh 4353 \begin{equation}
833 gezelter 4400 \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o
834     V k_B T} = \chi_Q \left(1 - \chi_Q B \right)^{-1},
835 mlamichh 4353 \end{equation}
836 gezelter 4400 or equivalently,
837 mlamichh 4353 \begin{equation}
838 gezelter 4400 \chi_Q = \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o
839     V k_B T} \left(1 + B \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o
840     V k_B T} \right)^{-1}
841     \label{eq:finalForm}
842 mlamichh 4353 \end{equation}
843 gezelter 4400 Eq. (\ref{eq:finalForm}) now expresses a bulk property (the
844     quadrupolar susceptibility, $\chi_Q$) in terms of a straightforward
845     fluctuation in the system quadrupole moment and a quadrupolar
846     correction factor ($B$). The correction factors depend on the cutoff
847     method being employed in the simulation, and these are listed in Table
848     \ref{tab:B}.
849 mlamichh 4353
850 gezelter 4400 In terms of the macroscopic quadrupole polarizability, $\alpha_Q$,
851     which may be thought of as the ``conducting boundary'' version of the
852     susceptibility,
853 mlamichh 4353 \begin{equation}
854 gezelter 4400 \chi_Q = \frac{\alpha_Q}{1 + B \alpha_Q}.
855 gezelter 4408 \label{eq:quadrupolarSusceptiblity}
856 mlamichh 4353 \end{equation}
857 gezelter 4400 If an electrostatic method produces $B \rightarrow 0$, the computed
858     quadrupole polarizability and quadrupole susceptibility converge to
859     the same value.
860    
861     \begin{sidewaystable}
862     \caption{Expressions for the quadrupolar correction factor ($B$) for
863     the real-space electrostatic methods in terms of the damping
864     parameter ($\alpha$) and the cutoff radius ($r_c$). The units
865     of the correction factor are $ \mathrm{length}^{-2}$ for quadrupolar
866     fluids.}
867 mlamichh 4353 \label{tab:B}
868 gezelter 4408 \begin{tabular}{l|c|c|c}
869     \toprule
870     Method & charges & dipoles & quadrupoles \\\colrule
871 mlamichh 4353 Spherical Cutoff (SC) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $ -\frac{8 {\alpha}^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
872     Shifted Potental (SP) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $- \frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$& $ -\frac{16 \alpha^7 {r_c}^5}{9\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
873     Gradient-shifted (GSF) & $- \frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & 0 & $-\frac{4{\alpha}^7{r_c}^5 }{9\sqrt{\pi}}e^{-\alpha^2 r_c^2}(-1+2\alpha ^2 r_c^2)$\\
874 gezelter 4400 Taylor-shifted (TSF) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}}
875     e^{-\alpha^2 r_c^2}$ &
876 gezelter 4408 $\frac{4\;\mathrm{erfc(\alpha
877     r_c)}}{{r_c}^2} +
878     \frac{8
879     \alpha}{3\sqrt{\pi}r_c}e^{-\alpha^2
880     {r_c}^2}\left(3+ 2
881     \alpha^2 {r_c}^2 +
882     \alpha^4 {r_c}^4\right)
883     $ &
884     $\frac{10\;\mathrm{erfc}(\alpha r_c )}{{r_c}^2} + \frac{4{\alpha}}{9\sqrt{\pi}{r_c}}e^{-\alpha^2 r_c^2}\left(45 + 30\alpha ^2 {r_c}^2 + 12\alpha^4 {r_c}^4 + 3\alpha^6 {r_c}^6 + 2 \alpha^8 {r_c}^8\right)$ \\
885     \colrule
886     Ewald-Kornfeld (EK) & \multicolumn{3}{c}{ Nothing Yet} \\
887     \botrule
888 gezelter 4400 \end{tabular}
889     \end{sidewaystable}
890 gezelter 4399
891     \section{Screening of Charges by Multipolar Fluids}
892 gezelter 4401 \label{sec:PMF}
893     In a dipolar fluid, the static dielectric constant is also a measure
894     of the ability of the fluid to screen charges from one another. A set
895     of point charges creates an inhomogeneous field in the fluid, and the
896     fluid responds to this field as if it was created externally or via
897     local polarization fluctuations. For this reason, the dielectric
898     constant can be used to estimate an effective potential between two
899     point charges ($C_i$ and $C_j$) embedded in the fluid,
900 gezelter 4399 \begin{equation}
901 gezelter 4401 U_\mathrm{effective} = \frac{C_i C_j}{4 \pi \epsilon_0 \epsilon
902     r_{ij}}.
903     \label{eq:effectivePot}
904 gezelter 4399 \end{equation}
905 gezelter 4401
906     The same set of point charges can also create an inhomogeneous field
907     \textit{gradient}, and this will cause a response in a quadrupolar
908     fluid that will also cause an effective screening. As discussed above,
909     however, the relevant phyiscal property in quadrupolar fluids is the
910     susceptibility, $\chi_Q$. The screening dielectric associated with
911     the quadrupolar susceptibility is defined as,\cite{Ernst92}
912 gezelter 4399 \begin{equation}
913 gezelter 4401 \epsilon = 1 + \chi_Q G = 1 + G \frac{\alpha_Q}{1 + \alpha_Q B}
914     \label{eq:dielectricFromQuadrupoles}
915 gezelter 4399 \end{equation}
916 gezelter 4401 where $G$ is a geometrical factor that depends on the geometry of the
917     field perturbation,
918     \begin{equation}
919     G = \frac{\int_V \left| \nabla \mathbf{E}^\circ \right|^2 d\mathbf{r}}
920     {\int_V \left|\mathbf{E}^\circ\right|^2 d\mathbf{r}}
921     \end{equation}
922     integrated over the interaction volume. Note that this geometrical
923     factor is also required to compute effective dielectric constants even
924     when the field gradient is homogeneous over the entire sample.
925 gezelter 4399
926 gezelter 4401 To measure effective screening in a multipolar fluid, we compute an
927     effective interaction potential, the potential of mean force (PMF),
928     between positively and negatively charged ions when they screened by
929     the intervening fluid. The PMF is obtained from a sequence of
930     simulations in which two ions are constrained to a fixed distance, and
931     the average constraint force to hold them at a fixed distance $r$ is
932     collected during a long simulation,\cite{Wilfred07}
933 gezelter 4400 \begin{equation}
934 gezelter 4401 w(r) = \int_{r_o}^{r}\left\langle \frac{\partial f}{\partial r^\prime}
935     \right\rangle_{r^\prime} dr^\prime + 2k_BT \ln\left(\frac{r}{r_o}\right) + w(r_o),
936     \label{eq:pmf}
937 gezelter 4400 \end{equation}
938 gezelter 4401 where $\braket{\partial f/\partial r^\prime}_{r^\prime}$ is the mean
939     constraint force required to hold the ions at distance $r^\prime$,
940     $2k_BT \log(r/r_o)$ is the Fixman factor,\cite{Fixman:1974fk} and
941     $r_o$ is a reference position (usually taken as a large separation
942     betwen the ions). If the dielectric constant is a good measure of the
943     screening at all inter-ion separations, we would expect $w(r)$ to have
944     the form in Eq. (\ref{eq:effectivePot}). Because real fluids are not
945     continuum dielectrics, the effective dielectric constant is a function
946     of the interionic separation,
947 gezelter 4400 \begin{equation}
948 gezelter 4401 \epsilon(r) = \frac{u_\mathrm{raw}(r) }{w(r)}
949 gezelter 4400 \end{equation}
950 gezelter 4401 where $u_\mathrm{raw}(r)$ is the direct charge-charge interaction
951     potential that is in use during the simulation. $\epsilon(r)$ may
952     vary considerably from the bulk estimates at short distances, although
953     it should converge to the bulk value as the separation between the
954     ions increases.
955 gezelter 4400
956 gezelter 4399 \section{Simulation Methodology}
957 gezelter 4401 To test the formalism developed in the preceding sections, we have
958     carried out computer simulations using three different techniques: i)
959     simulations in the presence of external fields, ii) equilibrium
960     calculations of box moment fluctuations, and iii) potentials of mean
961     force (PMF) between embedded ions. In all cases, the fluids were
962     composed of point multipoles protected by a Lennard-Jones potential.
963     The parameters used in the test systems are given in table
964     \ref{Tab:C}.
965 mlamichh 4353
966 mlamichh 4389 \begin{table}
967 gezelter 4401 \caption{\label{Tab:C}The parameters used in simulations to evaluate
968     the dielectric response of the new real-space methods.}
969 mlamichh 4389 \begin{tabularx}{\textwidth}{r|cc|YYccc|Yccc} \hline
970     & \multicolumn{2}{c|}{LJ parameters} &
971     \multicolumn{5}{c|}{Electrostatic moments} & & & & \\
972     Test system & $\sigma$& $\epsilon$ & $C$ & $D$ &
973     $Q_{xx}$ & $Q_{yy}$ & $Q_{zz}$ & mass & $I_{xx}$ & $I_{yy}$ &
974     $I_{zz}$ \\ \cline{6-8}\cline{10-12}
975     & (\AA) & (kcal/mol) & (e) & (debye) & \multicolumn{3}{c|}{(debye \AA)} & (amu) & \multicolumn{3}{c}{(amu
976     \AA\textsuperscript{2})} \\ \hline
977 gezelter 4401 Dipolar fluid & 3.41 & 0.2381 & - & 1.4026 &-&-&-& 39.948 & 11.613 & 11.613 & 0.0 \\
978     Quadrupolar fluid & 2.985 & 0.265 & - & - & 0.0 & 0.0 &-2.139 & 18.0153 & 43.0565 & 43.0565 & 0.0 \\
979 mlamichh 4389 \ce{q+} & 1.0 & 0.1 & +1 & - & - & - & - & 22.98 & - & - & - \\
980     \ce{q-} & 1.0 & 0.1 & -1 & - & - & - & - & 22.98 & - & - & - \\ \hline
981     \end{tabularx}
982     \end{table}
983 mlamichh 4363
984 gezelter 4401 The first of the test systems consists entirely of fluids of point
985     dipolar or quadrupolar molecules in the presence of constant field or
986     field gradients. Since there are no isolated charges within the
987     system, the divergence of the field will be zero, \textit{i.e.}
988     $\vec{\nabla} \cdot \mathbf{E} = 0$. This condition can be satisfied
989     by using the relatively simple applied potential as described in the
990     supporting information.
991 mlamichh 4353
992 gezelter 4401 When a constant electric field or field gradient is applied to the
993     system, the molecules align along the direction of the applied field,
994     and polarize to a degree determined both by the strength of the field
995     and the fluid's polarizibility. We have calculated ensemble averages
996     of the box dipole and quadrupole moments as a function of the strength
997     of the applied fields. If the fields are sufficiently weak, the
998     response is linear in the field strength, and one can easily compute
999     the polarizability directly from the simulations.
1000 mlamichh 4389
1001 gezelter 4401 The second set of test systems consists of equilibrium simulations of
1002     fluids of point dipolar or quadrupolar molecules simulated in the
1003     absence of any external perturbation. The fluctuation of the ensemble
1004     averages of the box multipolar moment was calculated for each of the
1005     multipolar fluids. The box multipolar moments were computed as simple
1006     sums over the instantaneous molecular moments, and fluctuations in
1007     these quantities were obtained from Eqs. (\ref{eq:flucDip}) and
1008     (\ref{eq:flucQuad}). The macroscopic polarizabilities of the system at
1009     a were derived using Eqs.(\ref{flucDipole}) and (\ref{flucQuad}).
1010 mlamichh 4389
1011 gezelter 4401 The final system consists of dipolar or quadrupolar fluids with two
1012     oppositely charged ions embedded within the fluid. These ions are
1013     constrained to be at fixed distance throughout a simulation, although
1014     they are allowed to move freely throughout the fluid while satisfying
1015     that constraint. Separate simulations were run at a range of
1016     constraint distances. A dielectric screening factor was computed using
1017     the ratio between the potential between the two ions in the absence of
1018     the fluid medium and the PMF obtained from the simulations.
1019 mlamichh 4389
1020 gezelter 4401 We carried out these simulations for all three of the new real-space
1021     electrostatic methods (SP, GSF, and TSF) that were developed in the
1022     first paper (Ref. \onlinecite{PaperI}) in the series. The radius of
1023     the cutoff sphere was taken to be 12~\AA. Each of the real space
1024     methods also depends on an adjustable damping parameter $\alpha$ (in
1025     units of $\mathrm{length}^{-1}$). We have selected ten different
1026     values of damping parameter: 0.0, 0.05, 0.1, 0.15, 0.175, 0.2, 0.225,
1027     0.25, 0.3, and 0.35~\AA$^{-1}$ in our simulations of the dipolar
1028     liquids, while four values were chosen for the quadrupolar fluids:
1029     0.0, 0.1, 0.2, and 0.3~\AA$^{-1}$.
1030 mlamichh 4389
1031 gezelter 4401 For each of the methods and systems listed above, a reference
1032     simulation was carried out using a multipolar implementation of the
1033     Ewald sum.\cite{Smith82,Smith98} A default tolerance of
1034     $1 \times 10^{-8}$~kcal/mol was used in all Ewald calculations,
1035     resulting in Ewald coefficient 0.3119~\AA$^{-1}$ for a cutoff radius
1036     of 12~\AA. All of the electrostatics and constraint methods were
1037     implemented in our group's open source molecular simulation program,
1038     OpenMD,\cite{Meineke05,openmd} which was used for all calculations in
1039     this work.
1040    
1041     Dipolar systems contained 2048 Lennard-Jones-protected point dipolar
1042     (Stockmayer) molecules with reduced density $\rho^* = 0.822$,
1043     temperature $T^* = 1.15$, moment of inertia $I^* = 0.025$, and dipole
1044     moment $\mu^* = \sqrt{3.0}$. These systems were equilibrated for
1045     0.5~ns in the canonical (NVT) ensemble. Data collection was carried
1046     out over a 1~ns simulation in the microcanonical (NVE) ensemble. Box
1047     dipole moments were sampled every fs. For simulations with external
1048 gezelter 4408 perturbations, field strengths ranging from $0 - 10 \times
1049     10^{-4}$~V/\AA with increments of $ 10^{-4}$~V/\AA were carried out
1050     for each system.
1051 gezelter 4401
1052     Quadrupolar systems contained 4000 linear point quadrupoles with a
1053 gezelter 4408 density $2.338 \mathrm{~g/cm}^3$ at a temperature of 500~K. These
1054 gezelter 4401 systems were equilibrated for 200~ps in a canonical (NVT) ensemble.
1055     Data collection was carried out over a 500~ps simulation in the
1056 gezelter 4408 microcanonical (NVE) ensemble. Components of box quadrupole moments
1057     were sampled every 100 fs. For quadrupolar simulations with external
1058 gezelter 4401 field gradients, field strengths ranging from
1059 gezelter 4408 $0 - 9 \times 10^{-2}$~V/\AA$^2$ with increments of
1060     $10^{-2}$~V/\AA$^2$ were carried out for each system.
1061 gezelter 4401
1062     To carry out the PMF simulations, two of the multipolar molecules in
1063     the test system were converted into \ce{q+} and \ce{q-} ions and
1064     constrained to remain at a fixed distance for the duration of the
1065 gezelter 4408 simulation. The constrained distance was then varied from 5--12~\AA.
1066     In the PMF calculations, all simulations were equilibrated for 500 ps
1067     in the NVT ensemble and run for 5 ns in the microcanonical (NVE)
1068     ensemble. Constraint forces were sampled every 20~fs.
1069 mlamichh 4389
1070     \section{Results}
1071 mlamichh 4397 \subsection{Dipolar fluid}
1072     \begin{figure}
1073 gezelter 4401 \includegraphics[width=5in]{dielectricFinal_Dipole.pdf}
1074     \caption{The polarizability ($\alpha_D$), correction factor ($A$), and
1075     dielectric constant ($\epsilon$) for the test dipolar fluid. The
1076     left panels were computed using external fields, and those on the
1077     right are the result of equilibrium fluctuations. In the GSF and SP
1078     methods, the corrections are large in with small values of $\alpha$,
1079     and a optimal damping coefficient is evident around 0.25 \AA$^{-1}$.
1080     The dashed lines in the upper panel indicate back-calculation of the
1081 gezelter 4404 polarizability using the Ewald estimate (Refs. \onlinecite{Adams81}
1082     and \onlinecite{NeumannI83}) for the dielectric constant.}
1083 mlamichh 4397 \label{fig:dielectricDipole}
1084     \end{figure}
1085 gezelter 4401 The macroscopic polarizability ($\alpha_D$) for the dipolar fluid is
1086 gezelter 4408 shown in the upper panels in Fig. \ref{fig:dielectricDipole}. The
1087 gezelter 4401 polarizability obtained from the both perturbation and fluctuation
1088     approaches are in excellent agreement with each other. The data also
1089     show a stong dependence on the damping parameter for both the Shifted
1090     Potential (SP) and Gradient Shifted force (GSF) methods, while Taylor
1091     shifted force (TSF) is largely independent of the damping
1092     parameter.
1093 mlamichh 4397
1094 gezelter 4401 The calculated correction factors discussed in section
1095 gezelter 4408 \ref{sec:corrFactor} are shown in the middle panels. Because the TSF
1096 gezelter 4401 method has $A = 1$ for all values of the damping parameter, the
1097     computed polarizabilities need no correction for the dielectric
1098     calculation. The value of $A$ varies with the damping parameter in
1099     both the SP and GSF methods, and inclusion of the correction yields
1100     dielectric estimates (shown in the lower panel) that are generally too
1101 gezelter 4408 large until the damping reaches $\sim$~0.25~\AA$^{-1}$. Above this
1102     value, the dielectric constants are generally in good agreement with
1103     previous simulation results.\cite{NeumannI83}
1104 mlamichh 4397
1105 gezelter 4401 Figure \ref{fig:dielectricDipole} also contains back-calculations of
1106     the polarizability using the reference (Ewald) simulation
1107     results.\cite{NeumannI83} These are indicated with dashed lines in the
1108     upper panels. It is clear that the expected polarizability for the SP
1109     and GSF methods are quite close to results obtained from the
1110     simulations. This indicates that the correction formula for the
1111     dipolar fluid (Eq. \ref{correctionFormula}) is quite sensitive when
1112     the value of $\mathrm{A}$ deviates significantly from unity.
1113    
1114     These results also suggest an optimal value for the damping parameter
1115 gezelter 4408 of ($\alpha \sim 0.2-0.3$~\AA$^{-1}$ when evaluating dielectric
1116     constants of point dipolar fluids using either the perturbation and
1117     fluctuation approaches for the new real-space methods.
1118 gezelter 4401
1119 mlamichh 4397 \begin{figure}
1120 gezelter 4401 \includegraphics[width=4in]{ScreeningFactor_Dipole.pdf}
1121     \caption{The distance-dependent screening factor, $\epsilon(r)$,
1122     between two ions immersed in the dipolar fluid. The new methods are
1123     shown in separate panels, and different values of the damping
1124     parameter ($\alpha$) are indicated with different symbols. All of
1125     the methods appear to be converging to the bulk dielectric constant
1126     ($\sim 65$) at large ion separations. CHECK PLOT}
1127 mlamichh 4397 \label{fig:ScreeningFactor_Dipole}
1128     \end{figure}
1129 gezelter 4401 We have also evaluated the distance-dependent screening factor,
1130     $\epsilon(r)$, between two oppositely charged ions when they are
1131     placed in the dipolar fluid. These results were computed using
1132     Eq. \ref{eq:pmf} and are shown in Fig.
1133     \ref{fig:ScreeningFactor_Dipole}.
1134 mlamichh 4397
1135 gezelter 4401 The screening factor is similar to the dielectric constant, but
1136     measures a local property of the ions in the fluid and depends on both
1137     ion-dipole and dipole-dipole interactions. These interactions depend
1138     on the distance between ions as well as the electrostatic interaction
1139     methods utilized in the simulations. The screening should converge to
1140     the dielectric constant when the field due to ions is small. This
1141     occurs when the ions are separated (or when the damping parameter is
1142     large). In Fig. \ref{fig:ScreeningFactor_Dipole} we observe that for
1143     the higher value of damping alpha \textit{i.e.}
1144 gezelter 4408 $\alpha = 0.2$~\AA$^{-1}$ and $0.3$~\AA$^{-1}$ and large separation
1145 gezelter 4401 between ions, the screening factor does indeed approach the correct
1146     dielectric constant.
1147 mlamichh 4397
1148 gezelter 4401 REVISIT THESE THREE PARAGRAPHS:
1149    
1150     It is also notable that the TSF method again displays smaller
1151     perturbations away from the correct dielectric screening behavior. We
1152     also observe that for TSF method yields high dielectric screening even
1153     for lower values of $\alpha$.
1154    
1155     At short distances, the presence of the ions creates a strong local
1156     field that acts to align nearby dipoles nearly perfectly in opposition
1157     to the field from the ions. This has the effect of increasing the
1158     effective screening when the ions are brought close to one another.
1159    
1160     This is due to the absence of corrections for dipole-dipole
1161     interactions as discussed above. However, the TSF remains quite
1162     perturbative for ion-dipole interactions, an effect that is most
1163     apparent at small ion separations.
1164    
1165 mlamichh 4397 \subsection{Quadrupolar fluid}
1166     \begin{figure}
1167 gezelter 4401 \includegraphics[width=4in]{polarizabilityFinal_Quad.pdf}
1168     \caption{The quadrupole polarizability ($\alpha_Q$), correction factor
1169     ($B$), and susceptibility ($\chi_Q$) for the test quadrupolar
1170     fluid. The left panels were computed using external field gradients,
1171     and those on the right are the result of equilibrium fluctuations.
1172     The GSF and SP methods allow nearly unmodified use of the
1173     ``conducting boundary'' or polarizability results in place of the
1174 gezelter 4404 bulk susceptibility.}
1175 mlamichh 4397 \label{fig:dielectricQuad}
1176     \end{figure}
1177 gezelter 4401 The polarizability ($\alpha_Q$), correction factor ($B$), and
1178     susceptibility ($\chi_Q$) for the quadrupolar fluid is plotted against
1179     damping parameter Fig. \ref{fig:dielectricQuad}. In quadrupolar
1180     fluids, both the polarizability and susceptibility have units of
1181     $\mathrm{length}^2$ Although the susceptibility has dimensionality, it
1182     is the relevant measure of macroscopic quadrupolar
1183     properties.\cite{JeonI03, JeonII03}. The left panel in
1184     Fig. \ref{fig:dielectricQuad} shows results obtained from the applied
1185     field gradient simulations whereas the results from the equilibrium
1186     fluctuation formula are plotted in the right panels.
1187 mlamichh 4397
1188 gezelter 4401 The susceptibility for the quadrupolar fluid is obtained from
1189     quadrupolarizability and a correction factor using
1190     Eq. (\ref{eq:quadrupolarSusceptiblity}). The susceptibilities are
1191     shown in the bottom panels of Fig. \ref{fig:dielectricQuad}. All three
1192     methods: (SP, GSF, and TSF) produce similar susceptibilities over the
1193     range of damping parameters. This shows that susceptibility derived
1194     using the quadrupolarizability and the correction factors are
1195     essentially independent of the electrostatic method utilized in the
1196     simulation.
1197 mlamichh 4397
1198     \begin{figure}
1199 gezelter 4401 \includegraphics[width=5in]{ScreeningFactor_Quad.pdf}
1200     \caption{\label{fig:screenQuad} The distance-dependent screening
1201     factor, $\epsilon(r)$, between two ions immersed in the quadrupolar
1202     fluid. Results from the perturbation and fluctuation methods are
1203     shown in right and central panels. Here the susceptibility is
1204     calculated from the simulation and the geometrical factor is
1205     evaluated analytically, using the field and field-gradient produced
1206     by ions. The right hand panel shows the screening factor obtained
1207     from the PMF calculations.}
1208 mlamichh 4397 \end{figure}
1209 gezelter 4401 A more difficult test of the quadrupolar susceptibility is made by
1210     comparing with direct calculation of the electrostatic screening using
1211     the potential of mean force (PMF). Since the effective dielectric
1212     constant for a quadrupolar fluid depends on the geometry of the field
1213     and field gradient, this is not a physical property of the quadrupolar
1214     fluid.
1215 mlamichh 4397
1216 gezelter 4401 The geometrical factor for embedded ions changes with the ion
1217     separation distance. It is therefore reasonable to treat the
1218     dielectric constant as a distance-dependent screening factor. Since
1219     the quadrupolar molecules couple with the gradient of the field, the
1220     distribution of the quadrupoles will be inhomogeneously distributed
1221     around the point charges. Hence the distribution of quadrupolar
1222     molecules should be taken into account when computing the geometrical
1223     factors in the presence of this perturbation,
1224     \begin{eqnarray}
1225     G &=& \frac{\int_V g(\mathbf{r}) \left|\nabla \mathbf{E}^\circ
1226     \right|^2 d\mathbf{r}}{\int_V\left|\mathbf{E}^\circ\right|^2
1227     d\mathbf{r}} \nonumber \\ \nonumber \\
1228     &=& \frac{ 2 \pi \int_{-1}^{1} \int_{0}^{R} r^2 g(r,
1229     \cos\theta) \left|\nabla \mathbf{E}^\circ \right|^2 dr d\cos\theta }{\int_V\left|\mathbf{E}^\circ\right|^2 d\mathbf{r}}
1230     \label{eq:geometricalFactor}
1231     \end{eqnarray}
1232     where $g(r,\cos\theta)$ is a distribution function for the quadrupoles
1233     with respect to an origin at midpoint of a line joining the two probe
1234     charges.
1235    
1236     The effective screening factor is plotted against ion separation
1237     distance in Fig. \ref{fig:screenQuad}. The screening evaluated from
1238     the perturbation and fluctuation methods are shown in right and
1239     central panels. Here the susceptibility is calculated from the
1240     simulation and the geometrical factor is evaluated analytically, using
1241     the field and field-gradient produced by ions. The right hand panel
1242     shows the screening factor obtained from the PMF calculations.
1243    
1244     We note that the screening factor obtained from both the perturbation
1245     and fluctuation formula show good agreement with the screening factor
1246     calculated using PMF method. As there are no large differences in
1247     quadrupole-quadruople interactions for various real-space
1248     methods,\cite{PaperI,PaperII} we generally good agreement for the
1249     screening factors using any of the real space methods.
1250    
1251 gezelter 4404 \section{Conclusions}
1252     We have used both perturbation and fluctuation approaches to evaluate
1253     dielectric properties for dipolar and quadrupolar fluids. The static
1254     dielectric constant is the relevant bulk property for dipolar fluids,
1255     while the quadrupolar susceptibility plays a similar role for
1256     quadrupoles. Corrections to both the static dielectric constant and
1257     the quadrupolar susceptibility were derived for three new real space
1258     electrostatic methods, and these corrections were tested against a
1259     third measure of dielectric screening, the potential of mean force
1260     between two ions immersed in the fluids.
1261 gezelter 4401
1262 gezelter 4404 For the dipolar fluids, we find that the polarizability evaluated
1263     using the perturbation and fluctuation methods show excellent
1264     agreement, indicating that equilibrium calculations of the dipole
1265     fluctuations are good measures of bulk polarizability. One of the
1266     findings of the second paper in this series is that the moderately
1267     damped GSF and SP methods were most suitable for molecular dynamics
1268     and Monte Carlo simulations, respectively.\cite{PaperII}
1269 mlamichh 4353
1270 gezelter 4404 The dielectric constant evaluated using the computed polarizability
1271     and correction factors agrees well with the previous Ewald-based
1272     simulation results \cite{Adams81,NeumannI83} for moderate damping
1273 gezelter 4408 parameters in the range 0.25--0.3~\AA~$^{-1}$.
1274 mlamichh 4353
1275 gezelter 4404 Although the TSF method alters many dynamic and structural features in
1276     multipolar liquids,\cite{PaperII} it is surprisingly good at computing
1277     bulk dielectric properties at nearly all ranges of the damping
1278     parameter. In fact, the correction factor, $A = 1$, for the TSF
1279     method so the conducting boundary formula is essentially correct when
1280     using this method for point dipolar fluids.
1281 mlamichh 4397
1282 gezelter 4404 The dielectric correction formula (equation ~\ref{correctionFormula})
1283     is extremely sensitive when the correction factor ($A$) deviates from
1284     1, and this behavior is also seen in the effective screening of ions
1285     embedded in the fluid.
1286 mlamichh 4353
1287 gezelter 4404 As in the dipolar case, the quadpole polarizability evaluated from
1288     both perturbation and fluctuation simulations show excellent
1289     agreement, again confirming that equilibrium fluctuation calculations
1290     are sufficient to reproduce bulk dielectric properties in these
1291     fluids. The quadrupolar susceptibility calculated via our derived
1292     correction factors tends to produce the same result for all three real
1293     space methods. Similarly, the screening factor calculated using the
1294     susceptibility and a weighted geometric factor provides good agreement
1295     with results obtained directly via potentials of mean force. For
1296     quadrupolar fluids, the distance dependence of the electrostatic
1297     interaction is significantly reduced and the correction factors are
1298     all small. These points suggest that how an electrostatic method
1299     treats the cutoff radius become less consequential for higher order
1300     multipoles.
1301    
1302     For this reason, we renew our recommendation that the
1303     moderately-damped GSF method is an excellent choice for molecular
1304     dynamics simulation where point-multipole interactions are being
1305     utilized to compute bulk properties of fluids.
1306 mlamichh 4353
1307     \newpage
1308    
1309 mlamichh 4397 \bibliography{dielectric_new}
1310 mlamichh 4353
1311     \end{document}