ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric_new.tex
(Generate patch)

Comparing trunk/multipole/dielectric_new.tex (file contents):
Revision 4412 by mlamichh, Thu Apr 7 13:11:31 2016 UTC vs.
Revision 4413 by gezelter, Thu Apr 7 18:55:21 2016 UTC

# Line 695 | Line 695 | dipoles, the molecular quadrupole interaction tensor c
695   the modified (Wolf or DSF) kernels.  
696  
697   Similarly, when representing quadrupolar molecules with multiple point
698 < dipoles, the molecular quadrupole interaction tensor can be obtained
699 < using two successive applications of the gradient operator to the
700 < dipole interaction tensor,
698 > \textit{dipoles}, the molecular quadrupole interaction tensor can be
699 > obtained using two successive applications of the gradient operator to
700 > the dipole interaction tensor,
701   \begin{eqnarray}
702   T_{\alpha\beta\gamma\delta}(\mathbf{r}) &=& \nabla_\alpha \nabla_\beta
703 <                                            v_{\gamma\delta}(\mathbf{r}) \\
703 >                                            T_{\gamma\delta}(\mathbf{r}) \\
704   & = & \delta_{\alpha\beta}\delta_{\gamma\delta} \frac{v^\prime_{21}(r)}{r} +
705        \left(\delta_{\alpha\gamma}\delta_{\beta\delta}+
706        \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\frac{v_{22}(r)}{r^2}
# Line 718 | Line 718 | where $v_{\gamma\delta}(\mathbf{r})$ is a dipole-dipol
718       \prime}_{22}(r)}{r^4}-\frac{5v^\prime_{22}(r)}{r^5}+\frac{8v_{22}(r)}{r^6}\right),
719   \label{quadDip}
720   \end{eqnarray}
721 < where $v_{\gamma\delta}(\mathbf{r})$ is a dipole-dipole interaction
721 > where $T_{\gamma\delta}(\mathbf{r})$ is a dipole-dipole interaction
722   tensor that depends on the level of the
723   approximation.\cite{PaperI,PaperII} Similarly $v_{21}(r)$ and
724   $v_{22}(r)$ are the radial function for different real space cutoff
# Line 764 | Line 764 | Eq. (\ref{pertQuad}) above, the quadrupolarization den
764   where
765   $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$
766   is the traceless quadrupole density. In analogy to
767 < Eq. (\ref{pertQuad}) above, the quadrupolarization density may now be
768 < related to the actual quadrupolar susceptibility, $\chi_Q$,
767 > Eq. (\ref{pertQuad}) above, the quadrupole polarization density may
768 > now be related to the quadrupolar susceptibility, $\chi_Q$,
769   \begin{equation}
770   \frac{1}{3}{\Theta}_{\alpha\beta}(\mathbf{r}) = \epsilon_o {\chi}_Q
771   \left[\partial_\alpha {E}^\circ_\beta(\mathbf{r}) + \frac{1}{24\pi
# Line 786 | Line 786 | If the applied field gradient is homogeneous over the
786   \tilde{\Theta}_{\gamma\delta}(\mathbf{k})\right].
787   \label{fourierQuad}
788   \end{equation}
789 < If the applied field gradient is homogeneous over the
790 < entire volume, ${\partial_ \alpha \tilde{E}^\circ_\beta}(\mathbf{k}) = 0 $ except at $ \mathbf{k} = 0$. Similarly quadrupolar polarization density can also  considered to be uniform over entire space. Therefore as in the dipolar case, \cite{NeumannI83} the only relevant contribution of the interaction tensor will also be when $\mathbf{k} = 0$. Therefore equation (\ref{fourierQuad}) can be written as,
789 > If the applied field gradient is homogeneous over the entire volume,
790 > ${\partial_ \alpha \tilde{E}^\circ_\beta}(\mathbf{k}) = 0 $ except at
791 > $ \mathbf{k} = 0$. Similarly, the quadrupolar polarization density can
792 > also considered uniform over entire space. As in the dipolar case,
793 > \cite{NeumannI83} the only relevant contribution from the interaction
794 > tensor will also be when $\mathbf{k} = 0$. Therefore equation
795 > (\ref{fourierQuad}) can be written as,
796   \begin{equation}
797   \frac{1}{3}\tilde{\Theta}_{\alpha\beta}(\mathrm{0})=
798   \epsilon_o {\chi}_Q \left[{\partial_\alpha
# Line 796 | Line 801 | The quadrupolar tensor $\tilde{T}_{\alpha\beta\gamma\d
801   \tilde{\Theta}_{\gamma\delta}(\mathrm{0})\right].
802   \label{fourierQuadZeroK}
803   \end{equation}
804 < The quadrupolar tensor $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ consists of $\mathrm{3^4}$ components. Among them, the components with all same indices, $\tilde{T}_{iiii}(\mathrm{0})$ and the components with two doubly repeated indices, $\mathit{i.e.}$ all possible permutations of $\tilde{T}_{iijj}(\mathrm{0})$ for $i \neq j$, are non zero (See appendix \ref{ap:quadContraction}). Furthermore, for the both diagonal and non-diagonal components of the quadrupolar polarization  $\tilde{\Theta}_{\alpha\beta}$, we can contract 2nd term in equation \ref{fourierQuadZeroK} in the following way (Appendix \ref{ap:quadContraction});
804 > The quadrupolar tensor
805 > $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ is a rank-4 tensor
806 > with 81 elements. The only non-zero elements, however, are those with
807 > two doubly-repeated indices, \textit{i.e.}
808 > $\tilde{T}_{aabb}(\mathrm{0})$ and all permutations of these indices.
809 > The special case of quadruply-repeated indices,
810 > $\tilde{T}_{aaaa}(\mathrm{0})$ also survives (see appendix
811 > \ref{ap:quadContraction}). Furthermore, for the both diagonal and
812 > non-diagonal components of the quadrupolar polarization
813 > $\tilde{\Theta}_{\alpha\beta}$, we can contract the second term in
814 > equation \ref{fourierQuadZeroK} (see appendix
815 > \ref{ap:quadContraction}):
816   \begin{equation}
817 < \tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})\tilde{\Theta}_{\gamma\delta}(\mathrm{0})= 2\mathrm{B'} \tilde{\Theta}_{\alpha\beta}(\mathrm{0}),
817 > \tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})\tilde{\Theta}_{\gamma\delta}(\mathrm{0})=
818 > 8 \pi \mathrm{B} \tilde{\Theta}_{\alpha\beta}(\mathrm{0}).
819   \label{quadContraction}
820   \end{equation}
821 < here $\mathrm{B'} = \tilde{T}_{ijij}(\mathrm{0})$ for $i \neq j$. Using quadrupolar contraction we can solve equation \ref{quadContraction} as follows
821 > Here $\mathrm{B} = \tilde{T}_{abab}(\mathrm{0}) / 4 \pi$ for
822 > $a \neq b$.  Using this quadrupolar contraction we can solve equation
823 > \ref{quadContraction} as follows
824  
825   \begin{eqnarray}
826   \frac{1}{3}\tilde{\Theta}_{\alpha\beta}(\mathrm{0}) &=& \epsilon_o
827                                                        {\chi}_Q
828                                                        \left[{\partial_\alpha
829                                                        \tilde{E}^\circ_\beta}(\mathrm{0})+
830 <                                                      \frac{\mathrm{B'}}{12\pi
830 >                                                      \frac{\mathrm{B}}{3
831                                                        \epsilon_o}
832                                                        {\tilde{\Theta}}_{\alpha\beta}(\mathrm{0})\right]
833                                                        \nonumber \\                                                    
834   &=& \left[\frac{\epsilon_o {\chi}_Q} {1-{\chi}_Q \mathrm{B}}\right]
835 < {\partial_\alpha \tilde{E}^\circ_\beta}(\mathrm{0}),
835 > {\partial_\alpha \tilde{E}^\circ_\beta}(\mathrm{0}).
836   \label{fourierQuad}
837   \end{eqnarray}
838 < where
839 < \begin{eqnarray}
840 < \mathrm{B} &=& \frac{\mathrm{B'}}{4\pi} \nonumber \\
841 < &=& \frac{1}{4 \pi} \int_V {T}_{ijij}(\mathbf{r}) d\mathbf{r},
823 < \end{eqnarray}
838 > In real space, the correction factor,
839 > \begin{equation}
840 > \mathrm{B} = \frac{1}{4 \pi} \tilde{T}_{abab}(0) = \frac{1}{4 \pi} \int_V {T}_{abab}(\mathbf{r}) d\mathbf{r},
841 > \end{equation}
842   %If the applied field gradient is homogeneous over the
843   %entire volume, ${\partial_ \alpha \tilde{E}^\circ_\beta}(\mathbf{k}) = 0 $ except at
844   %$ \mathbf{k} = 0$.  As in the dipolar case, the only relevant
# Line 845 | Line 863 | In terms of traced quadrupole moment, equation (\ref{f
863   which has been integrated over the interaction volume $V$ and has
864   units of $\mathrm{length}^{-2}$.
865  
866 < In terms of traced quadrupole moment, equation (\ref{fourierQuad})
867 < can be written as,
866 > In terms of the traced quadrupole moment, equation (\ref{fourierQuad})
867 > can be written,
868   \begin{equation}
869   \mathsf{Q} - \frac{\mathbf{I}}{3} \mathrm{Tr}(\mathsf{Q})
870   = \frac{\epsilon_o {\chi}_Q}{1-  {\chi}_Q \mathrm{B}} \nabla \mathbf{E}^\circ
# Line 865 | Line 883 | quadrupolar susceptibility, $\chi_Q$) in terms of a st
883   \label{eq:finalForm}
884   \end{equation}
885   Eq. (\ref{eq:finalForm}) now expresses a bulk property (the
886 < quadrupolar susceptibility, $\chi_Q$) in terms of a straightforward
887 < fluctuation in the system quadrupole moment and a quadrupolar
888 < correction factor ($\mathrm{B}$).  The correction factors depend on the cutoff
889 < method being employed in the simulation, and these are listed in Table
890 < \ref{tab:B}.  
886 > quadrupolar susceptibility, $\chi_Q$) in terms of a fluctuation in the
887 > system quadrupole moment and a quadrupolar correction factor
888 > ($\mathrm{B}$).  The correction factors depend on the cutoff method
889 > being employed in the simulation, and these are listed in Table
890 > \ref{tab:B}.
891  
892   In terms of the macroscopic quadrupole polarizability, $\alpha_Q$,
893   which may be thought of as the ``conducting boundary'' version of the
# Line 892 | Line 910 | Spherical Cutoff (SC) & $ -\frac{8 \alpha^5 {r_c}^3e^{
910   \begin{tabular}{l|c|c|c}
911   \toprule      
912   Method & charges & dipoles & quadrupoles \\\colrule
913 < Spherical Cutoff (SC) & $ -\frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ &  $ -\frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ & $ -\frac{8 {\alpha}^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ \\
913 > Spherical Cutoff (SC) & \multicolumn{3}{c}{$ -\frac{8 \alpha^5
914 >                        {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $}\\ \colrule
915   Shifted Potental (SP) & $ -\frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ &  $-  \frac{3 \mathrm{erfc(r_c\alpha)}}{5{r_c}^2}- \frac{2 \alpha e^{-\alpha^2 r_c^2}(9+6\alpha^2 r_c^2+4\alpha^4 r_c^4)}{15{\sqrt{\pi}r_c}}$& $ -\frac{16 \alpha^7 {r_c}^5 e^{-\alpha^2 r_c^2                                 }}{45\sqrt{\pi}}$  \\
916   Gradient-shifted  (GSF) & $- \frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ & 0 &  $-\frac{4{\alpha}^7{r_c}^5 e^{-\alpha^2 r_c^2}(-1+2\alpha ^2 r_c^2)}{45\sqrt{\pi}}$\\
917   Taylor-shifted  (TSF) &  $ -\frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ & $\frac{4\;\mathrm{erfc(\alpha r_c)}}{{5r_c}^2} + \frac{8\alpha e^{-\alpha^2{r_c}^2}\left(3+ 2\alpha^2 {r_c}^2 +\alpha^4{r_c}^4 \right)}{15\sqrt{\pi}r_c}$ & $\frac{2\;\mathrm{erfc}(\alpha r_c )}{{r_c}^2} + \frac{4{\alpha}e^{-\alpha^2 r_c^2}\left(45 + 30\alpha ^2 {r_c}^2 + 12\alpha^4 {r_c}^4 + 3\alpha^6 {r_c}^6 + 2 \alpha^8 {r_c}^8\right)}{45\sqrt{\pi}{r_c}}$ \\
# Line 1319 | Line 1338 | utilized to compute bulk properties of fluids.
1338   utilized to compute bulk properties of fluids.
1339  
1340   \appendix
1341 < \section{Contraction of quadrupolar tensor with the traceless quadrupole moment }
1341 > \section{Contraction of the quadrupolar tensor with the traceless
1342 >  quadrupole moment }
1343   \label{ap:quadContraction}
1344 < If we express quadrupolar molecule in the point quadrupole representation then quadrupole-quadrupole interaction tensor can be written as,
1345 < \begin{eqnarray}
1346 < T_{\alpha\beta\gamma\delta}(\mathbf{r}) &=&
1327 <                                              \left(\delta_{\alpha\beta}\delta_{\gamma\delta}
1328 <                                              +
1329 <                                              \delta_{\alpha\gamma}\delta_{\beta\delta}+
1330 <                                              \delta_{\alpha\delta}\delta_{\beta\gamma}\right)v_{41}(r)
1331 <                                              + \left(\delta_{\gamma\delta} r_\alpha r_\beta +  \mathrm{ 5\; permutations}\right) \frac{v_{42}(r)}{r^2} \nonumber \\  
1332 < & & + r_\alpha r_\beta r_\gamma r_\delta  \left(\frac{v_{43}(r)}{r^4}\right)
1333 < \end{eqnarray}
1334 < The Fourier transformation of quadrupolar tensor in equation \ref{quadRadial} for $ \mathbf{\kappa} = 0$ is expressed as,
1344 > For quadrupolar liquids modeled using point quadrupoles, the
1345 > interaction tensor is shown in Eq. (\ref{quadRadial}).  The Fourier
1346 > transformation of this tensor for $ \mathbf{k} = 0$ is,
1347   \begin{equation}
1348   \tilde{T}_{\alpha\beta\gamma\delta}(0) = \int_V T_{\alpha\beta\gamma\delta}(\mathbf{r}) d \mathbf{r}
1349   \end{equation}
1350 < The quadrupole tensor has altogether 81 components. On the basis of symmetry, these can be grouped into five different groups: $\tilde{T}_{iiii}$, $\tilde{T}_{ijjj}$, $\tilde{T}_{iiii}$, $\tilde{T}_{ijki}$, and $\tilde{T}_{ijkl}$, where $i$, $j$, $k$, and $l$ can take values from $1$ to $3$ and $i \neq j \neq k$ for each tensor component. The elements of each group can be obtained using all the possible permutations of the indices. Among them, only tensor groups with indices ${iiii}$ and ${iijj}$ are non-zero.
1351 < We can derive value of the components of $\tilde{T}_{iiii}$ and $\tilde{T}_{iijj}$ as follows;
1350 > On the basis of symmetry, the 81 elements can be placed in four
1351 > different groups: $\tilde{T}_{aaaa}$, $\tilde{T}_{aaab}$,
1352 > $\tilde{T}_{aabb}$, and $\tilde{T}_{aabc}$, where $a$, $b$, and $c$,
1353 > and can take on distinct values from the set: $x$, $y$ and $z$.  The
1354 > elements belonging to each of these groups can be obtained using
1355 > permutations of the indices. Only the tensor groups with indices
1356 > ${aaaa}$ and ${aabb}$ are non-zero.
1357 >
1358 > We can derive values of the components of $\tilde{T}_{aaaa}$ and
1359 > $\tilde{T}_{aabb}$ as follows;
1360   \begin{eqnarray}
1361 < \tilde{T}_{1111}(0) &=&
1361 > \tilde{T}_{xxxx}(0) &=&
1362   \int_{\textrm{V}}
1363   \big [ 3v_{41}(R)+6x^2v_{42}(r)/r^2 + x^4\,v_{43}(r)/r^4 \big] d^3r \nonumber \\
1364   &=&12\pi \int_0^{r_c}
1365   \big [ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \big] r^2\,dr =
1366 < \mathrm{3B^\prime}
1366 > \mathrm{12 \pi B}
1367   \end{eqnarray}
1368   and
1369   \begin{eqnarray}
1370 < \tilde{T}_{1122}(0)&=&
1371 < \int_{\textrm{V}}
1372 < \big [ v_{41}(R)+(x^2+y^2) v_{42}(r)/r^2 + x^2 y^2\,v_{43}(r)/r^4 \big] d^3r \nonumber \\
1373 < &=&4\pi \int_0^{r_c}
1374 < \big [ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \big] r^2\,dr =
1375 < \mathrm{B^\prime}.
1370 >  \tilde{T}_{xxyy}(0)&=&
1371 >                         \int_{\textrm{V}}
1372 >                         \big [ v_{41}(R)+(x^2+y^2) v_{42}(r)/r^2 + x^2 y^2\,v_{43}(r)/r^4 \big] d^3r \nonumber \\
1373 >                     &=&4\pi \int_0^{r_c}
1374 >                         \big [ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \big] r^2\,dr =
1375 >                         \mathrm{4 \pi B}.
1376   \end{eqnarray}
1377 < These results are true for all values of indices. In equation \ref{fourierQuadZeroK}, for a particular value of quadrupolar polarization $\tilde{\Theta}_{ii}$ we can contract $\tilde{T}_{ii\gamma\delta}(0)$ with $\tilde{\Theta}_{\gamma\delta}$, using traceless properties of quadrupolar moment, as follows (we considered $i$ = $1$ for explanation);
1377 > These integrals yield the same values for all permutations of the
1378 > indices in both tensor element groups.  In equation
1379 > \ref{fourierQuadZeroK}, for a particular value of the quadrupolar
1380 > polarization $\tilde{\Theta}_{aa}$ we can contract
1381 > $\tilde{T}_{aa\gamma\delta}(0)$ with $\tilde{\Theta}_{\gamma\delta}$,
1382 > using the traceless properties of the quadrupolar moment,
1383   \begin{eqnarray}
1384 < \tilde{T}_{11\gamma\delta}(0)\tilde{\Theta}_{\gamma\delta}(0) &=& \tilde{T}_{1111}(0)\tilde{\Theta}_{11}(0) + \tilde{T}_{1122}(0)\tilde{\Theta}_{22}(0) + \tilde{T}_{1133}(0)\tilde{\Theta}_{33}(0) \nonumber \\
1385 < &=& \mathrm{3B'}\tilde{\Theta}_{11}(0) + \mathrm{B'}\tilde{\Theta}_{22}(0) + \mathrm{B'}\tilde{\Theta}_{33}(0) \nonumber \\
1386 < &=& \mathrm{2B'}\tilde{\Theta}_{11}(0) + \mathrm{B'}\left(\tilde{\Theta}_{11}(0)+\tilde{\Theta}_{22}(0) + \tilde{\Theta}_{33}(0)\right) \nonumber \\
1387 < &=& \mathrm{2B'}\tilde{\Theta}_{11}(0)
1384 > \tilde{T}_{xx\gamma\delta}(0)\tilde{\Theta}_{\gamma\delta}(0) &=& \tilde{T}_{xxxx}(0)\tilde{\Theta}_{xx}(0) + \tilde{T}_{xxyy}(0)\tilde{\Theta}_{yy}(0) + \tilde{T}_{xxzz}(0)\tilde{\Theta}_{zz}(0) \nonumber \\
1385 > &=& 12 \pi \mathrm{B}\tilde{\Theta}_{xx}(0) +
1386 >    4 \pi \mathrm{B}\tilde{\Theta}_{yy}(0) +
1387 >    4 \pi \mathrm{B}\tilde{\Theta}_{zz}(0) \nonumber \\
1388 > &=& 8 \pi \mathrm{B}\tilde{\Theta}_{xx}(0) + 4 \pi
1389 >    \mathrm{B}\left(\tilde{\Theta}_{xx}(0)+\tilde{\Theta}_{yy}(0) +
1390 >    \tilde{\Theta}_{zz}(0)\right) \nonumber \\
1391 > &=& 8 \pi \mathrm{B}\tilde{\Theta}_{xx}(0)
1392   \end{eqnarray}
1393 < Similarly for a quadrupolar polarization $\tilde{\Theta}_{ij}$ in equation \ref{fourierQuadZeroK}, we can contract $\tilde{T}_{ij\gamma\delta}(0)$ with $\tilde{\Theta}_{\gamma\delta}$ as follows (we considered $i$ = $1$ and $j$ = $2$ for simplicity)
1393 > Similarly for a quadrupolar polarization $\tilde{\Theta}_{xy}$ in
1394 > equation \ref{fourierQuadZeroK}, we can contract
1395 > $\tilde{T}_{xy\gamma\delta}(0)$ with $\tilde{\Theta}_{\gamma\delta}$,
1396 > using the only surviving terms of the tensor,
1397   \begin{eqnarray}
1398 < \tilde{T}_{12\gamma\delta}(0)\tilde{\Theta}_{\gamma\delta}(0) &=& \tilde{T}_{1212}(0)\tilde{\Theta}_{12}(0) + \tilde{T}_{1221}(0)\tilde{\Theta}_{21}(0) \nonumber \\
1399 < &=& \mathrm{B'}\tilde{\Theta}_{12}(0) + \mathrm{B'}\tilde{\Theta}_{21}(0) \nonumber \\
1400 < &=& \mathrm{2B'}\tilde{\Theta}_{11}(0)
1398 > \tilde{T}_{xy\gamma\delta}(0)\tilde{\Theta}_{\gamma\delta}(0) &=& \tilde{T}_{xyxy}(0)\tilde{\Theta}_{xy}(0) + \tilde{T}_{xyyx}(0)\tilde{\Theta}_{yx}(0) \nonumber \\
1399 > &=& 4 \pi \mathrm{B}\tilde{\Theta}_{xy}(0) +
1400 >    4 \pi \mathrm{B}\tilde{\Theta}_{yx}(0) \nonumber \\
1401 > &=& 8 \pi \mathrm{B}\tilde{\Theta}_{xy}(0)
1402   \end{eqnarray}
1403 < Therefore we can write matrix contraction for $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ and $ \tilde{\Theta}_{\gamma\delta}(\mathrm{0})$ in general the form as below,
1403 > Here, we have used the symmetry of the quadrupole tensor to combine
1404 > the symmetric terms. Therefore we can write matrix contraction for
1405 > $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ and
1406 > $ \tilde{\Theta}_{\gamma\delta}(\mathrm{0})$ in a general form,
1407   \begin{equation}
1408 < \tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})\tilde{\Theta}_{\gamma\delta}(\mathrm{0}) = 2\mathrm{B'} \tilde{\Theta}_{\alpha\beta}(\mathrm{0}),
1408 > \tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})\tilde{\Theta}_{\gamma\delta}(\mathrm{0})
1409 > = 8 \pi \mathrm{B} \tilde{\Theta}_{\alpha\beta}(\mathrm{0}),
1410   \label{contract}
1411   \end{equation}
1412 < If we consider quadrupole-quadrupole interaction considering charge representation then the symmetry of the quadrupolar tensor is same as in the case of point quadrupolar representation (see equations~\ref{quadCharge} and \ref{quadRadial}. On the other hand, if we consider point dipole representation to evaluate quadrupole-quadrupole interactions then the symmetry of the quadrupolar tensor is slightly different than point quadrupole representation (compare equations~\ref{quadDip} and~\ref{quadRadial}). Although there is difference in symmetry, the final result (equation~\ref{contract}) even holds true for dipolar representations.
1412 > which is the same as Eq. (\ref{quadContraction}).
1413  
1414 + When the molecular quadrupoles are represented by point charges, the
1415 + symmetry of the quadrupolar tensor is same as for point quadrupoles
1416 + (see Eqs.~\ref{quadCharge} and \ref{quadRadial}). However, for
1417 + molecular quadrupoles represented by point dipoles, the symmetry of
1418 + the quadrupolar tensor must be handled separately (compare
1419 + equations~\ref{quadDip} and~\ref{quadRadial}). Although there is a
1420 + difference in symmetry, the final result (Eq.~\ref{contract}) holds
1421 + true for dipolar representations as well.
1422 +
1423   \section{Quadrupolar correction factor for Ewald-Kornfeld (EK) method}
1424   The quadrupolar-quadrupolar interaction tensor for Ewald method can be expressed in the following form, \cite{Smith82,NeumannII83 }
1425   \begin{eqnarray}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines