ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric_new.tex
(Generate patch)

Comparing trunk/multipole/dielectric_new.tex (file contents):
Revision 4413 by gezelter, Thu Apr 7 18:55:21 2016 UTC vs.
Revision 4414 by gezelter, Fri Apr 8 16:24:23 2016 UTC

# Line 1177 | Line 1177 | dielectric constant.
1177   $\alpha = 0.2$~\AA$^{-1}$ and $0.3$~\AA$^{-1}$ and large separation
1178   between ions, the screening factor does indeed approach the correct
1179   dielectric constant.
1180
1181 REVISIT THESE THREE PARAGRAPHS:
1180  
1181 + REVISIT AFTER EWALD RESULTS:
1182   It is also notable that the TSF method again displays smaller
1183   perturbations away from the correct dielectric screening behavior.  We
1184   also observe that for TSF method yields high dielectric screening even
# Line 1350 | Line 1349 | and can take on distinct values from the set: $x$, $y$
1349   On the basis of symmetry, the 81 elements can be placed in four
1350   different groups: $\tilde{T}_{aaaa}$, $\tilde{T}_{aaab}$,
1351   $\tilde{T}_{aabb}$, and $\tilde{T}_{aabc}$, where $a$, $b$, and $c$,
1352 < and can take on distinct values from the set: $x$, $y$ and $z$.  The
1353 < elements belonging to each of these groups can be obtained using
1354 < permutations of the indices. Only the tensor groups with indices
1355 < ${aaaa}$ and ${aabb}$ are non-zero.
1352 > and can take on distinct values from the set $\left\{x, y, z\right\}$.
1353 > The elements belonging to each of these groups can be obtained using
1354 > permutations of the indices.  Integration of all of the elements shows
1355 > that only the groups with indices ${aaaa}$ and ${aabb}$ are non-zero.
1356  
1357   We can derive values of the components of $\tilde{T}_{aaaa}$ and
1358   $\tilde{T}_{aabb}$ as follows;
1359   \begin{eqnarray}
1360   \tilde{T}_{xxxx}(0) &=&
1361   \int_{\textrm{V}}
1362 < \big [ 3v_{41}(R)+6x^2v_{42}(r)/r^2 + x^4\,v_{43}(r)/r^4 \big] d^3r \nonumber \\
1362 > \left[ 3v_{41}(R)+6x^2v_{42}(r)/r^2 + x^4\,v_{43}(r)/r^4 \right] d\mathbf{r} \nonumber \\
1363   &=&12\pi \int_0^{r_c}
1364 < \big [ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \big] r^2\,dr =
1364 > \left[ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \right] r^2\,dr =
1365   \mathrm{12 \pi B}
1366   \end{eqnarray}
1367   and
1368   \begin{eqnarray}
1369    \tilde{T}_{xxyy}(0)&=&
1370                           \int_{\textrm{V}}
1371 <                         \big [ v_{41}(R)+(x^2+y^2) v_{42}(r)/r^2 + x^2 y^2\,v_{43}(r)/r^4 \big] d^3r \nonumber \\
1371 >                         \left[ v_{41}(R)+(x^2+y^2) v_{42}(r)/r^2 + x^2 y^2\,v_{43}(r)/r^4 \right] d\mathbf{r} \nonumber \\
1372                       &=&4\pi \int_0^{r_c}
1373 <                         \big [ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \big] r^2\,dr =
1373 >                         \left[ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \right] r^2\,dr =
1374                           \mathrm{4 \pi B}.
1375   \end{eqnarray}
1376   These integrals yield the same values for all permutations of the
# Line 1417 | Line 1416 | difference in symmetry, the final result (Eq.~\ref{con
1416   molecular quadrupoles represented by point dipoles, the symmetry of
1417   the quadrupolar tensor must be handled separately (compare
1418   equations~\ref{quadDip} and~\ref{quadRadial}). Although there is a
1419 < difference in symmetry, the final result (Eq.~\ref{contract}) holds
1420 < true for dipolar representations as well.
1419 > difference in symmetry, the final result (Eq.~\ref{contract}) also holds
1420 > true for dipolar representations.
1421  
1422 < \section{Quadrupolar correction factor for Ewald-Kornfeld (EK) method}
1423 < The quadrupolar-quadrupolar interaction tensor for Ewald method can be expressed in the following form, \cite{Smith82,NeumannII83 }
1424 < \begin{eqnarray}
1425 < {T}_{\alpha\beta\gamma\delta}(\mathbf{r}) = &+& \frac{4\pi}{V }\sum_{k\neq0}^{\infty} \frac{\exp(-k^2)/4\kappa^2}{k^2} r_\alpha r_\beta k_\delta k_\gamma \exp(-i\mathbf{k}\cdot \mathbf{r}) \nonumber \\
1426 < &+& \left(\delta_{\alpha\beta}\delta_{\gamma\delta}+\delta_{\alpha\gamma}\delta_{\beta\delta}+\delta_{\alpha\delta}\delta_{\beta\gamma}\right)
1427 < v_{41}(r) \nonumber \\
1428 < &+& \left(\delta_{\gamma\delta} r_\alpha r_\beta +  \mathrm{ 5\; permutations}\right) \frac{v_{42}(r)}{r^2} \nonumber \\
1429 < &+& r_\alpha r_\beta r_\gamma r_\delta  \left(\frac{v_{43}(r)}{r^4}\right)
1430 < \label{ewaldTensor}
1431 < \end{eqnarray}
1432 < Since the correction factor $B = 1/4\pi \tilde{T}_{ijij} $ and $k \neq 0 $ is excluded from the sum, 1st term does not contribute anything to the correction factor.\cite{NeumannII83} Remaining terms are due to the contribution for the real space parts and can be considered as contribution due to spherical truncation.\cite{Adams76,Adams80, Adams81} Using value of radial functions; $v_{41}(r)$, $v_{42}(r)$, and $v_{43}(r)$ for spherical truncation, we get;
1433 < \begin{eqnarray}
1434 < v_{41}(r)  &=& \frac{3}{r^5} \left(\frac{2r\kappa \exp(-r^2 \kappa^2)}{\sqrt{\pi}}+\frac{4r^3\kappa^3 \exp(-r^2 \kappa^2)}{3\sqrt{\pi}}+\mathrm{erfc(\kappa r)} \right) \\
1435 < v_{42}(r) &=& \frac{15}{r^5}\left(\frac{2r\kappa \exp(-r^2 \kappa^2)}{\sqrt{\pi}}+\frac{4r^3\kappa^3 \exp(-r^2 \kappa^2)}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 \exp(-r^2 \kappa^2)}{15\sqrt{\pi}}+\mathrm{erfc(\kappa r)} \right) \\
1436 < v_{43}(r) &=& \frac{105}{r^5}\left(\frac{2r\kappa \exp(-r^2 \kappa^2)}{\sqrt{\pi}}+\frac{4r^3\kappa^3 \exp(-r^2 \kappa^2)}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 \exp(-r^2 \kappa^2)}{15\sqrt{\pi}} \right. \nonumber \\
1437 < &+& \left. \frac{16r^7\kappa^7 \exp(-r^2 \kappa^2)}{105\sqrt{\pi}} +  \mathrm{erfc(\kappa r)} \right)
1438 < \end{eqnarray}  
1439 < Substituting above values of the radial functions in the real space part of the quadrupolar tensor, we can ${T}_{\alpha\beta\gamma\delta}(\mathbf{r})$ can be divided into two parts as follows;
1440 < \begin{eqnarray}
1441 < & & {T}_{\alpha\beta\gamma\delta}(\mathbf{r}) = {T^I}_{\alpha\beta\gamma\delta}(\mathbf{r}) + {T^{II}}_{\alpha\beta\gamma\delta}(\mathbf{r})
1442 < \end{eqnarray}
1443 < where
1444 < \begin{eqnarray}
1445 < {T^I}_{\alpha\beta\gamma\delta}(\mathbf{r}) &=&  {T}_{\alpha\beta\gamma\delta}(\mathbf{r})|_{\kappa \rightarrow 0} \nonumber \\
1446 < & & \left(\frac{2r\kappa \exp(-r^2 \kappa^2)}{\sqrt{\pi}}+\frac{4r^3\kappa^3\exp(-r^2 \kappa^2)}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 \exp(-r^2 \kappa^2)}{15\sqrt{\pi}} +  \right. \nonumber \\
1447 < & & \left. \frac{16r^7\kappa^7 \exp(-r^2 \kappa^2)}{105\sqrt{\pi}} +  \mathrm{erfc(\kappa r)} \right)
1422 > \section{Quadrupolar correction factor for the Ewald-Kornfeld (EK)
1423 >  method}
1424 > The interaction tensor between two point quadrupoles in the Ewald
1425 > method may be expressed,\cite{Smith98,NeumannII83}
1426 > \begin{align}
1427 > {T}_{\alpha\beta\gamma\delta}(\mathbf{r}) = &\frac{4\pi}{V
1428 >                                              }\sum_{k\neq0}^{\infty}
1429 >                                              e^{-k^2 / 4
1430 >                                              \kappa^2} e^{-i\mathbf{k}\cdot
1431 >                                              \mathbf{r}} \left(\frac{r_\alpha r_\beta k_\delta k_\gamma}{k^2}\right)  \nonumber \\
1432 > &+ \left(\delta_{\alpha\beta}\delta_{\gamma\delta}+\delta_{\alpha\gamma}\delta_{\beta\delta}+\delta_{\alpha\delta}\delta_{\beta\gamma}\right)
1433 > B_2(r) \nonumber \\
1434 > &- \left(\delta_{\gamma\delta} r_\alpha r_\beta +  \mathrm{ 5\; permutations}\right) B_3(r) \nonumber \\
1435 > &+ \left(r_\alpha r_\beta r_\gamma r_\delta \right)  B_4(r)
1436 > \label{ewaldTensor}
1437 > \end{align}
1438 > where $B_n(r)$ are radial functions defined in reference
1439 > \onlinecite{Smith98},
1440 > \begin{align}
1441 > B_2(r)  =& \frac{3}{r^5} \left(\frac{2r\kappa e^{-r^2 \kappa^2}}{\sqrt{\pi}}+\frac{4r^3\kappa^3 e^{-r^2 \kappa^2}}{3\sqrt{\pi}}+\mathrm{erfc(\kappa r)} \right) \\
1442 > B_3(r) =& - \frac{15}{r^7}\left(\frac{2r\kappa e^{-r^2 \kappa^2}}{\sqrt{\pi}}+\frac{4r^3\kappa^3 e^{-r^2 \kappa^2}}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 e^{-r^2 \kappa^2}}{15\sqrt{\pi}}+\mathrm{erfc(\kappa r)} \right) \\
1443 > B_4(r) =& \frac{105}{r^9}\left(\frac{2r\kappa e^{-r^2
1444 >          \kappa^2}}{\sqrt{\pi}}+\frac{4r^3\kappa^3 e^{-r^2 \kappa^2}}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 e^{-r^2 \kappa^2}}{15\sqrt{\pi}}
1445 > + \frac{16r^7\kappa^7 e^{-r^2 \kappa^2}}{105\sqrt{\pi}} +  \mathrm{erfc(\kappa r)} \right)
1446 > \end{align}  
1447 >
1448 > We can divide ${T}_{\alpha\beta\gamma\delta}(\mathbf{r})$ into three
1449 > parts:
1450 > \begin{eqnarray}
1451 > & & \mathbf{T}(\mathbf{r}) =
1452 >    \mathbf{T}^\mathrm{K}(\mathbf{r}) +
1453 >    \mathbf{T}^\mathrm{R1}(\mathbf{r}) +
1454 >    \mathbf{T}^\mathrm{R2}(\mathbf{r})
1455   \end{eqnarray}
1456 + where the first term is the reciprocal space portion.  Since the
1457 + quadrupolar correction factor $B = \tilde{T}_{abab}(0) / 4\pi$ and
1458 + $\mathbf{k} \neq 0 $ is excluded from the reciprocal space sum,
1459 + $\mathbf{T}^\mathrm{K}$ will not contribute.\cite{NeumannII83} The
1460 + remaining terms,
1461 + \begin{equation}
1462 + \mathbf{T}^\mathrm{R1}(\mathbf{r}) =  \mathbf{T}^\mathrm{bare}(\mathbf{r}) \left(\frac{2r\kappa e^{-r^2
1463 +          \kappa^2}}{\sqrt{\pi}}+\frac{4r^3\kappa^3 e^{-r^2 \kappa^2}}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 e^{-r^2 \kappa^2}}{15\sqrt{\pi}}
1464 + + \frac{16r^7\kappa^7 e^{-r^2 \kappa^2}}{105\sqrt{\pi}} +  \mathrm{erfc(\kappa r)} \right)
1465 + \end{equation}
1466   and
1467   \begin{eqnarray}
1468 < {T^{II}}_{\alpha\beta\gamma\delta}(\mathbf{r}) =  &+& \left(\delta_{\gamma\delta} r_\alpha r_\beta +  \mathrm{ 5\; permutations}\right) \frac{16 \kappa^7 \exp(-r^2 \kappa^2)}{7\sqrt{\pi}} \nonumber \\
1469 < &+&\left(\delta_{\alpha\beta}\delta_{\gamma\delta}+\delta_{\alpha\gamma}\delta_{\beta\delta}+\delta_{\alpha\delta}\delta_{\beta\gamma}\right) \left(\frac{8 \kappa^5 \exp(-r^2 \kappa^2)}{5\sqrt{\pi}}+ \frac{16 r^2\kappa^7 \exp(-r^2 \kappa^2)}{35\sqrt{\pi} }\right)
1468 > T^\mathrm{R2}_{\alpha\beta\gamma\delta}(\mathbf{r}) =  &+& \left(\delta_{\gamma\delta} r_\alpha r_\beta +  \mathrm{ 5\; permutations}\right) \frac{16 \kappa^7 e^{-r^2 \kappa^2}}{7\sqrt{\pi}} \nonumber \\
1469 > &-&\left(\delta_{\alpha\beta}\delta_{\gamma\delta}+\delta_{\alpha\gamma}\delta_{\beta\delta}+\delta_{\alpha\delta}\delta_{\beta\gamma}\right) \left(\frac{8 \kappa^5 e^{-r^2 \kappa^2}}{5\sqrt{\pi}}+ \frac{16 r^2\kappa^7 e^{-r^2 \kappa^2}}{35\sqrt{\pi} }\right)
1470   \end{eqnarray}
1471 < Here ${T}_{\alpha\beta\gamma\delta}(\mathbf{r})|_{\kappa \rightarrow 0}$ is unmodified quadrupolar tensor vanishes on integration over volume due to angular symmetry. Therefore the only term contributing to the correction factor (B) is ${T^{II}}_{\alpha\beta\gamma\delta}(\mathbf{r})$. Now the correction factor for the Ewald-Kornfeld (EK) method can be written as;
1471 > are contributions from the real space
1472 > sum.\cite{Adams76,Adams80,Adams81} Here
1473 > $\mathbf{T}^\mathrm{bare}(\mathbf{r})$ is the unmodified quadrupolar
1474 > tensor (for undamped quadrupoles).  Due to the angular symmetry of the
1475 > unmodified tensor, the integral of
1476 > $\mathbf{T}^\mathrm{R1}(\mathbf{r})$ will vanish when integrated over
1477 > a spherical region. The only term contributing to the correction
1478 > factor (B) is therefore
1479 > $T^\mathrm{R2}_{\alpha\beta\gamma\delta}(\mathbf{r})$, which allows us
1480 > to derive the correction factor for the Ewald-Kornfeld (EK) method,
1481   \begin{eqnarray}
1482 < \mathrm{B} &=& \frac{1}{4\pi} \int_V {T^{II}}_{ijij}(\mathbf{r}) \nonumber \\
1483 < &=& -\frac{8r_c^3 \kappa^5 \exp(-\kappa^2 r_c^2)}{15\sqrt{\pi}}
1482 > \mathrm{B} &=& \frac{1}{4\pi} \int_V T^\mathrm{R2}_{abab}(\mathbf{r}) \nonumber \\
1483 > &=& -\frac{8r_c^3 \kappa^5 e^{-\kappa^2 r_c^2}}{15\sqrt{\pi}}
1484   \end{eqnarray}  
1485 < This result is same as the correction factor from the direct spherical cutoff method.
1485 > which is essentially identical with the correction factor from the
1486 > direct spherical cutoff (SC) method.
1487   \newpage
1488   \bibliography{dielectric_new}
1489  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines