ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric_new.tex
(Generate patch)

Comparing trunk/multipole/dielectric_new.tex (file contents):
Revision 4414 by gezelter, Fri Apr 8 16:24:23 2016 UTC vs.
Revision 4415 by gezelter, Fri Apr 8 18:05:38 2016 UTC

# Line 802 | Line 802 | $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ is a
802   \label{fourierQuadZeroK}
803   \end{equation}
804   The quadrupolar tensor
805 < $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ is a rank-4 tensor
805 > $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ is a rank 4 tensor
806   with 81 elements. The only non-zero elements, however, are those with
807   two doubly-repeated indices, \textit{i.e.}
808   $\tilde{T}_{aabb}(\mathrm{0})$ and all permutations of these indices.
# Line 820 | Line 820 | $a \neq b$.  Using this quadrupolar contraction we can
820   \end{equation}
821   Here $\mathrm{B} = \tilde{T}_{abab}(\mathrm{0}) / 4 \pi$ for
822   $a \neq b$.  Using this quadrupolar contraction we can solve equation
823 < \ref{quadContraction} as follows
824 <
823 > \ref{fourierQuadZeroK} as follows
824   \begin{eqnarray}
825   \frac{1}{3}\tilde{\Theta}_{\alpha\beta}(\mathrm{0}) &=& \epsilon_o
826                                                        {\chi}_Q
# Line 833 | Line 832 | $a \neq b$.  Using this quadrupolar contraction we can
832                                                        \nonumber \\                                                    
833   &=& \left[\frac{\epsilon_o {\chi}_Q} {1-{\chi}_Q \mathrm{B}}\right]
834   {\partial_\alpha \tilde{E}^\circ_\beta}(\mathrm{0}).
835 < \label{fourierQuad}
835 > \label{fourierQuad2}
836   \end{eqnarray}
837   In real space, the correction factor,
838   \begin{equation}
# Line 863 | Line 862 | In terms of the traced quadrupole moment, equation (\r
862   which has been integrated over the interaction volume $V$ and has
863   units of $\mathrm{length}^{-2}$.
864  
865 < In terms of the traced quadrupole moment, equation (\ref{fourierQuad})
865 > In terms of the traced quadrupole moment, equation (\ref{fourierQuad2})
866   can be written,
867   \begin{equation}
868   \mathsf{Q} - \frac{\mathbf{I}}{3} \mathrm{Tr}(\mathsf{Q})
# Line 901 | Line 900 | the same value.
900   the same value.
901  
902   \begin{sidewaystable}
903 <  \caption{Expressions for the quadrupolar correction factor ($\mathrm{B}$) for
904 <    the real-space electrostatic methods in terms of the damping
905 <    parameter ($\alpha$) and the cutoff radius ($r_c$). The units
906 <    of the correction factor are $ \mathrm{length}^{-2}$ for quadrupolar
907 <    fluids.}
908 < \label{tab:B}
909 < \begin{tabular}{l|c|c|c}
911 < \toprule      
903 >  \caption{Expressions for the quadrupolar correction factor
904 >    ($\mathrm{B}$) for the real-space electrostatic methods in terms
905 >    of the damping parameter ($\alpha$) and the cutoff radius
906 >    ($r_c$). The units of the correction factor are
907 >    $ \mathrm{length}^{-2}$ for quadrupolar fluids.}
908 > \label{tab:B}
909 > \begin{tabular}{|l|c|c|c|}
910   Method & charges & dipoles & quadrupoles \\\colrule
911 < Spherical Cutoff (SC) & \multicolumn{3}{c}{$ -\frac{8 \alpha^5
911 > Spherical Cutoff (SC) & \multicolumn{3}{c|}{$ -\frac{8 \alpha^5
912                          {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $}\\ \colrule
913   Shifted Potental (SP) & $ -\frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ &  $-  \frac{3 \mathrm{erfc(r_c\alpha)}}{5{r_c}^2}- \frac{2 \alpha e^{-\alpha^2 r_c^2}(9+6\alpha^2 r_c^2+4\alpha^4 r_c^4)}{15{\sqrt{\pi}r_c}}$& $ -\frac{16 \alpha^7 {r_c}^5 e^{-\alpha^2 r_c^2                                 }}{45\sqrt{\pi}}$  \\
914   Gradient-shifted  (GSF) & $- \frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ & 0 &  $-\frac{4{\alpha}^7{r_c}^5 e^{-\alpha^2 r_c^2}(-1+2\alpha ^2 r_c^2)}{45\sqrt{\pi}}$\\
915   Taylor-shifted  (TSF) &  $ -\frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ & $\frac{4\;\mathrm{erfc(\alpha r_c)}}{{5r_c}^2} + \frac{8\alpha e^{-\alpha^2{r_c}^2}\left(3+ 2\alpha^2 {r_c}^2 +\alpha^4{r_c}^4 \right)}{15\sqrt{\pi}r_c}$ & $\frac{2\;\mathrm{erfc}(\alpha r_c )}{{r_c}^2} + \frac{4{\alpha}e^{-\alpha^2 r_c^2}\left(45 + 30\alpha ^2 {r_c}^2 + 12\alpha^4 {r_c}^4 + 3\alpha^6 {r_c}^6 + 2 \alpha^8 {r_c}^8\right)}{45\sqrt{\pi}{r_c}}$ \\
916   \colrule
917 < Ewald-Kornfeld (EK) & \multicolumn{3}{c}{$ -\frac{8 \kappa^5 {r_c}^3e^{-\kappa^2 r_c^2}}{15\sqrt{\pi}}$} \\
917 > Ewald-Kornfeld (EK) & \multicolumn{3}{c|}{$ -\frac{8 \kappa^5 {r_c}^3e^{-\kappa^2 r_c^2}}{15\sqrt{\pi}}$} \\
918   \botrule
919   \end{tabular}
920   \end{sidewaystable}
# Line 1079 | Line 1077 | perturbations, field strengths ranging from $0 - 10 \t
1077   out over a 1~ns simulation in the microcanonical (NVE) ensemble.  Box
1078   dipole moments were sampled every fs.  For simulations with external
1079   perturbations, field strengths ranging from $0 - 10 \times
1080 < 10^{-4}$~V/\AA with increments of $ 10^{-4}$~V/\AA were carried out
1080 > 10^{-4}$~V/\AA\ with increments of $ 10^{-4}$~V/\AA\ were carried out
1081   for each system.
1082  
1083   Quadrupolar systems contained 4000 linear point quadrupoles with a
# Line 1156 | Line 1154 | fluctuation approaches for the new real-space methods.
1154    shown in separate panels, and different values of the damping
1155    parameter ($\alpha$) are indicated with different symbols. All of
1156    the methods appear to be converging to the bulk dielectric constant
1157 <  ($\sim 65$) at large ion separations. CHECK PLOT}
1157 >  ($\sim 65$) at large ion separations.}
1158   \label{fig:ScreeningFactor_Dipole}
1159   \end{figure}
1160   We have also evaluated the distance-dependent screening factor,
# Line 1455 | Line 1453 | $\mathbf{k} \neq 0 $ is excluded from the reciprocal s
1453   \end{eqnarray}
1454   where the first term is the reciprocal space portion.  Since the
1455   quadrupolar correction factor $B = \tilde{T}_{abab}(0) / 4\pi$ and
1456 < $\mathbf{k} \neq 0 $ is excluded from the reciprocal space sum,
1456 > $\mathbf{k} = 0 $ is excluded from the reciprocal space sum,
1457   $\mathbf{T}^\mathrm{K}$ will not contribute.\cite{NeumannII83} The
1458   remaining terms,
1459   \begin{equation}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines