ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3906
Committed: Tue Jul 9 21:45:05 2013 UTC (10 years, 11 months ago) by gezelter
Content type: application/x-tex
Original Path: trunk/multipole/multipole3.tex
File size: 63023 byte(s)
Log Message:
first import

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23     aip,
24     jmp,
25     amsmath,amssymb,
26     preprint,%
27     % reprint,%
28     %author-year,%
29     %author-numerical,%
30     ]{revtex4-1}
31    
32     \usepackage{graphicx}% Include figure files
33     \usepackage{dcolumn}% Align table columns on decimal point
34     \usepackage{bm}% bold math
35     %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
36     %\linenumbers\relax % Commence numbering lines
37    
38     \begin{document}
39    
40     \preprint{AIP/123-QED}
41    
42     \title[Generalization of the Shifted-Force Potential to Higher-Order Potentials]
43     {Generalization of the Shifted-Force Potential to Higher-Order Potentials}
44    
45     \author{Madan Lamichhane}
46     \affiliation{Department of Physics, University
47     of Notre Dame, Notre Dame, IN 46556}
48    
49     \author{J. Daniel Gezelter}
50     \email{gezelter@nd.edu.}
51     \affiliation{Department of Chemistry and Biochemistry, University
52     of Notre Dame, Notre Dame, IN 46556}
53    
54     \author{Kathie E. Newman}
55     \affiliation{Department of Physics, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58    
59     \date{\today}% It is always \today, today,
60     % but any date may be explicitly specified
61    
62     \begin{abstract}
63     Over the past several years, there has been increasing interest
64     in real space methods for calculating electrostatic interactions
65     in computer simulations of condensed molecular systems. We
66     have extended our original damped-shifted force (DSF)
67     electrostatic kernel and have been able to derive a set of
68     interaction models for higher-order multipoles based on
69     truncated Taylor expansions around the cutoff. For multipolemultipole
70     interactions, we find that each of the distinct
71     orientational contributions has a separate radial function to
72     ensure that the overall forces and torques vanish at the cutoff
73     radius.
74     \end{abstract}
75    
76     \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
77     % Classification Scheme.
78     \keywords{Suggested keywords}%Use showkeys class option if keyword
79     %display desired
80     \maketitle
81    
82     \section{Introduction}
83    
84     The Coulomb electrostatic interaction is of importance in a number of physical chemistry problems
85     [background needed, do we mention gases, liquids, solids?].
86    
87     [...]
88    
89     The methods that we develop in this paper are meant specifically for problems involving interacting rigid molecules which will be described
90     in terms of classical mechanics and electrodynamics. From mechanics, the molecule's mass distribution
91     determines its total mass and moment of inertia tensor.
92     From electrostatics, its charge distribution is conveniently described using multipoles.
93     Our goal is to advance methods for handling inter-molecular interactions in molecular dynamics simulations.
94     To do this, we must develop consistent approximate equations for
95     interaction energies, forces, and torques.
96    
97     [...]
98    
99     This paper extends the shifted-force potential method
100     of Fennel and Gezelter to higher-order multipole interactions. [describe?]
101     Extending an idea from Wolf, multipole images are placed on the surface of a
102     ``cutoff'' sphere of radius $r_c$. These images are used to make all interaction energies, forces, and torques
103     be zero for $r < r_c$.
104     Two such methods have been developed, both based on Taylor-series expansions.
105     The first is applied to the Coulomb kernel of the multipole expansion. The second is
106     applied to individual terms for interaction energies in the multipole expansion.
107     Because of differences in the initial assumptions, the two methods yield different results.
108    
109     Also explored here is the effect of replacing the bare Coulomb kernel with that of a smeared
110     charge distribution. Thus four methods are compared in this paper:
111     (1) Shifted force, Coulomb, method 1;
112     (2) Sihfted force, Coulomb, method 2;
113     (3) Shifted force, smeared charge, method 1; and
114     (4) Shifted force, smeared charge, method 2.
115     The last of these methods is our preferred method and is called the Extended Shifted Force Method.
116     Subsequent papers will apply this method to various problems of physical and chemical interest.
117    
118     [...]
119    
120    
121     \section{Development of the Methods}
122    
123     \subsection{Multipole Expansion}
124    
125     Consider two discrete rigid collections of atoms and ions, denoted as objects $\bf a$ and $\bf b$.
126     In the following, we assume
127     that the two objects only interact via electrostatics and describe those interactions in terms of
128     a multipole expansion. Putting the origin of the coordinate system at the center of mass of $\bf a$, we use
129     vectors $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf a$.
130     Then the electrostatic potential of object $\bf a$ at $\mathbf{r}$ is given by
131     \begin{equation}
132     V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
133     \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
134     \end{equation}
135     We write the Taylor series expansion in $r$ using an implied summation notation,
136     Greek indices are used to indicate space coordinates $x$, $y$, $z$ and the subscripts
137     $k$ and $j$ are reserved for labelling specific charges in $\bf a$ and $\bf b$ respectively, and find:
138     \begin{equation}
139     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
140     \left( 1
141     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
142     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
143     \right)
144     \frac{1}{r} .
145     \end{equation}
146     We then follow Smith in defining an operator for the expansion:
147     \begin{equation}
148     V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
149     \end{equation}
150     where
151     \begin{equation}
152     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
153     + Q_{{\bf a}\alpha\beta}
154     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
155     \end{equation}
156     and the charge $C_{\bf a}$, dipole $D_{{\bf a}\alpha}$,
157     and quadrupole $Q_{{\bf a}\alpha\beta}$ are defined by
158     \begin{equation}
159     C_{\bf a}=\sum_{k \, \text{in \bf a}} q_k ,
160     \end{equation}
161     \begin{equation}
162     D_{{\bf a}\alpha} = \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,
163     \end{equation}
164     \begin{equation}
165     Q_{{\bf a}\alpha\beta} = \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
166     \end{equation}
167    
168     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
169     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
170     \begin{eqnarray}
171     U_{\bf{ab}}(r) =&& \frac{1}{4\pi \epsilon_0}
172     \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
173     \frac{q_k q_j}{\vert \bf{r}_k - (\bf{r}+\bf{r}_j) \vert} \nonumber\\
174     =&& \frac{1}{4\pi \epsilon_0}
175     \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
176     \frac{q_k q_j}{\vert \bf{r}+ (\bf{r}_j-\bf{r}_k) \vert} \nonumber\\
177     =&&\frac{1}{4\pi \epsilon_0} \sum_{j \, \text{in \bf b}} q_j V_a(\bf{r}+\bf{r}_j) \nonumber\\
178     =&&\frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
179     \end{eqnarray}
180     The last expression can also be expanded as a Taylor series in $r$. Using a notation similar to before, we define
181     \begin{equation}
182     \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
183     + Q_{{\bf b}\alpha\beta}
184     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
185     \end{equation}
186     and
187     \begin{equation}
188     U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
189     \end{equation}
190     Note the ease of separting out the respective energies of interaction of the charge, dipole, and quadrupole of $\bf a$ from those of $\bf b$.
191    
192     \subsection{Bare Coulomb versus smeared charge}
193    
194     With the four types of methods being considered here, it is desirable to list the approximations in as transparent a form
195     as possible. First, one may use the bare Coulomb potential, with radial dependence $1/r$,
196     as shown in Eq.~(\ref{kernel}). Alternatively, one may use
197     a smeared charge distribution, then the``kernel'' $1/r$ of the expansion is replaced with a function:
198     \begin{equation}
199     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
200     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
201     \end{equation}
202     We develop equations using a function $f(r)$ to represent either $1/r$ or $B_0(r)$, dependent on the the type of approach being considered.
203     Smith's convenient functions $B_l(r)$ are summarized in Appendix A.
204    
205     \subsection{Shifting the force, method 1}
206    
207     As discussed in the introduction, it is desirable to cutoff the electrostatic energy at a radius
208     $r_c$. For consistency in approximation, we want the interaction energy as well as the force and
209     torque to go to zero at $r=r_c$.
210     To describe how this goal may be met using a radial approximation, we use two examples, charge-charge
211     and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain the idea.
212    
213     In the shifted-force approximation, the interaction energy $U_{\bf{ab}}(r_c)=0$
214     for two charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is written:
215     \begin{equation}
216     U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
217     \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
218     \right) .
219     \end{equation}
220     Two shifting terms appear in this equations because we want the force to
221     also be shifted due to an image charge located at a distance $r_c$.
222     Since one derivative of the interaction energy is needed for the force, we want a term
223     linear in $(r-r_c)$ in the interaction energy, that is:
224     \begin{equation}
225     \frac{d\,}{dr}
226     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
227     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
228     \right) .
229     \end{equation}
230     This demonstrates the need of the third term in the brackets of the energy expression, but leads to the question, how does this idea generalize for higher-order multipole energies?
231    
232     In method 1, the procedure that we follow is based on the number of derivatives need for each energy, force, or torque. That is,
233     a quadrupole-quadrupole interaction energy will have four derivatives,
234     $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$,
235     and the force or torque will bring in yet another derivative.
236     We thus want shifted energy expressions to include terms so that all energies, forces, and torques
237     are zero at $r=r_c$. In each case, we will subtract off a function $f_n^{\text{shift}}(r)$ from the
238     kernel $f(r)=1/r$. The index $n$ indicates the number of derivatives to be taken when
239     deriving a given multipole energy.
240     We choose a function with guaranteed smooth derivatives --- a truncated Taylor series of the function
241     $f(r)$, e.g.,
242     %
243     \begin{equation}
244     f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert _{r_c} .
245     \end{equation}
246     %
247     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
248     Thus, for $f(r)=1/r$, we find
249     %
250     \begin{equation}
251     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
252     \end{equation}
253     %
254     Continuing with the example of a charge $\bf a$ interacting with a dipole $\bf b$, we write
255     %
256     \begin{equation}
257     U_{C_{\bf a}D_{\bf b}}(r)=
258     \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
259     =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
260     \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
261     \end{equation}
262     %
263     The force that dipole $\bf b$ puts on charge $\bf a$ is
264     %
265     \begin{equation}
266     F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
267     \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
268     \frac{r_\alpha r_\beta}{r^2}
269     \left( -\frac{1}{r} \frac {\partial} {\partial r}
270     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
271     \end{equation}
272     %
273     For $f(r)=1/r$, we find
274     %
275     \begin{equation}
276     F_{C_{\bf a}D_{\bf b}\beta} =
277     \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
278     \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
279     +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
280     \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
281     \end{equation}
282     %
283     This expansion shows the expected $1/r^3$ dependence of the force.
284    
285     In general, we write
286     %
287     \begin{equation}
288     U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
289     \label{generic}
290     \end{equation}
291     %
292     where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
293     and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
294     An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
295     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
296     $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
297     implied summation combining the space indices.
298    
299     To apply this method to the smeared-charge approach,
300     we write $f(r)=\text{erfc}(\alpha r)/r$. By using one function $f(r)$ for both
301     approaches, we simplify the tabulation of equations used. Because
302     of the many derivatives that are taken, the algebra is tedious and are summarized
303     in Appendices A and B.
304    
305     \subsection{Shifting the force, method 2}
306    
307     Note the method used in the previous subsection to shift a force is basically that of using
308     a truncated Taylor Series in the radius $r$. An alternate method exists, best explained by
309     writing one shifted formula for all interaction energies $U(r)$:
310     \begin{equation}
311     U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
312     \end{equation}
313     Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
314     $(r-r_c)^n$ appear. The primary difference between methods 1 and 2 originates
315     with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
316     kernel. In method 2, it is applied to individual interaction energies of the multipole expansion.
317     Terms from this method thus have the general form:
318     \begin{equation}
319     U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
320     \label{generic2}
321     \end{equation}
322    
323     Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
324     and are listed in Table I below.
325    
326     \subsection{\label{sec:level2}Body and space axes}
327    
328     Up to this point, all energies and forces have been written in terms of fixed space
329     coordinates $x$, $y$, $z$. Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
330     combine prefactors with radial functions. But because objects
331     $\bf a$ and $\bf b$ both translate and rotate as part of a MD simulation,
332     it is desirable to contract all $r$-dependent terms with dipole and quadrupole
333     moments expressed in terms of their body axes.
334     Since the interaction energy expressions will be used to derive both forces and torques,
335     we follow here the development of Allen and Germano, which was itself based on an
336     earlier paper by Price \em et al.\em
337    
338     Denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
339     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
340     set of inertial body axes. (Note, these body axes are generally not the same as those for which the
341     quadrupole moment is diagonal.) Then,
342     %
343     \begin{eqnarray}
344     \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
345     \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
346     \end{eqnarray}
347     Allen and Germano define matrices $\hat{\mathbf {a}}$
348     and $\hat{\mathbf {b}}$ using these unit vectors:
349     \begin{eqnarray}
350     \hat{\mathbf {a}} =
351     \begin{pmatrix}
352     \hat{a}_1 \\
353     \hat{a}_2 \\
354     \hat{a}_3
355     \end{pmatrix}
356     =
357     \begin{pmatrix}
358     a_{1x} \quad a_{1y} \quad a_{1z} \\
359     a_{2x} \quad a_{2y} \quad a_{2z} \\
360     a_{3x} \quad a_{3y} \quad a_{3z}
361     \end{pmatrix}\\
362     \hat{\mathbf {b}} =
363     \begin{pmatrix}
364     \hat{b}_1 \\
365     \hat{b}_2 \\
366     \hat{b}_3
367     \end{pmatrix}
368     =
369     \begin{pmatrix}
370     b_{1x}\quad b_{1y} \quad b_{1z} \\
371     b_{2x} \quad b_{2y} \quad b_{2z} \\
372     b_{3x} \quad b_{3y} \quad b_{3z}
373     \end{pmatrix} .
374     \end{eqnarray}
375     %
376     These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
377     All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
378     It proves to be equally convenient to just write any contraction in terms of unit vectors
379     $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
380     We have found it useful to write angular-dependent terms in three different fashions,
381     illustrated by the following
382     three examples from the interaction-energy expressions:
383     %
384     \begin{eqnarray}
385     \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
386     =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
387     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
388     r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
389     r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
390     \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
391     r ( \mathbf{D}_{\mathbf{a}} \cdot
392     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
393     D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
394     =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
395     (\hat{b}_n \cdot \hat{r}) .
396     \end{eqnarray}
397     %
398     [Dan, perhaps there are better examples to show here.]
399    
400     In each line, the first two terms are written using space coordinates. The first form is standard
401     in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
402     form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
403     We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
404     in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
405     be discussed below.
406    
407     \section{Energies, forces, and torques}
408     \subsection{Interaction energies}
409    
410     We now list multipole interaction energies for the four types of approximation.
411     A ``generic'' set of radial functions is introduced so to be able to present the results in Table I. This set of
412     equations is written in terms of space coordinates:
413    
414     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
415     %
416     %
417     % u ca cb
418     %
419     \begin{equation}
420     U_{C_{\bf a}C_{\bf b}}(r)=
421     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
422     \end{equation}
423     %
424     % u ca db
425     %
426     \begin{equation}
427     U_{C_{\bf a}D_{\bf b}}(r)=
428     \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
429     \label{uchdip}
430     \end{equation}
431     %
432     % u ca qb
433     %
434     \begin{equation}
435     U_{C_{\bf a}Q_{\bf b}}(r)=
436     \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
437     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
438     \label{uchquad}
439     \end{equation}
440     %
441     % u da cb
442     %
443     \begin{equation}
444     U_{D_{\bf a}C_{\bf b}}(r)=
445     -\frac{C_{\bf b}}{4\pi \epsilon_0}
446     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
447     \end{equation}
448     %
449     % u da db
450     %
451     \begin{equation}
452     U_{D_{\bf a}D_{\bf b}}(r)=
453     -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
454     \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
455     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
456     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
457     v_{22}(r) \Bigr]
458     \label{udipdip}
459     \end{equation}
460     %
461     % u da qb
462     %
463     \begin{equation}
464     \begin{split}
465     % 1
466     U_{D_{\bf a}Q_{\bf b}}(r)&=
467     -\frac{1}{4\pi \epsilon_0} \Bigl[
468     \text{Tr}\mathbf{Q}_{\mathbf{b}}
469     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
470     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
471     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
472     % 2
473     &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
474     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
475     \label{udipquad}
476     \end{split}
477     \end{equation}
478     %
479     % u qa cb
480     %
481     \begin{equation}
482     U_{Q_{\bf a}C_{\bf b}}(r)=
483     \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
484     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
485     \label{uquadch}
486     \end{equation}
487     %
488     % u qa db
489     %
490     \begin{equation}
491     \begin{split}
492     %1
493     U_{Q_{\bf a}D_{\bf b}}(r)&=
494     \frac{1}{4\pi \epsilon_0} \Bigl[
495     \text{Tr}\mathbf{Q}_{\mathbf{a}}
496     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
497     +2 ( \mathbf{D}_{\mathbf{b}} \cdot
498     \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
499     % 2
500     +\frac{1}{4\pi \epsilon_0}
501     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
502     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
503     \label{uquaddip}
504     \end{split}
505     \end{equation}
506     %
507     % u qa qb
508     %
509     \begin{equation}
510     \begin{split}
511     %1
512     U_{Q_{\bf a}Q_{\bf b}}(r)&=
513     \frac{1}{4\pi \epsilon_0} \Bigl[
514     \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
515     +2 \text{Tr} \left(
516     \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
517     \\
518     % 2
519     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
520     \left( \hat{r} \cdot
521     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
522     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
523     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
524     \cdot \hat{r} \right) +4 (\hat{r} \cdot
525     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
526     \Bigr] v_{42}(r)
527     \\
528     % 4
529     &+ \frac{1}{4\pi \epsilon_0}
530     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
531     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
532     \label{uquadquad}
533     \end{split}
534     \end{equation}
535    
536    
537     %
538     %
539     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
540     %
541    
542     \begin{table*}
543     \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
544     used in this table are defined in Appendices B and C.}
545     \begin{ruledtabular}
546     \begin{tabular}{cccc}
547     Generic&Coulomb&Method 1&Method 2
548     \\ \hline
549     %
550     %
551     %
552     %Ch-Ch&
553     $v_{01}(r)$ &
554     $\frac{1}{r}$ &
555     $f_0(r)$ &
556     $f(r)-f(r_c)-(r-r_c)g(r_c)$
557     \\
558     %
559     %
560     %
561     %Ch-Di&
562     $v_{11}(r)$ &
563     $-\frac{1}{r^2}$ &
564     $g_1(r)$ &
565     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
566     %
567     %
568     %
569     %Ch-Qu/Di-Di&
570     $v_{21}(r)$ &
571     $-\frac{1}{r^3} $ &
572     $\frac{g_2(r)}{r} $ &
573     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
574     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
575     $v_{22}(r)$ &
576     $\frac{3}{r^3} $ &
577     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
578     $\left(-\frac{g(r)}{r}+h(r) \right)
579     -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
580     &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
581     \\
582     %
583     %
584     %
585     %Di-Qu &
586     $v_{31}(r)$ &
587     $\frac{3}{r^4} $ &
588     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
589     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
590     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
591     &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
592     \\
593     %
594     $v_{32}(r)$ &
595     $-\frac{15}{r^4} $ &
596     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
597     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
598     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
599     &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
600     \\
601     %
602     %
603     %
604     %Qu-Qu&
605     $v_{41}(r)$ &
606     $\frac{3}{r^5} $ &
607     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
608     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
609     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
610     &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
611     \\
612     % 2
613     $v_{42}(r)$ &
614     $- \frac{15}{r^5} $ &
615     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
616     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
617     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
618     &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
619     -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
620     \\
621     % 3
622     $v_{43}(r)$ &
623     $ \frac{105}{r^5} $ &
624     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
625     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
626     &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
627     &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
628     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
629     \end{tabular}
630     \end{ruledtabular}
631     \end{table*}
632     %
633     %
634     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
635     %
636    
637     \begin{table}
638     \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
639     \begin{ruledtabular}
640     \begin{tabular}{cc}
641     Generic&Method 1 or Method 2
642     \\ \hline
643     %
644     %
645     %
646     $w_a(r)$&
647     $\frac{d v_{01}}{dr}$ \\
648     %
649     %
650     $w_b(r)$ &
651     $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
652     %
653     $w_c(r)$ &
654     $\frac{v_{11}(r)}{r}$ \\
655     %
656     %
657     $w_d(r)$&
658     $\frac{d v_{21}}{dr}$ \\
659     %
660     $w_e(r)$ &
661     $\frac{v_{22}(r)}{r}$ \\
662     %
663     %
664     $w_f(r)$&
665     $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
666     %
667     $w_g(r)$&
668     $\frac{v_{31}(r)}{r}$\\
669     %
670     $w_h(r)$ &
671     $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
672     % 2
673     $w_i(r)$ &
674     $\frac{v_{32}(r)}{r}$ \\
675     %
676     $w_j(r)$ &
677     $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
678     %
679     $w_k(r)$ &
680     $\frac{d v_{41}}{dr} $ \\
681     %
682     $w_l(r)$ &
683     $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
684     %
685     $w_m(r)$ &
686     $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
687     %
688     $w_n(r)$ &
689     $\frac{v_{42}(r)}{r}$ \\
690     %
691     $w_o(r)$ &
692     $\frac{v_{43}(r)}{r}$ \\
693     %
694    
695     \end{tabular}
696     \end{ruledtabular}
697     \end{table}
698     %
699     %
700     %
701    
702     \subsection{Forces}
703    
704     The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
705     the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
706     interaction, these forces will point along the $\pm \hat{r}$ directions, where
707     $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
708     %
709     \begin{equation}
710     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
711     \quad \text{and} \quad F_{\bf b \alpha}
712     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
713     \end{equation}
714     %
715     The concept of obtaining a force from an energy by taking a gradient is the same for
716     higher-order multipole interactions, the trick is to make sure that all
717     $r$-dependent derivatives are considered.
718     As is pointed out by Allen and Germano, this is straightforward if the
719     interaction energies are written recognizing explicit
720     $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
721     %
722     \begin{equation}
723     U(r,\{\hat{a}_m \cdot \hat{r} \},
724     \{\hat{b}_n\cdot \hat{r} \}
725     \{\hat{a}_m \cdot \hat{b}_n \}) .
726     \label{ugeneral}
727     \end{equation}
728     %
729     Then,
730     %
731     \begin{equation}
732     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
733     = \frac{\partial U}{\partial r} \hat{r}
734     + \sum_m \left[
735     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
736     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
737     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
738     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
739     \right] \label{forceequation}.
740     \end{equation}
741     %
742     Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
743     that of Allen and Germano. In simplifying the algebra, we also use:
744     %
745     \begin{eqnarray}
746     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
747     = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
748     \right) \\
749     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
750     = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
751     \right) .
752     \end{eqnarray}
753     %
754     We list below the force equations written in terms of space coordinates. The
755     radial functions used in the two methods are listed in Table II.
756     %
757     %SPACE COORDINATES FORCE EQUTIONS
758     %
759     % **************************************************************************
760     % f ca cb
761     %
762     \begin{equation}
763     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
764     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
765     \end{equation}
766     %
767     %
768     %
769     \begin{equation}
770     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
771     \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
772     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
773     w_b(r) \hat{r}
774     + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
775     \end{equation}
776     %
777     %
778     %
779     \begin{equation}
780     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
781     \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
782     \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
783     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
784     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
785     \end{equation}
786     %
787     %
788     %
789     \begin{equation}
790     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
791     -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
792     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
793     + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
794     \end{equation}
795     %
796     %
797     %
798     \begin{equation}
799     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
800     \frac{1}{4\pi \epsilon_0} \Bigl[
801     - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
802     + \left( \mathbf{D}_{\mathbf {a}}
803     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
804     + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
805     % 2
806     - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
807     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
808     \end{equation}
809     %
810     %
811     %
812     \begin{equation}
813     \begin{split}
814     \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
815     & - \frac{1}{4\pi \epsilon_0} \Bigl[
816     \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
817     +2 \mathbf{D}_{\mathbf{a}} \cdot
818     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
819     - \frac{1}{4\pi \epsilon_0} \Bigl[
820     \text{Tr}\mathbf{Q}_{\mathbf{b}}
821     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
822     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
823     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
824     % 3
825     & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
826     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
827     w_i(r)
828     % 4
829     -\frac{1}{4\pi \epsilon_0}
830     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
831     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
832     \end{split}
833     \end{equation}
834     %
835     %
836     \begin{equation}
837     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
838     \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
839     \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
840     + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
841     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
842     \end{equation}
843     %
844     \begin{equation}
845     \begin{split}
846     \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
847     &\frac{1}{4\pi \epsilon_0} \Bigl[
848     \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
849     +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
850     % 2
851     + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
852     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
853     +2 (\mathbf{D}_{\mathbf{b}} \cdot
854     \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
855     % 3
856     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
857     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
858     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
859     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
860     % 4
861     +\frac{1}{4\pi \epsilon_0}
862     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
863     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
864     \end{split}
865     \end{equation}
866     %
867     %
868     %
869     \begin{equation}
870     \begin{split}
871     \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
872     +\frac{1}{4\pi \epsilon_0} \Bigl[
873     \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
874     + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
875     % 2
876     +\frac{1}{4\pi \epsilon_0} \Bigl[
877     2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
878     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
879     % 3
880     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
881     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
882     % 4
883     + \frac{1}{4\pi \epsilon_0} \Bigl[
884     \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
885     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
886     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
887     % 5
888     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
889     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
890     %
891     + \frac{1}{4\pi \epsilon_0} \Bigl[
892     + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
893     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
894     %6
895     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
896     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
897     % 7
898     + \frac{1}{4\pi \epsilon_0}
899     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
900     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
901     \end{split}
902     \end{equation}
903     %
904     %
905     % TORQUES SECTION -----------------------------------------------------------------------------------------
906     %
907     \subsection{Torques}
908    
909     Following again Allen and Germano, when energies are written in the form
910     of Eq.~({\ref{ugeneral}), then torques can be expressed as:
911     %
912     \begin{eqnarray}
913     \mathbf{\tau}_{\bf a} =
914     \sum_m
915     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
916     ( \hat{r} \times \hat{a}_m )
917     -\sum_{mn}
918     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
919     (\hat{a}_m \times \hat{b}_n) \\
920     %
921     \mathbf{\tau}_{\bf b} =
922     \sum_m
923     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
924     ( \hat{r} \times \hat{b}_m)
925     +\sum_{mn}
926     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
927     (\hat{a}_m \times \hat{b}_n) .
928     \end{eqnarray}
929     %
930     %
931     Here we list the torque equations written in terms of space coordinates.
932     %
933     %
934     %
935     \begin{equation}
936     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
937     \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
938     \end{equation}
939     %
940     %
941     %
942     \begin{equation}
943     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
944     \frac{2C_{\bf a}}{4\pi \epsilon_0}
945     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
946     \end{equation}
947     %
948     %
949     %
950     \begin{equation}
951     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
952     -\frac{C_{\bf b}}{4\pi \epsilon_0}
953     (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
954     \end{equation}
955     %
956     %
957     %
958     \begin{equation}
959     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
960     \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
961     % 2
962     -\frac{1}{4\pi \epsilon_0}
963     (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
964     (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
965     \end{equation}
966     %
967     %
968     %
969     \begin{equation}
970     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
971     -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
972     % 2
973     +\frac{1}{4\pi \epsilon_0}
974     (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
975     (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
976     \end{equation}
977     %
978     %
979     %
980     \begin{equation}
981     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
982     \frac{1}{4\pi \epsilon_0} \Bigl[
983     -\text{Tr}\mathbf{Q}_{\mathbf{b}}
984     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
985     +2 \mathbf{D}_{\mathbf{a}} \times
986     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
987     \Bigr] v_{31}(r)
988     % 3
989     -\frac{1}{4\pi \epsilon_0}
990     \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
991     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
992     \end{equation}
993     %
994     %
995     %
996     \begin{equation}
997     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
998     \frac{1}{4\pi \epsilon_0} \Bigl[
999     +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1000     \hat{r}
1001     -2 \mathbf{D}_{\mathbf{a}} \times
1002     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1003     \Bigr] v_{31}(r)
1004     % 2
1005     +\frac{2}{4\pi \epsilon_0}
1006     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1007     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1008     \end{equation}
1009     %
1010     %
1011     %
1012     \begin{equation}
1013     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1014     \frac{1}{4\pi \epsilon_0} \Bigl[
1015     -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1016     +2 \mathbf{D}_{\mathbf{b}} \times
1017     (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1018     \Bigr] v_{31}(r)
1019     % 3
1020     - \frac{2}{4\pi \epsilon_0}
1021     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1022     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1023     \end{equation}
1024     %
1025     %
1026     %
1027     \begin{equation}
1028     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1029     \frac{1}{4\pi \epsilon_0} \Bigl[
1030     \text{Tr}\mathbf{Q}_{\mathbf{a}}
1031     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1032     +2 \mathbf{D}_{\mathbf{b}} \times
1033     ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1034     % 2
1035     +\frac{1}{4\pi \epsilon_0}
1036     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1037     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1038     \end{equation}
1039     %
1040     %
1041     %
1042     \begin{equation}
1043     \begin{split}
1044     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1045     &-\frac{4}{4\pi \epsilon_0}
1046     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1047     v_{41}(r) \\
1048     % 2
1049     &+ \frac{1}{4\pi \epsilon_0}
1050     \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1051     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1052     +4 \hat{r} \times
1053     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1054     % 3
1055     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1056     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1057     % 4
1058     &+ \frac{2}{4\pi \epsilon_0}
1059     \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1060     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1061     \end{split}
1062     \end{equation}
1063     %
1064     %
1065     %
1066     \begin{equation}
1067     \begin{split}
1068     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1069     &\frac{4}{4\pi \epsilon_0}
1070     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1071     % 2
1072     &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1073     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1074     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1075     \mathbf{Q}_{{\mathbf b}} ) \times
1076     \hat{r}
1077     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1078     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1079     \Bigr] v_{42}(r) \\
1080     % 4
1081     &+ \frac{2}{4\pi \epsilon_0}
1082     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1083     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1084     \end{split}
1085     \end{equation}
1086     %
1087     %
1088     %
1089     \begin{acknowledgments}
1090     We wish to acknowledge the support of the author community in using
1091     REV\TeX{}, offering suggestions and encouragement, testing new versions,
1092     \dots.
1093     \end{acknowledgments}
1094    
1095     \appendix
1096    
1097     \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1098    
1099     The following summarizes Smith's $B_l(r)$ functions and
1100     includes formulas given in his appendix.
1101    
1102     The first function $B_0(r)$ is defined by
1103     %
1104     \begin{equation}
1105     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1106     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1107     \end{equation}
1108     %
1109     The first derivative of this function is
1110     %
1111     \begin{equation}
1112     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1113     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1114     \end{equation}
1115     %
1116     and can be rewritten in terms of a function $B_1(r)$:
1117     %
1118     \begin{equation}
1119     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1120     \end{equation}
1121     %
1122     In general,
1123     \begin{equation}
1124     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1125     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1126     \text{e}^{-{\alpha}^2r^2}
1127     \right] .
1128     \end{equation}
1129     %
1130     Using these formulas, we find
1131     %
1132     \begin{eqnarray}
1133     \frac{dB_0}{dr}=-rB_1(r) \\
1134     \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1135     \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1136     \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1137     \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1138     \end{eqnarray}
1139     %
1140     As noted by Smith,
1141     %
1142     \begin{equation}
1143     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1144     +\text{O}(r) .
1145     \end{equation}
1146    
1147     \section{Method 1, the $r$-dependent factors}
1148    
1149     Using the shifted damped functions $f_n(r)$ defined by:
1150     %
1151     \begin{equation}
1152     f_n(r)= B_0 \Big \lvert _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert _{r_c} ,
1153     \end{equation}
1154     %
1155     we first provide formulas for successive derivatives of this function. (If there is
1156     no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.) First, we find:
1157     %
1158     \begin{equation}
1159     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1160     \end{equation}
1161     %
1162     This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1163     define higher-order derivatives as follows:
1164     %
1165     \begin{eqnarray}
1166     g_n(r)= \frac{d f_n}{d r} =
1167     B_0^{(1)} \Big \lvert _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert _{r_c} \\
1168     h_n(r)= \frac{d^2f_n}{d r^2} =
1169     B_0^{(2)} \Big \lvert _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert _{r_c} \\
1170     s_n(r)= \frac{d^3f_n}{d r^3} =
1171     B_0^{(3)} \Big \lvert _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert _{r_c} \\
1172     t_n(r)= \frac{d^4f_n}{d r^4} =
1173     B_0^{(4)} \Big \lvert _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert _{r_c} \\
1174     u_n(r)= \frac{d^5f_n}{d r^5} =
1175     B_0^{(5)} \Big \lvert _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert _{r_c} .
1176     \end{eqnarray}
1177     %
1178     We note that the last function needed (for quadrupole-quadrupole) is
1179     %
1180     \begin{equation}
1181     u_4(r)=B_0^{(5)} \Big \lvert _r - B_0^{(5)} \Big \lvert _{r_c} .
1182     \end{equation}
1183    
1184     The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1185     from $0$ to $r_c$. The functions needed are listed schematically below:
1186     %
1187     \begin{eqnarray}
1188     f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1189     g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1190     h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1191     s_2 \quad s_3 \quad &s_4 \nonumber \\
1192     t_3 \quad &t_4 \nonumber \\
1193     &u_4 \nonumber .
1194     \end{eqnarray}
1195    
1196     Using these functions, we find
1197     %
1198     \begin{equation}
1199     \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1200     \end{equation}
1201     %
1202     \begin{equation}
1203     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1204     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1205     \end{equation}
1206     %
1207     \begin{equation}
1208     \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1209     \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1210     \delta_{ \beta \gamma} r_\alpha \right)
1211     \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1212     + r_\alpha r_\beta r_\gamma
1213     \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1214     \end{equation}
1215     %
1216     \begin{eqnarray}
1217     \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1218     \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1219     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1220     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1221     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1222     + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1223     + \text{5 perm}
1224     \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1225     \right) \nonumber \\
1226     + r_\alpha r_\beta r_\gamma r_\delta
1227     \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1228     + \frac{t_n}{r^4} \right)
1229     \end{eqnarray}
1230     %
1231     \begin{eqnarray}
1232     \frac{\partial^5 f_n}
1233     {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1234     \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1235     + \text{14 perm} \right)
1236     \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1237     + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1238     + \text{9 perm}
1239     \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1240     \right) \nonumber \\
1241     + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1242     \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1243     - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1244     \end{eqnarray}
1245     %
1246     %
1247     %
1248     \section{Method 2, the $r$-dependent factors}
1249    
1250     In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1251     see Eq. (20?). For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1252     of the kernel $B_0(r)$. To denote these terms, we generalize the notation of the previous appendix.
1253     For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1254     %
1255     \begin{eqnarray}
1256     g(r)= \frac{df}{d r}\\
1257     h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1258     s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1259     t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1260     u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1261     \end{eqnarray}
1262     %
1263     For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.'' Checks of algebra can be made by using limiting forms
1264     of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$. Equations (B9) to B(13)
1265     are correct for method 2 if one just eliminates the subscript $n$.
1266    
1267     \section{Extra Material}
1268     %
1269     %
1270     %Energy in body coordinate form ---------------------------------------------------------------
1271     %
1272     Here are the interaction energies written in terms of the body coordinates:
1273    
1274     %
1275     % u ca cb
1276     %
1277     \begin{equation}
1278     U_{C_{\bf a}C_{\bf b}}(r)=
1279     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1280     \end{equation}
1281     %
1282     % u ca db
1283     %
1284     \begin{equation}
1285     U_{C_{\bf a}D_{\bf b}}(r)=
1286     \frac{C_{\bf a}}{4\pi \epsilon_0}
1287     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1288     \end{equation}
1289     %
1290     % u ca qb
1291     %
1292     \begin{equation}
1293     U_{C_{\bf a}Q_{\bf b}}(r)=
1294     \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1295     v_{21}(r) \nonumber \\
1296     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1297     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1298     v_{22}(r)
1299     \end{equation}
1300     %
1301     % u da cb
1302     %
1303     \begin{equation}
1304     U_{D_{\bf a}C_{\bf b}}(r)=
1305     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1306     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1307     \end{equation}
1308     %
1309     % u da db
1310     %
1311     \begin{equation}
1312     \begin{split}
1313     % 1
1314     U_{D_{\bf a}D_{\bf b}}(r)&=
1315     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1316     (\hat{a}_m \cdot \hat{b}_n)
1317     D_{\mathbf{b}n} v_{21}(r) \\
1318     % 2
1319     &-\frac{1}{4\pi \epsilon_0}
1320     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1321     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1322     v_{22}(r)
1323     \end{split}
1324     \end{equation}
1325     %
1326     % u da qb
1327     %
1328     \begin{equation}
1329     \begin{split}
1330     % 1
1331     U_{D_{\bf a}Q_{\bf b}}(r)&=
1332     -\frac{1}{4\pi \epsilon_0} \left(
1333     \text{Tr}Q_{\mathbf{b}}
1334     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1335     +2\sum_{lmn}D_{\mathbf{a}l}
1336     (\hat{a}_l \cdot \hat{b}_m)
1337     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1338     \right) v_{31}(r) \\
1339     % 2
1340     &-\frac{1}{4\pi \epsilon_0}
1341     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1342     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1343     Q_{{\mathbf b}mn}
1344     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1345     \end{split}
1346     \end{equation}
1347     %
1348     % u qa cb
1349     %
1350     \begin{equation}
1351     U_{Q_{\bf a}C_{\bf b}}(r)=
1352     \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1353     +\frac{C_{\bf b}}{4\pi \epsilon_0}
1354     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1355     \end{equation}
1356     %
1357     % u qa db
1358     %
1359     \begin{equation}
1360     \begin{split}
1361     %1
1362     U_{Q_{\bf a}D_{\bf b}}(r)&=
1363     \frac{1}{4\pi \epsilon_0} \left(
1364     \text{Tr}Q_{\mathbf{a}}
1365     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1366     +2\sum_{lmn}D_{\mathbf{b}l}
1367     (\hat{b}_l \cdot \hat{a}_m)
1368     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1369     \right) v_{31}(r) \\
1370     % 2
1371     &+\frac{1}{4\pi \epsilon_0}
1372     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1373     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1374     Q_{{\mathbf a}mn}
1375     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1376     \end{split}
1377     \end{equation}
1378     %
1379     % u qa qb
1380     %
1381     \begin{equation}
1382     \begin{split}
1383     %1
1384     U_{Q_{\bf a}Q_{\bf b}}(r)&=
1385     \frac{1}{4\pi \epsilon_0} \Bigl[
1386     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1387     +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1388     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1389     (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1390     v_{41}(r) \\
1391     % 2
1392     &+ \frac{1}{4\pi \epsilon_0}
1393     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1394     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1395     Q_{{\mathbf b}lm}
1396     (\hat{b}_m \cdot \hat{r})
1397     +\text{Tr}Q_{\mathbf{b}}
1398     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1399     Q_{{\mathbf a}lm}
1400     (\hat{a}_m \cdot \hat{r}) \\
1401     % 3
1402     &+4 \sum_{lmnp}
1403     (\hat{r} \cdot \hat{a}_l )
1404     Q_{{\mathbf a}lm}
1405     (\hat{a}_m \cdot \hat{b}_n)
1406     Q_{{\mathbf b}np}
1407     (\hat{b}_p \cdot \hat{r})
1408     \Bigr] v_{42}(r) \\
1409     % 4
1410     &+ \frac{1}{4\pi \epsilon_0}
1411     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1412     Q_{{\mathbf a}lm}
1413     (\hat{a}_m \cdot \hat{r})
1414     \sum_{np} (\hat{r} \cdot \hat{b}_n)
1415     Q_{{\mathbf b}np}
1416     (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1417     \end{split}
1418     \end{equation}
1419     %
1420    
1421    
1422     % BODY coordinates force equations --------------------------------------------
1423     %
1424     %
1425     Here are the force equations written in terms of body coordinates.
1426     %
1427     % f ca cb
1428     %
1429     \begin{equation}
1430     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1431     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1432     \end{equation}
1433     %
1434     % f ca db
1435     %
1436     \begin{equation}
1437     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1438     \frac{C_{\bf a}}{4\pi \epsilon_0}
1439     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1440     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1441     \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1442     \end{equation}
1443     %
1444     % f ca qb
1445     %
1446     \begin{equation}
1447     \begin{split}
1448     % 1
1449     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1450     \frac{1}{4\pi \epsilon_0}
1451     C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1452     + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1453     % 2
1454     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1455     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1456     \end{split}
1457     \end{equation}
1458     %
1459     % f da cb
1460     %
1461     \begin{equation}
1462     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1463     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1464     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1465     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1466     \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1467     \end{equation}
1468     %
1469     % f da db
1470     %
1471     \begin{equation}
1472     \begin{split}
1473     % 1
1474     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1475     -\frac{1}{4\pi \epsilon_0}
1476     \sum_{mn} D_{\mathbf {a}m}
1477     (\hat{a}_m \cdot \hat{b}_n)
1478     D_{\mathbf{b}n} w_d(r) \hat{r}
1479     -\frac{1}{4\pi \epsilon_0}
1480     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1481     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1482     % 2
1483     & \quad + \frac{1}{4\pi \epsilon_0}
1484     \Bigl[ \sum_m D_{\mathbf {a}m}
1485     \hat{a}_m \sum_n D_{\mathbf{b}n}
1486     (\hat{b}_n \cdot \hat{r})
1487     + \sum_m D_{\mathbf {b}m}
1488     \hat{b}_m \sum_n D_{\mathbf{a}n}
1489     (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1490     \end{split}
1491     \end{equation}
1492     %
1493     % f da qb
1494     %
1495     \begin{equation}
1496     \begin{split}
1497     % 1
1498     &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1499     - \frac{1}{4\pi \epsilon_0} \Bigl[
1500     \text{Tr}Q_{\mathbf{b}}
1501     \sum_l D_{\mathbf{a}l} \hat{a}_l
1502     +2\sum_{lmn} D_{\mathbf{a}l}
1503     (\hat{a}_l \cdot \hat{b}_m)
1504     Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1505     % 3
1506     & - \frac{1}{4\pi \epsilon_0} \Bigl[
1507     \text{Tr}Q_{\mathbf{b}}
1508     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1509     +2\sum_{lmn}D_{\mathbf{a}l}
1510     (\hat{a}_l \cdot \hat{b}_m)
1511     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1512     % 4
1513     &+ \frac{1}{4\pi \epsilon_0}
1514     \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1515     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1516     Q_{{\mathbf b}mn}
1517     (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1518     D_{\mathbf{a}l}
1519     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1520     Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1521     % 6
1522     & -\frac{1}{4\pi \epsilon_0}
1523     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1524     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1525     Q_{{\mathbf b}mn}
1526     (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1527     \end{split}
1528     \end{equation}
1529     %
1530     % force qa cb
1531     %
1532     \begin{equation}
1533     \begin{split}
1534     % 1
1535     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1536     \frac{1}{4\pi \epsilon_0}
1537     C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1538     + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1539     % 2
1540     & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1541     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1542     \end{split}
1543     \end{equation}
1544     %
1545     % f qa db
1546     %
1547     \begin{equation}
1548     \begin{split}
1549     % 1
1550     &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1551     \frac{1}{4\pi \epsilon_0} \Bigl[
1552     \text{Tr}Q_{\mathbf{a}}
1553     \sum_l D_{\mathbf{b}l} \hat{b}_l
1554     +2\sum_{lmn} D_{\mathbf{b}l}
1555     (\hat{b}_l \cdot \hat{a}_m)
1556     Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1557     w_g(r)\\
1558     % 3
1559     & + \frac{1}{4\pi \epsilon_0} \Bigl[
1560     \text{Tr}Q_{\mathbf{a}}
1561     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1562     +2\sum_{lmn}D_{\mathbf{b}l}
1563     (\hat{b}_l \cdot \hat{a}_m)
1564     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1565     % 4
1566     & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1567     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1568     Q_{{\mathbf a}mn}
1569     (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1570     D_{\mathbf{b}l}
1571     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1572     Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1573     % 6
1574     & +\frac{1}{4\pi \epsilon_0}
1575     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1576     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1577     Q_{{\mathbf a}mn}
1578     (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1579     \end{split}
1580     \end{equation}
1581     %
1582     % f qa qb
1583     %
1584     \begin{equation}
1585     \begin{split}
1586     &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1587     \frac{1}{4\pi \epsilon_0} \Bigl[
1588     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1589     + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1590     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1591     (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1592     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1593     2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1594     + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1595     &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1596     + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1597     \Bigr] w_n(r) \\
1598     &+ \frac{1}{4\pi \epsilon_0}
1599     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1600     \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1601     + \text{Tr}Q_{\mathbf{b}}
1602     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1603     &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1604     Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1605     %
1606     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1607     2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1608     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1609     &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1610     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1611     & + \frac{1}{4\pi \epsilon_0}
1612     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1613     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1614     \end{split}
1615     \end{equation}
1616     %
1617     Here we list the form of the non-zero damped shifted multipole torques showing
1618     explicitly dependences on body axes:
1619     %
1620     % t ca db
1621     %
1622     \begin{equation}
1623     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1624     \frac{C_{\bf a}}{4\pi \epsilon_0}
1625     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1626     \end{equation}
1627     %
1628     % t ca qb
1629     %
1630     \begin{equation}
1631     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1632     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1633     \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1634     \end{equation}
1635     %
1636     % t da cb
1637     %
1638     \begin{equation}
1639     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1640     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1641     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1642     \end{equation}%
1643     %
1644     %
1645     % ta da db
1646     %
1647     \begin{equation}
1648     \begin{split}
1649     % 1
1650     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1651     \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1652     (\hat{a}_m \times \hat{b}_n)
1653     D_{\mathbf{b}n} v_{21}(r) \\
1654     % 2
1655     &-\frac{1}{4\pi \epsilon_0}
1656     \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1657     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1658     \end{split}
1659     \end{equation}
1660     %
1661     % tb da db
1662     %
1663     \begin{equation}
1664     \begin{split}
1665     % 1
1666     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1667     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1668     (\hat{a}_m \times \hat{b}_n)
1669     D_{\mathbf{b}n} v_{21}(r) \\
1670     % 2
1671     &+\frac{1}{4\pi \epsilon_0}
1672     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1673     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1674     \end{split}
1675     \end{equation}
1676     %
1677     % ta da qb
1678     %
1679     \begin{equation}
1680     \begin{split}
1681     % 1
1682     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1683     \frac{1}{4\pi \epsilon_0} \left(
1684     -\text{Tr}Q_{\mathbf{b}}
1685     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1686     +2\sum_{lmn}D_{\mathbf{a}l}
1687     (\hat{a}_l \times \hat{b}_m)
1688     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1689     \right) v_{31}(r)\\
1690     % 2
1691     &-\frac{1}{4\pi \epsilon_0}
1692     \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
1693     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1694     Q_{{\mathbf b}mn}
1695     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1696     \end{split}
1697     \end{equation}
1698     %
1699     % tb da qb
1700     %
1701     \begin{equation}
1702     \begin{split}
1703     % 1
1704     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
1705     \frac{1}{4\pi \epsilon_0} \left(
1706     -2\sum_{lmn}D_{\mathbf{a}l}
1707     (\hat{a}_l \cdot \hat{b}_m)
1708     Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
1709     -2\sum_{lmn}D_{\mathbf{a}l}
1710     (\hat{a}_l \times \hat{b}_m)
1711     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1712     \right) v_{31}(r) \\
1713     % 2
1714     &-\frac{2}{4\pi \epsilon_0}
1715     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1716     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1717     Q_{{\mathbf b}mn}
1718     (\hat{r}\times \hat{b}_n) v_{32}(r)
1719     \end{split}
1720     \end{equation}
1721     %
1722     % ta qa cb
1723     %
1724     \begin{equation}
1725     \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1726     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1727     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
1728     \end{equation}
1729     %
1730     % ta qa db
1731     %
1732     \begin{equation}
1733     \begin{split}
1734     % 1
1735     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
1736     \frac{1}{4\pi \epsilon_0} \left(
1737     2\sum_{lmn}D_{\mathbf{b}l}
1738     (\hat{b}_l \cdot \hat{a}_m)
1739     Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
1740     +2\sum_{lmn}D_{\mathbf{b}l}
1741     (\hat{a}_l \times \hat{b}_m)
1742     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1743     \right) v_{31}(r) \\
1744     % 2
1745     &+\frac{2}{4\pi \epsilon_0}
1746     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1747     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1748     Q_{{\mathbf a}mn}
1749     (\hat{r}\times \hat{a}_n) v_{32}(r)
1750     \end{split}
1751     \end{equation}
1752     %
1753     % tb qa db
1754     %
1755     \begin{equation}
1756     \begin{split}
1757     % 1
1758     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
1759     \frac{1}{4\pi \epsilon_0} \left(
1760     \text{Tr}Q_{\mathbf{a}}
1761     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
1762     +2\sum_{lmn}D_{\mathbf{b}l}
1763     (\hat{a}_l \times \hat{b}_m)
1764     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1765     \right) v_{31}(r)\\
1766     % 2
1767     &\frac{1}{4\pi \epsilon_0}
1768     \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
1769     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1770     Q_{{\mathbf a}mn}
1771     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1772     \end{split}
1773     \end{equation}
1774     %
1775     % ta qa qb
1776     %
1777     \begin{equation}
1778     \begin{split}
1779     % 1
1780     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
1781     -\frac{4}{4\pi \epsilon_0}
1782     \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
1783     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1784     (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
1785     % 2
1786     &+ \frac{1}{4\pi \epsilon_0}
1787     \Bigl[
1788     2\text{Tr}Q_{\mathbf{b}}
1789     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1790     Q_{{\mathbf a}lm}
1791     (\hat{r} \times \hat{a}_m)
1792     +4 \sum_{lmnp}
1793     (\hat{r} \times \hat{a}_l )
1794     Q_{{\mathbf a}lm}
1795     (\hat{a}_m \cdot \hat{b}_n)
1796     Q_{{\mathbf b}np}
1797     (\hat{b}_p \cdot \hat{r}) \\
1798     % 3
1799     &-4 \sum_{lmnp}
1800     (\hat{r} \cdot \hat{a}_l )
1801     Q_{{\mathbf a}lm}
1802     (\hat{a}_m \times \hat{b}_n)
1803     Q_{{\mathbf b}np}
1804     (\hat{b}_p \cdot \hat{r})
1805     \Bigr] v_{42}(r) \\
1806     % 4
1807     &+ \frac{2}{4\pi \epsilon_0}
1808     \sum_{lm} (\hat{r} \times \hat{a}_l)
1809     Q_{{\mathbf a}lm}
1810     (\hat{a}_m \cdot \hat{r})
1811     \sum_{np} (\hat{r} \cdot \hat{b}_n)
1812     Q_{{\mathbf b}np}
1813     (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
1814     \end{split}
1815     \end{equation}
1816     %
1817     % tb qa qb
1818     %
1819     \begin{equation}
1820     \begin{split}
1821     % 1
1822     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
1823     \frac{4}{4\pi \epsilon_0}
1824     \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1825     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1826     (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
1827     % 2
1828     &+ \frac{1}{4\pi \epsilon_0}
1829     \Bigl[
1830     2\text{Tr}Q_{\mathbf{a}}
1831     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1832     Q_{{\mathbf b}lm}
1833     (\hat{r} \times \hat{b}_m)
1834     +4 \sum_{lmnp}
1835     (\hat{r} \cdot \hat{a}_l )
1836     Q_{{\mathbf a}lm}
1837     (\hat{a}_m \cdot \hat{b}_n)
1838     Q_{{\mathbf b}np}
1839     (\hat{r} \times \hat{b}_p) \\
1840     % 3
1841     &+4 \sum_{lmnp}
1842     (\hat{r} \cdot \hat{a}_l )
1843     Q_{{\mathbf a}lm}
1844     (\hat{a}_m \times \hat{b}_n)
1845     Q_{{\mathbf b}np}
1846     (\hat{b}_p \cdot \hat{r})
1847     \Bigr] v_{42}(r) \\
1848     % 4
1849     &+ \frac{2}{4\pi \epsilon_0}
1850     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1851     Q_{{\mathbf a}lm}
1852     (\hat{a}_m \cdot \hat{r})
1853     \sum_{np} (\hat{r} \times \hat{b}_n)
1854     Q_{{\mathbf b}np}
1855     (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
1856     \end{split}
1857     \end{equation}
1858     %
1859     \begin{table*}
1860     \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
1861     \begin{ruledtabular}
1862     \begin{tabular}{ccc}
1863     Generic&Method 1&Method 2
1864     \\ \hline
1865     %
1866     %
1867     %
1868     $w_a(r)$&
1869     $g_0(r)$&
1870     $g(r)-g(r_c)$ \\
1871     %
1872     %
1873     $w_b(r)$ &
1874     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
1875     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
1876     %
1877     $w_c(r)$ &
1878     $\frac{g_1(r)}{r} $ &
1879     $\frac{v_{11}(r)}{r}$ \\
1880     %
1881     %
1882     $w_d(r)$&
1883     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
1884     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
1885     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
1886     %
1887     $w_e(r)$ &
1888     $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
1889     $\frac{v_{22}(r)}{r}$ \\
1890     %
1891     %
1892     $w_f(r)$&
1893     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
1894     $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
1895     &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
1896     %
1897     $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
1898     $\frac{v_{31}(r)}{r}$\\
1899     %
1900     $w_h(r)$ &
1901     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1902     $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
1903     &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1904     &&$-\frac{v_{31}(r)}{r}$\\
1905     % 2
1906     $w_i(r)$ &
1907     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1908     $\frac{v_{32}(r)}{r}$ \\
1909     %
1910     $w_j(r)$ &
1911     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
1912     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
1913     &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
1914     %
1915     $w_k(r)$ &
1916     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1917     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
1918     &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
1919     %
1920     $w_l(r)$ &
1921     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1922     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
1923     &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
1924     -\frac{2v_{42}(r)}{r}$ \\
1925     %
1926     $w_m(r)$ &
1927     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
1928     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
1929     &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
1930     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
1931     &&$-\frac{4v_{43}(r)}{r}$ \\
1932     %
1933     $w_n(r)$ &
1934     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1935     $\frac{v_{42}(r)}{r}$ \\
1936     %
1937     $w_o(r)$ &
1938     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1939     $\frac{v_{43}(r)}{r}$ \\
1940     %
1941     \end{tabular}
1942     \end{ruledtabular}
1943     \end{table*}
1944     \end{document}
1945     %
1946     % ****** End of file multipole.tex ******