ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3980
Committed: Fri Dec 6 18:50:14 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 76525 byte(s)
Log Message:
Latest edits

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     ]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
35     \usepackage{url}
36    
37 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
38     %\linenumbers\relax % Commence numbering lines
39    
40     \begin{document}
41    
42     \preprint{AIP/123-QED}
43    
44 gezelter 3980 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
45     {Real space alternatives to the Ewald
46     Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
47 gezelter 3906
48     \author{Madan Lamichhane}
49     \affiliation{Department of Physics, University
50     of Notre Dame, Notre Dame, IN 46556}
51    
52     \author{J. Daniel Gezelter}
53     \email{gezelter@nd.edu.}
54     \affiliation{Department of Chemistry and Biochemistry, University
55     of Notre Dame, Notre Dame, IN 46556}
56    
57     \author{Kathie E. Newman}
58     \affiliation{Department of Physics, University
59     of Notre Dame, Notre Dame, IN 46556}
60    
61    
62     \date{\today}% It is always \today, today,
63     % but any date may be explicitly specified
64    
65     \begin{abstract}
66 gezelter 3980 We have extended the original damped-shifted force (DSF)
67     electrostatic kernel and have been able to derive two new
68     electrostatic potentials for higher-order multipoles that are based
69     on truncated Taylor expansions around the cutoff radius. For
70     multipole-multipole interactions, we find that each of the distinct
71     orientational contributions has a separate radial function to ensure
72     that the overall forces and torques vanish at the cutoff radius. In
73     this paper, we present energy, force, and torque expressions for the
74     new models, and compare these real-space interaction models to exact
75     results for ordered arrays of multipoles.
76 gezelter 3906 \end{abstract}
77    
78     \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
79     % Classification Scheme.
80     \keywords{Suggested keywords}%Use showkeys class option if keyword
81     %display desired
82     \maketitle
83    
84     \section{Introduction}
85    
86 gezelter 3980 There is increasing interest in real-space methods for calculating
87     electrostatic interactions in computer simulations of condensed
88     molecular
89     systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90     The simplest of these techniques was developed by Wolf {\it et al.}
91     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92     Fennell and Gezelter showed that a simple damped shifted force (DSF)
93     modification to Wolf's method could give nearly quantitative agreement
94     with smooth particle mesh Ewald (SPME)\cite{Essmann95} for quantities
95     of interest in Monte Carlo (i.e., configurational energy differences)
96     and Molecular Dynamics (i.e., atomic force and molecular torque
97     vectors).\cite{Fennell:2006zl}
98 gezelter 3906
99 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
100     surprisingly good, particularly for systems with uniform charge
101     density. Additionally, dielectric constants obtained using DSF and
102     similar methods where the force vanishes at $R_\textrm{c}$ are
103     essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
104     related methods have now been widely investigated,\cite{Hansen:2012uq}
105     and DSF is now used routinely in simulations of ionic
106     liquids,\cite{doi:10.1021/la400226g,McCann:2013fk} flow in carbon
107     nanotubes,\cite{kannam:094701} gas sorption in metal-organic framework
108     materials,\cite{Forrest:2012ly} thermal conductivity of methane
109     hydrates,\cite{English:2008kx} condensation coefficients of
110     water,\cite{Louden:2013ve} and in tribology at solid-liquid-solid
111     interfaces.\cite{Tokumasu:2013zr} DSF electrostatics provides a
112     compromise between the computational speed of real-space cutoffs and
113     the accuracy of fully-periodic Ewald treatments.
114 gezelter 3906
115 gezelter 3980 One common feature of many coarse-graining approaches, which treat
116     entire molecular subsystems as a single rigid body, is simplification
117     of the electrostatic interactions between these bodies so that fewer
118     site-site interactions are required to compute configurational
119     energies. Notably, the force matching approaches of Voth and coworkers
120     are an exciting development in their ability to represent realistic
121     (and {\it reactive}) chemical systems for very large length scales and
122     long times. This approach utilized a coarse-graining in interaction
123     space (CGIS) which fits an effective force for the coarse grained
124     system using a variational force-matching method to a fine-grained
125     simulation.\cite{Izvekov:2008wo}
126 gezelter 3906
127 gezelter 3980 The coarse-graining approaches of Ren \& coworkers,\cite{Golubkov06}
128     and Essex \&
129     coworkers,\cite{ISI:000276097500009,ISI:000298664400012}
130     both utilize Gay-Berne
131     ellipsoids~\cite{Berne72,Gay81,Luckhurst90,Cleaver96,Berardi98,Ravichandran:1999fk,Berardi99,Pasterny00}
132     to model dispersive interactions and point multipoles to model
133     electrostatics for entire molecules or functional groups.
134 gezelter 3906
135 gezelter 3980 Ichiye and coworkers have recently introduced a number of very fast
136     water models based on a ``sticky'' multipole model which are
137     qualitatively better at reproducing the behavior of real water than
138     the more common point-charge models (SPC/E, TIPnP). The point charge
139     models are also substantially more computationally demanding than the
140     sticky multipole
141     approach.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The
142     SSDQO model requires the use of an approximate multipole expansion
143     (AME) as the exact multipole expansion is quite expensive
144     (particularly when handled via the Ewald sum).\cite{Ichiye:2006qy}
145     Another particularly important use of point multipoles (and multipole
146     polarizability) is in the very high-quality AMOEBA water model and
147     related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
148 gezelter 3906
149 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
150     dynamics. Multipolar interactions are inherently short-ranged, and
151     should not need the relatively expensive Ewald treatment. However,
152     real-space cutoff methods are normally applied in an orientation-blind
153     fashion so multipoles which leave and then re-enter a cutoff sphere in
154     a different orientation can cause energy discontinuities.
155 gezelter 3906
156 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
157     kernel to point multipoles. We present in this paper two distinct
158     real-space interaction models for higher-order multipoles based on two
159     truncated Taylor expansions that are carried out at the cutoff radius.
160     We are calling these models {\bf Taylor-shifted} and {\bf
161     Gradient-shifted} electrostatics. Because of differences in the
162     initial assumptions, the two methods yield related, but different
163     expressions for energies, forces, and torques.
164 gezelter 3906
165 gezelter 3980 \section{Methodology}
166 gezelter 3906
167 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
168 gezelter 3906
169 gezelter 3980 The DSF and Wolf methods operate by neutralizing the total charge
170     contained within the cutoff sphere surrounding each particle. This is
171     accomplished by shifting the potential functions to generate image
172     charges on the surface of the cutoff sphere for each pair interaction
173     computed within $R_\textrm{c}$. An Ewald-like complementary error
174     function damping is applied to the potential to accelerate
175     convergence. The potential for the DSF method, where $\alpha$ is the
176     adjustable damping parameter, is given by
177     \begin{equation*}
178     V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
179     \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
180     - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
181     + \frac{2\alpha}{\pi^{1/2}}
182     \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
183     \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
184     \label{eq:DSFPot}
185     \end{equation*}
186    
187     To insure net charge neutrality within each cutoff sphere, an
188     additional ``self'' term is added to the potential. This term is
189     constant (as long as the charges and cutoff radius do not change), and
190     exists outside the normal pair-loop for molecular simulations. It can
191     be thought of as a contribution from a charge opposite in sign, but
192     equal in magnitude, to the central charge, which has been spread out
193     over the surface of the cutoff sphere. A portion of the self term is
194     identical to the self term in the Ewald summation, and comes from the
195     utilization of the complimentary error function for electrostatic
196     damping.\cite{deLeeuw80,Wolf99}
197    
198     \begin{figure}
199     \includegraphics[width=\linewidth]{SM}
200     \caption{Reversed multipoles are projected onto the surface of the
201     cutoff sphere. The forces, torques, and potential are then smoothly
202     shifted to zero as the sites leave the cutoff region.}
203     \label{fig:shiftedMultipoles}
204     \end{figure}
205    
206 gezelter 3906 \subsection{Multipole Expansion}
207    
208 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
209     objects $\bf a$ and $\bf b$. In the following, we assume that the two
210     objects only interact via electrostatics and describe those
211     interactions in terms of a multipole expansion. Putting the origin of
212     the coordinate system at the center of mass of $\bf a$, we use vectors
213     $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
214     a$. Then the electrostatic potential of object $\bf a$ at
215     $\mathbf{r}$ is given by
216 gezelter 3906 \begin{equation}
217     V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
218     \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
219     \end{equation}
220 gezelter 3980 We write the Taylor series expansion in $r$ using an implied summation
221     notation, Greek indices are used to indicate space coordinates ($x$,
222     $y$, $z$) and the subscripts $k$ and $j$ are reserved for labelling
223     specific charges in $\bf a$ and $\bf b$ respectively, and find:
224 gezelter 3906 \begin{equation}
225     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
226     \left( 1
227     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
228     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
229     \right)
230     \frac{1}{r} .
231     \end{equation}
232 gezelter 3980 The electrostatic potential on $\bf a$ can then be expressed in terms
233     of multipole operators,
234 gezelter 3906 \begin{equation}
235     V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
236     \end{equation}
237     where
238     \begin{equation}
239     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
240     + Q_{{\bf a}\alpha\beta}
241     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
242     \end{equation}
243 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
244     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
245     a}\alpha\beta}$, respectively. These can be tied to distribution
246     of charges
247 gezelter 3906 \begin{equation}
248     C_{\bf a}=\sum_{k \, \text{in \bf a}} q_k ,
249     \end{equation}
250     \begin{equation}
251     D_{{\bf a}\alpha} = \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,
252     \end{equation}
253     \begin{equation}
254     Q_{{\bf a}\alpha\beta} = \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
255     \end{equation}
256    
257     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
258     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
259     \begin{eqnarray}
260     U_{\bf{ab}}(r) =&& \frac{1}{4\pi \epsilon_0}
261     \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
262     \frac{q_k q_j}{\vert \bf{r}_k - (\bf{r}+\bf{r}_j) \vert} \nonumber\\
263     =&& \frac{1}{4\pi \epsilon_0}
264     \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
265     \frac{q_k q_j}{\vert \bf{r}+ (\bf{r}_j-\bf{r}_k) \vert} \nonumber\\
266     =&&\frac{1}{4\pi \epsilon_0} \sum_{j \, \text{in \bf b}} q_j V_a(\bf{r}+\bf{r}_j) \nonumber\\
267     =&&\frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
268     \end{eqnarray}
269     The last expression can also be expanded as a Taylor series in $r$. Using a notation similar to before, we define
270     \begin{equation}
271     \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
272     + Q_{{\bf b}\alpha\beta}
273     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
274     \end{equation}
275     and
276     \begin{equation}
277     U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
278     \end{equation}
279     Note the ease of separting out the respective energies of interaction of the charge, dipole, and quadrupole of $\bf a$ from those of $\bf b$.
280    
281     \subsection{Bare Coulomb versus smeared charge}
282    
283     With the four types of methods being considered here, it is desirable to list the approximations in as transparent a form
284     as possible. First, one may use the bare Coulomb potential, with radial dependence $1/r$,
285     as shown in Eq.~(\ref{kernel}). Alternatively, one may use
286     a smeared charge distribution, then the``kernel'' $1/r$ of the expansion is replaced with a function:
287     \begin{equation}
288     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
289     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
290     \end{equation}
291     We develop equations using a function $f(r)$ to represent either $1/r$ or $B_0(r)$, dependent on the the type of approach being considered.
292     Smith's convenient functions $B_l(r)$ are summarized in Appendix A.
293    
294     \subsection{Shifting the force, method 1}
295    
296     As discussed in the introduction, it is desirable to cutoff the electrostatic energy at a radius
297     $r_c$. For consistency in approximation, we want the interaction energy as well as the force and
298     torque to go to zero at $r=r_c$.
299     To describe how this goal may be met using a radial approximation, we use two examples, charge-charge
300     and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain the idea.
301    
302     In the shifted-force approximation, the interaction energy $U_{\bf{ab}}(r_c)=0$
303     for two charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is written:
304     \begin{equation}
305     U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
306     \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
307     \right) .
308     \end{equation}
309     Two shifting terms appear in this equations because we want the force to
310     also be shifted due to an image charge located at a distance $r_c$.
311     Since one derivative of the interaction energy is needed for the force, we want a term
312     linear in $(r-r_c)$ in the interaction energy, that is:
313     \begin{equation}
314     \frac{d\,}{dr}
315     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
316     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
317     \right) .
318     \end{equation}
319     This demonstrates the need of the third term in the brackets of the energy expression, but leads to the question, how does this idea generalize for higher-order multipole energies?
320    
321     In method 1, the procedure that we follow is based on the number of derivatives need for each energy, force, or torque. That is,
322     a quadrupole-quadrupole interaction energy will have four derivatives,
323     $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$,
324     and the force or torque will bring in yet another derivative.
325     We thus want shifted energy expressions to include terms so that all energies, forces, and torques
326     are zero at $r=r_c$. In each case, we will subtract off a function $f_n^{\text{shift}}(r)$ from the
327     kernel $f(r)=1/r$. The index $n$ indicates the number of derivatives to be taken when
328     deriving a given multipole energy.
329     We choose a function with guaranteed smooth derivatives --- a truncated Taylor series of the function
330     $f(r)$, e.g.,
331     %
332     \begin{equation}
333     f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert _{r_c} .
334     \end{equation}
335     %
336     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
337     Thus, for $f(r)=1/r$, we find
338     %
339     \begin{equation}
340     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
341     \end{equation}
342     %
343     Continuing with the example of a charge $\bf a$ interacting with a dipole $\bf b$, we write
344     %
345     \begin{equation}
346     U_{C_{\bf a}D_{\bf b}}(r)=
347     \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
348     =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
349     \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
350     \end{equation}
351     %
352     The force that dipole $\bf b$ puts on charge $\bf a$ is
353     %
354     \begin{equation}
355     F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
356     \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
357     \frac{r_\alpha r_\beta}{r^2}
358     \left( -\frac{1}{r} \frac {\partial} {\partial r}
359     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
360     \end{equation}
361     %
362     For $f(r)=1/r$, we find
363     %
364     \begin{equation}
365     F_{C_{\bf a}D_{\bf b}\beta} =
366     \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
367     \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
368     +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
369     \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
370     \end{equation}
371     %
372     This expansion shows the expected $1/r^3$ dependence of the force.
373    
374     In general, we write
375     %
376     \begin{equation}
377     U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
378     \label{generic}
379     \end{equation}
380     %
381     where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
382     and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
383     An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
384     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
385     $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
386     implied summation combining the space indices.
387    
388     To apply this method to the smeared-charge approach,
389     we write $f(r)=\text{erfc}(\alpha r)/r$. By using one function $f(r)$ for both
390     approaches, we simplify the tabulation of equations used. Because
391     of the many derivatives that are taken, the algebra is tedious and are summarized
392     in Appendices A and B.
393    
394     \subsection{Shifting the force, method 2}
395    
396     Note the method used in the previous subsection to shift a force is basically that of using
397     a truncated Taylor Series in the radius $r$. An alternate method exists, best explained by
398     writing one shifted formula for all interaction energies $U(r)$:
399     \begin{equation}
400     U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
401     \end{equation}
402     Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
403     $(r-r_c)^n$ appear. The primary difference between methods 1 and 2 originates
404     with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
405     kernel. In method 2, it is applied to individual interaction energies of the multipole expansion.
406     Terms from this method thus have the general form:
407     \begin{equation}
408     U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
409     \label{generic2}
410     \end{equation}
411    
412     Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
413     and are listed in Table I below.
414    
415     \subsection{\label{sec:level2}Body and space axes}
416    
417     Up to this point, all energies and forces have been written in terms of fixed space
418     coordinates $x$, $y$, $z$. Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
419     combine prefactors with radial functions. But because objects
420     $\bf a$ and $\bf b$ both translate and rotate as part of a MD simulation,
421     it is desirable to contract all $r$-dependent terms with dipole and quadrupole
422     moments expressed in terms of their body axes.
423     Since the interaction energy expressions will be used to derive both forces and torques,
424     we follow here the development of Allen and Germano, which was itself based on an
425     earlier paper by Price \em et al.\em
426    
427     Denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
428     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
429     set of inertial body axes. (Note, these body axes are generally not the same as those for which the
430     quadrupole moment is diagonal.) Then,
431     %
432     \begin{eqnarray}
433     \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
434     \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
435     \end{eqnarray}
436     Allen and Germano define matrices $\hat{\mathbf {a}}$
437     and $\hat{\mathbf {b}}$ using these unit vectors:
438     \begin{eqnarray}
439     \hat{\mathbf {a}} =
440     \begin{pmatrix}
441     \hat{a}_1 \\
442     \hat{a}_2 \\
443     \hat{a}_3
444     \end{pmatrix}
445     =
446     \begin{pmatrix}
447     a_{1x} \quad a_{1y} \quad a_{1z} \\
448     a_{2x} \quad a_{2y} \quad a_{2z} \\
449     a_{3x} \quad a_{3y} \quad a_{3z}
450     \end{pmatrix}\\
451     \hat{\mathbf {b}} =
452     \begin{pmatrix}
453     \hat{b}_1 \\
454     \hat{b}_2 \\
455     \hat{b}_3
456     \end{pmatrix}
457     =
458     \begin{pmatrix}
459     b_{1x}\quad b_{1y} \quad b_{1z} \\
460     b_{2x} \quad b_{2y} \quad b_{2z} \\
461     b_{3x} \quad b_{3y} \quad b_{3z}
462     \end{pmatrix} .
463     \end{eqnarray}
464     %
465     These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
466     All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
467     It proves to be equally convenient to just write any contraction in terms of unit vectors
468     $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
469     We have found it useful to write angular-dependent terms in three different fashions,
470     illustrated by the following
471     three examples from the interaction-energy expressions:
472     %
473     \begin{eqnarray}
474     \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
475     =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
476     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
477     r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
478     r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
479     \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
480     r ( \mathbf{D}_{\mathbf{a}} \cdot
481     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
482     D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
483     =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
484     (\hat{b}_n \cdot \hat{r}) .
485     \end{eqnarray}
486     %
487     [Dan, perhaps there are better examples to show here.]
488    
489     In each line, the first two terms are written using space coordinates. The first form is standard
490     in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
491     form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
492     We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
493     in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
494     be discussed below.
495    
496 gezelter 3980
497     \section{The Self-Interaction}
498     The Wolf summation~\cite{Wolf99} and the later damped shifted force
499     (DSF) extension~\cite{Fennell06} included self-interactions that are
500     handled separately from the pairwise interactions between sites. The
501     self-term is normally calculated via a single loop over all sites in
502     the system, and is relatively cheap to evaluate. The self-interaction
503     has contributions from two sources:
504     \begin{itemize}
505     \item The neutralization procedure within the cutoff radius requires a
506     contribution from a charge opposite in sign, but equal in magnitude,
507     to the central charge, which has been spread out over the surface of
508     the cutoff sphere. For a system of undamped charges, the total
509     self-term is
510     \begin{equation}
511     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
512     \label{eq:selfTerm}
513     \end{equation}
514     Note that in this potential and in all electrostatic quantities that
515     follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
516     clarity.
517     \item Charge damping with the complementary error function is a
518     partial analogy to the Ewald procedure which splits the interaction
519     into real and reciprocal space sums. The real space sum is retained
520     in the Wolf and DSF methods. The reciprocal space sum is first
521     minimized by folding the largest contribution (the self-interaction)
522     into the self-interaction from charge neutralization of the damped
523     potential. The remainder of the reciprocal space portion is then
524     discarded (as this contributes the largest computational cost and
525     complexity to the Ewald sum). For a system containing only damped
526     charges, the complete self-interaction can be written as
527     \begin{equation}
528     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
529     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
530     C_{\bf a}^{2}.
531     \label{eq:dampSelfTerm}
532     \end{equation}
533     \end{itemize}
534    
535     The extension of DSF electrostatics to point multipoles requires
536     treatment of {\it both} the self-neutralization and reciprocal
537     contributions to the self-interaction for higher order multipoles. In
538     this section we give formulae for these interactions up to quadrupolar
539     order.
540    
541     The self-neutralization term is computed by taking the {\it
542     non-shifted} kernel for each interaction, placing a multipole of
543     equal magnitude (but opposite in polarization) on the surface of the
544     cutoff sphere, and averaging over the surface of the cutoff sphere.
545     Because the self term is carried out as a single sum over sites, the
546     reciprocal-space portion is identical to half of the self-term
547     obtained by Smith and Aguado and Madden for the application of the
548     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
549     site which posesses a charge, dipole, and multipole, both types of
550     contribution are given in table \ref{tab:tableSelf}.
551    
552     \begin{table*}
553     \caption{\label{tab:tableSelf} Self-interaction contributions for
554     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
555     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
556     \begin{ruledtabular}
557     \begin{tabular}{lccc}
558     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
559     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
560     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
561     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
562     Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
563     $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
564     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
565     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
566     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
567     \end{tabular}
568     \end{ruledtabular}
569     \end{table*}
570    
571     For sites which simultaneously contain charges and quadrupoles, the
572     self-interaction includes a cross-interaction between these two
573     multipole orders. Symmetry prevents the charge-dipole and
574     dipole-quadrupole interactions from contributing to the
575     self-interaction. The functions that go into the self-neutralization
576     terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
577     derivatives of the electrostatic kernel (either the undamped $1/r$ or
578     the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that are
579     evaluated at the cutoff distance. For undamped interactions, $f(r_c)
580     = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For damped interactions,
581     $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so on. Appendix XX
582     contains recursion relations that allow rapid evaluation of these
583     derivatives.
584    
585 gezelter 3906 \section{Energies, forces, and torques}
586     \subsection{Interaction energies}
587    
588     We now list multipole interaction energies for the four types of approximation.
589     A ``generic'' set of radial functions is introduced so to be able to present the results in Table I. This set of
590     equations is written in terms of space coordinates:
591    
592     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
593     %
594     %
595     % u ca cb
596     %
597     \begin{equation}
598     U_{C_{\bf a}C_{\bf b}}(r)=
599     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
600     \end{equation}
601     %
602     % u ca db
603     %
604     \begin{equation}
605     U_{C_{\bf a}D_{\bf b}}(r)=
606     \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
607     \label{uchdip}
608     \end{equation}
609     %
610     % u ca qb
611     %
612     \begin{equation}
613     U_{C_{\bf a}Q_{\bf b}}(r)=
614     \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
615     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
616     \label{uchquad}
617     \end{equation}
618     %
619     % u da cb
620     %
621     \begin{equation}
622     U_{D_{\bf a}C_{\bf b}}(r)=
623     -\frac{C_{\bf b}}{4\pi \epsilon_0}
624     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
625     \end{equation}
626     %
627     % u da db
628     %
629     \begin{equation}
630     U_{D_{\bf a}D_{\bf b}}(r)=
631     -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
632     \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
633     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
634     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
635     v_{22}(r) \Bigr]
636     \label{udipdip}
637     \end{equation}
638     %
639     % u da qb
640     %
641     \begin{equation}
642     \begin{split}
643     % 1
644     U_{D_{\bf a}Q_{\bf b}}(r)&=
645     -\frac{1}{4\pi \epsilon_0} \Bigl[
646     \text{Tr}\mathbf{Q}_{\mathbf{b}}
647     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
648     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
649     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
650     % 2
651     &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
652     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
653     \label{udipquad}
654     \end{split}
655     \end{equation}
656     %
657     % u qa cb
658     %
659     \begin{equation}
660     U_{Q_{\bf a}C_{\bf b}}(r)=
661     \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
662     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
663     \label{uquadch}
664     \end{equation}
665     %
666     % u qa db
667     %
668     \begin{equation}
669     \begin{split}
670     %1
671     U_{Q_{\bf a}D_{\bf b}}(r)&=
672     \frac{1}{4\pi \epsilon_0} \Bigl[
673     \text{Tr}\mathbf{Q}_{\mathbf{a}}
674     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
675     +2 ( \mathbf{D}_{\mathbf{b}} \cdot
676     \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
677     % 2
678     +\frac{1}{4\pi \epsilon_0}
679     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
680     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
681     \label{uquaddip}
682     \end{split}
683     \end{equation}
684     %
685     % u qa qb
686     %
687     \begin{equation}
688     \begin{split}
689     %1
690     U_{Q_{\bf a}Q_{\bf b}}(r)&=
691     \frac{1}{4\pi \epsilon_0} \Bigl[
692     \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
693     +2 \text{Tr} \left(
694     \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
695     \\
696     % 2
697     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
698     \left( \hat{r} \cdot
699     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
700     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
701     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
702     \cdot \hat{r} \right) +4 (\hat{r} \cdot
703     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
704     \Bigr] v_{42}(r)
705     \\
706     % 4
707     &+ \frac{1}{4\pi \epsilon_0}
708     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
709     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
710     \label{uquadquad}
711     \end{split}
712     \end{equation}
713    
714    
715     %
716     %
717     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
718     %
719    
720     \begin{table*}
721     \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
722     used in this table are defined in Appendices B and C.}
723     \begin{ruledtabular}
724     \begin{tabular}{cccc}
725     Generic&Coulomb&Method 1&Method 2
726     \\ \hline
727     %
728     %
729     %
730     %Ch-Ch&
731     $v_{01}(r)$ &
732     $\frac{1}{r}$ &
733     $f_0(r)$ &
734     $f(r)-f(r_c)-(r-r_c)g(r_c)$
735     \\
736     %
737     %
738     %
739     %Ch-Di&
740     $v_{11}(r)$ &
741     $-\frac{1}{r^2}$ &
742     $g_1(r)$ &
743     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
744     %
745     %
746     %
747     %Ch-Qu/Di-Di&
748     $v_{21}(r)$ &
749     $-\frac{1}{r^3} $ &
750     $\frac{g_2(r)}{r} $ &
751     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
752     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
753     $v_{22}(r)$ &
754     $\frac{3}{r^3} $ &
755     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
756     $\left(-\frac{g(r)}{r}+h(r) \right)
757     -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
758     &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
759     \\
760     %
761     %
762     %
763     %Di-Qu &
764     $v_{31}(r)$ &
765     $\frac{3}{r^4} $ &
766     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
767     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
768     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
769     &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
770     \\
771     %
772     $v_{32}(r)$ &
773     $-\frac{15}{r^4} $ &
774     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
775     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
776     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
777     &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
778     \\
779     %
780     %
781     %
782     %Qu-Qu&
783     $v_{41}(r)$ &
784     $\frac{3}{r^5} $ &
785     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
786     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
787     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
788     &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
789     \\
790     % 2
791     $v_{42}(r)$ &
792     $- \frac{15}{r^5} $ &
793     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
794     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
795     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
796     &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
797     -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
798     \\
799     % 3
800     $v_{43}(r)$ &
801     $ \frac{105}{r^5} $ &
802     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
803     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
804     &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
805     &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
806     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
807     \end{tabular}
808     \end{ruledtabular}
809     \end{table*}
810     %
811     %
812     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
813     %
814    
815     \begin{table}
816     \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
817     \begin{ruledtabular}
818     \begin{tabular}{cc}
819     Generic&Method 1 or Method 2
820     \\ \hline
821     %
822     %
823     %
824     $w_a(r)$&
825     $\frac{d v_{01}}{dr}$ \\
826     %
827     %
828     $w_b(r)$ &
829     $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
830     %
831     $w_c(r)$ &
832     $\frac{v_{11}(r)}{r}$ \\
833     %
834     %
835     $w_d(r)$&
836     $\frac{d v_{21}}{dr}$ \\
837     %
838     $w_e(r)$ &
839     $\frac{v_{22}(r)}{r}$ \\
840     %
841     %
842     $w_f(r)$&
843     $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
844     %
845     $w_g(r)$&
846     $\frac{v_{31}(r)}{r}$\\
847     %
848     $w_h(r)$ &
849     $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
850     % 2
851     $w_i(r)$ &
852     $\frac{v_{32}(r)}{r}$ \\
853     %
854     $w_j(r)$ &
855     $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
856     %
857     $w_k(r)$ &
858     $\frac{d v_{41}}{dr} $ \\
859     %
860     $w_l(r)$ &
861     $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
862     %
863     $w_m(r)$ &
864     $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
865     %
866     $w_n(r)$ &
867     $\frac{v_{42}(r)}{r}$ \\
868     %
869     $w_o(r)$ &
870     $\frac{v_{43}(r)}{r}$ \\
871     %
872    
873     \end{tabular}
874     \end{ruledtabular}
875     \end{table}
876     %
877     %
878     %
879    
880     \subsection{Forces}
881    
882     The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
883     the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
884     interaction, these forces will point along the $\pm \hat{r}$ directions, where
885     $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
886     %
887     \begin{equation}
888     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
889     \quad \text{and} \quad F_{\bf b \alpha}
890     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
891     \end{equation}
892     %
893     The concept of obtaining a force from an energy by taking a gradient is the same for
894     higher-order multipole interactions, the trick is to make sure that all
895     $r$-dependent derivatives are considered.
896     As is pointed out by Allen and Germano, this is straightforward if the
897     interaction energies are written recognizing explicit
898     $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
899     %
900     \begin{equation}
901     U(r,\{\hat{a}_m \cdot \hat{r} \},
902     \{\hat{b}_n\cdot \hat{r} \}
903     \{\hat{a}_m \cdot \hat{b}_n \}) .
904     \label{ugeneral}
905     \end{equation}
906     %
907     Then,
908     %
909     \begin{equation}
910     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
911     = \frac{\partial U}{\partial r} \hat{r}
912     + \sum_m \left[
913     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
914     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
915     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
916     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
917     \right] \label{forceequation}.
918     \end{equation}
919     %
920     Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
921     that of Allen and Germano. In simplifying the algebra, we also use:
922     %
923     \begin{eqnarray}
924     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
925     = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
926     \right) \\
927     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
928     = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
929     \right) .
930     \end{eqnarray}
931     %
932     We list below the force equations written in terms of space coordinates. The
933     radial functions used in the two methods are listed in Table II.
934     %
935     %SPACE COORDINATES FORCE EQUTIONS
936     %
937     % **************************************************************************
938     % f ca cb
939     %
940     \begin{equation}
941     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
942     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
943     \end{equation}
944     %
945     %
946     %
947     \begin{equation}
948     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
949     \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
950     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
951     w_b(r) \hat{r}
952     + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
953     \end{equation}
954     %
955     %
956     %
957     \begin{equation}
958     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
959     \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
960     \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
961     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
962     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
963     \end{equation}
964     %
965     %
966     %
967     \begin{equation}
968     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
969     -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
970     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
971     + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
972     \end{equation}
973     %
974     %
975     %
976     \begin{equation}
977     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
978     \frac{1}{4\pi \epsilon_0} \Bigl[
979     - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
980     + \left( \mathbf{D}_{\mathbf {a}}
981     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
982     + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
983     % 2
984     - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
985     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
986     \end{equation}
987     %
988     %
989     %
990     \begin{equation}
991     \begin{split}
992     \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
993     & - \frac{1}{4\pi \epsilon_0} \Bigl[
994     \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
995     +2 \mathbf{D}_{\mathbf{a}} \cdot
996     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
997     - \frac{1}{4\pi \epsilon_0} \Bigl[
998     \text{Tr}\mathbf{Q}_{\mathbf{b}}
999     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1000     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1001     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1002     % 3
1003     & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1004     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1005     w_i(r)
1006     % 4
1007     -\frac{1}{4\pi \epsilon_0}
1008     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1009     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
1010     \end{split}
1011     \end{equation}
1012     %
1013     %
1014     \begin{equation}
1015     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1016     \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1017     \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1018     + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1019     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1020     \end{equation}
1021     %
1022     \begin{equation}
1023     \begin{split}
1024     \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1025     &\frac{1}{4\pi \epsilon_0} \Bigl[
1026     \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1027     +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1028     % 2
1029     + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1030     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1031     +2 (\mathbf{D}_{\mathbf{b}} \cdot
1032     \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1033     % 3
1034     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1035     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1036     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1037     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1038     % 4
1039     +\frac{1}{4\pi \epsilon_0}
1040     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1041     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1042     \end{split}
1043     \end{equation}
1044     %
1045     %
1046     %
1047     \begin{equation}
1048     \begin{split}
1049     \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1050     +\frac{1}{4\pi \epsilon_0} \Bigl[
1051     \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1052     + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1053     % 2
1054     +\frac{1}{4\pi \epsilon_0} \Bigl[
1055     2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1056     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1057     % 3
1058     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1059     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1060     % 4
1061     + \frac{1}{4\pi \epsilon_0} \Bigl[
1062     \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1063     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1064     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1065     % 5
1066     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1067     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1068     %
1069     + \frac{1}{4\pi \epsilon_0} \Bigl[
1070     + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1071     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1072     %6
1073     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1074     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1075     % 7
1076     + \frac{1}{4\pi \epsilon_0}
1077     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1078     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1079     \end{split}
1080     \end{equation}
1081     %
1082     %
1083     % TORQUES SECTION -----------------------------------------------------------------------------------------
1084     %
1085     \subsection{Torques}
1086    
1087     Following again Allen and Germano, when energies are written in the form
1088     of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1089     %
1090     \begin{eqnarray}
1091     \mathbf{\tau}_{\bf a} =
1092     \sum_m
1093     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1094     ( \hat{r} \times \hat{a}_m )
1095     -\sum_{mn}
1096     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1097     (\hat{a}_m \times \hat{b}_n) \\
1098     %
1099     \mathbf{\tau}_{\bf b} =
1100     \sum_m
1101     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1102     ( \hat{r} \times \hat{b}_m)
1103     +\sum_{mn}
1104     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1105     (\hat{a}_m \times \hat{b}_n) .
1106     \end{eqnarray}
1107     %
1108     %
1109     Here we list the torque equations written in terms of space coordinates.
1110     %
1111     %
1112     %
1113     \begin{equation}
1114     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1115     \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
1116     \end{equation}
1117     %
1118     %
1119     %
1120     \begin{equation}
1121     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1122     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1123     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
1124     \end{equation}
1125     %
1126     %
1127     %
1128     \begin{equation}
1129     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1130     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1131     (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1132     \end{equation}
1133     %
1134     %
1135     %
1136     \begin{equation}
1137     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
1138     \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1139     % 2
1140     -\frac{1}{4\pi \epsilon_0}
1141     (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1142     (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1143     \end{equation}
1144     %
1145     %
1146     %
1147     \begin{equation}
1148     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1149     -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1150     % 2
1151     +\frac{1}{4\pi \epsilon_0}
1152     (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1153     (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1154     \end{equation}
1155     %
1156     %
1157     %
1158     \begin{equation}
1159     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1160     \frac{1}{4\pi \epsilon_0} \Bigl[
1161     -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1162     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1163     +2 \mathbf{D}_{\mathbf{a}} \times
1164     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1165     \Bigr] v_{31}(r)
1166     % 3
1167     -\frac{1}{4\pi \epsilon_0}
1168     \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1169     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
1170     \end{equation}
1171     %
1172     %
1173     %
1174     \begin{equation}
1175     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
1176     \frac{1}{4\pi \epsilon_0} \Bigl[
1177     +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1178     \hat{r}
1179     -2 \mathbf{D}_{\mathbf{a}} \times
1180     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1181     \Bigr] v_{31}(r)
1182     % 2
1183     +\frac{2}{4\pi \epsilon_0}
1184     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1185     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1186     \end{equation}
1187     %
1188     %
1189     %
1190     \begin{equation}
1191     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1192     \frac{1}{4\pi \epsilon_0} \Bigl[
1193     -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1194     +2 \mathbf{D}_{\mathbf{b}} \times
1195     (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1196     \Bigr] v_{31}(r)
1197     % 3
1198     - \frac{2}{4\pi \epsilon_0}
1199     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1200     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1201     \end{equation}
1202     %
1203     %
1204     %
1205     \begin{equation}
1206     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1207     \frac{1}{4\pi \epsilon_0} \Bigl[
1208     \text{Tr}\mathbf{Q}_{\mathbf{a}}
1209     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1210     +2 \mathbf{D}_{\mathbf{b}} \times
1211     ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1212     % 2
1213     +\frac{1}{4\pi \epsilon_0}
1214     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1215     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1216     \end{equation}
1217     %
1218     %
1219     %
1220     \begin{equation}
1221     \begin{split}
1222     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1223     &-\frac{4}{4\pi \epsilon_0}
1224     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1225     v_{41}(r) \\
1226     % 2
1227     &+ \frac{1}{4\pi \epsilon_0}
1228     \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1229     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1230     +4 \hat{r} \times
1231     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1232     % 3
1233     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1234     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1235     % 4
1236     &+ \frac{2}{4\pi \epsilon_0}
1237     \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1238     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1239     \end{split}
1240     \end{equation}
1241     %
1242     %
1243     %
1244     \begin{equation}
1245     \begin{split}
1246     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1247     &\frac{4}{4\pi \epsilon_0}
1248     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1249     % 2
1250     &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1251     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1252     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1253     \mathbf{Q}_{{\mathbf b}} ) \times
1254     \hat{r}
1255     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1256     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1257     \Bigr] v_{42}(r) \\
1258     % 4
1259     &+ \frac{2}{4\pi \epsilon_0}
1260     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1261     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1262     \end{split}
1263     \end{equation}
1264     %
1265 gezelter 3980
1266     \section{Comparison to known multipolar energies}
1267    
1268     To understand how these new real-space multipole methods behave in
1269     computer simulations, it is vital to test against established methods
1270     for computing electrostatic interactions in periodic systems, and to
1271     evaluate the size and sources of any errors that arise from the
1272     real-space cutoffs. In this paper we test Taylor-shifted and
1273     Gradient-shifted electrostatics against analytical methods for
1274     computing the energies of ordered multipolar arrays. In the following
1275     paper, we test the new methods against the multipolar Ewald sum for
1276     computing the energies, forces and torques for a wide range of typical
1277     condensed-phase (disordered) systems.
1278    
1279     Because long-range electrostatic effects can be significant in
1280     crystalline materials, ordered multipolar arrays present one of the
1281     biggest challenges for real-space cutoff methods. The dipolar
1282     analogues to the Madelung constants were first worked out by Sauer,
1283     who computed the energies of ordered dipole arrays of zero
1284     magnetization and obtained a number of these constants.\cite{Sauer}
1285     This theory was developed more completely by Luttinger and
1286     Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1287     other periodic structures. We have repeated the Luttinger \& Tisza
1288     series summations to much higher order and obtained the following
1289     energy constants (converged to one part in $10^9$):
1290     \begin{table*}
1291     \centering{
1292     \caption{Luttinger \& Tisza arrays and their associated
1293     energy constants. Type "A" arrays have nearest neighbor strings of
1294     antiparallel dipoles. Type "B" arrays have nearest neighbor
1295     strings of antiparallel dipoles if the dipoles are contained in a
1296     plane perpendicular to the dipole direction that passes through
1297     the dipole.}
1298     }
1299     \label{tab:LT}
1300     \begin{ruledtabular}
1301     \begin{tabular}{cccc}
1302     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1303     A & SC & 001 & -2.676788684 \\
1304     A & BCC & 001 & 0 \\
1305     A & BCC & 111 & -1.770078733 \\
1306     A & FCC & 001 & 2.166932835 \\
1307     A & FCC & 011 & -1.083466417 \\
1308    
1309     * & BCC & minimum & -1.985920929 \\
1310    
1311     B & SC & 001 & -2.676788684 \\
1312     B & BCC & 001 & -1.338394342 \\
1313     B & BCC & 111 & -1.770078733 \\
1314     B & FCC & 001 & -1.083466417 \\
1315     B & FCC & 011 & -1.807573634
1316     \end{tabular}
1317     \end{ruledtabular}
1318     \end{table*}
1319    
1320     In addition to the A and B arrays, there is an additional minimum
1321     energy structure for the BCC lattice that was found by Luttinger \&
1322     Tisza. The total electrostatic energy for an array is given by:
1323     \begin{equation}
1324     E = C N^2 \mu^2
1325     \end{equation}
1326     where $C$ is the energy constant given above, $N$ is the number of
1327     dipoles per unit volume, and $\mu$ is the strength of the dipole.
1328    
1329     {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1330     computed the energies of selected quadrupole arrays based on
1331     extensions to the Luttinger and Tisza
1332     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1333     energy constants for the lowest energy configurations for linear
1334     quadrupoles shown in table \ref{tab:NNQ}
1335    
1336     \begin{table*}
1337     \centering{
1338     \caption{Nagai and Nakamura Quadurpolar arrays}}
1339     \label{tab:NNQ}
1340     \begin{ruledtabular}
1341     \begin{tabular}{ccc}
1342     Lattice & Quadrupole Direction & Energy constants \\ \hline
1343     SC & 111 & -8.3 \\
1344     BCC & 011 & -21.7 \\
1345     FCC & 111 & -80.5
1346     \end{tabular}
1347     \end{ruledtabular}
1348     \end{table*}
1349    
1350     In analogy to the dipolar arrays, the total electrostatic energy for
1351     the quadrupolar arrays is:
1352     \begin{equation}
1353     E = C \frac{3}{4} N^2 Q^2
1354     \end{equation}
1355     where $Q$ is the quadrupole moment.
1356    
1357    
1358    
1359    
1360    
1361    
1362    
1363    
1364 gezelter 3906 \begin{acknowledgments}
1365 gezelter 3980 Support for this project was provided by the National Science
1366     Foundation under grant CHE-0848243. Computational time was provided by
1367     the Center for Research Computing (CRC) at the University of Notre
1368     Dame.
1369 gezelter 3906 \end{acknowledgments}
1370    
1371     \appendix
1372    
1373     \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1374    
1375     The following summarizes Smith's $B_l(r)$ functions and
1376     includes formulas given in his appendix.
1377    
1378     The first function $B_0(r)$ is defined by
1379     %
1380     \begin{equation}
1381     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1382     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1383     \end{equation}
1384     %
1385     The first derivative of this function is
1386     %
1387     \begin{equation}
1388     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1389     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1390     \end{equation}
1391     %
1392     and can be rewritten in terms of a function $B_1(r)$:
1393     %
1394     \begin{equation}
1395     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1396     \end{equation}
1397     %
1398     In general,
1399     \begin{equation}
1400     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1401     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1402     \text{e}^{-{\alpha}^2r^2}
1403     \right] .
1404     \end{equation}
1405     %
1406     Using these formulas, we find
1407     %
1408     \begin{eqnarray}
1409     \frac{dB_0}{dr}=-rB_1(r) \\
1410     \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1411     \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1412     \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1413     \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1414     \end{eqnarray}
1415     %
1416     As noted by Smith,
1417     %
1418     \begin{equation}
1419     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1420     +\text{O}(r) .
1421     \end{equation}
1422    
1423     \section{Method 1, the $r$-dependent factors}
1424    
1425     Using the shifted damped functions $f_n(r)$ defined by:
1426     %
1427     \begin{equation}
1428     f_n(r)= B_0 \Big \lvert _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert _{r_c} ,
1429     \end{equation}
1430     %
1431     we first provide formulas for successive derivatives of this function. (If there is
1432     no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.) First, we find:
1433     %
1434     \begin{equation}
1435     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1436     \end{equation}
1437     %
1438     This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1439     define higher-order derivatives as follows:
1440     %
1441     \begin{eqnarray}
1442     g_n(r)= \frac{d f_n}{d r} =
1443     B_0^{(1)} \Big \lvert _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert _{r_c} \\
1444     h_n(r)= \frac{d^2f_n}{d r^2} =
1445     B_0^{(2)} \Big \lvert _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert _{r_c} \\
1446     s_n(r)= \frac{d^3f_n}{d r^3} =
1447     B_0^{(3)} \Big \lvert _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert _{r_c} \\
1448     t_n(r)= \frac{d^4f_n}{d r^4} =
1449     B_0^{(4)} \Big \lvert _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert _{r_c} \\
1450     u_n(r)= \frac{d^5f_n}{d r^5} =
1451     B_0^{(5)} \Big \lvert _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert _{r_c} .
1452     \end{eqnarray}
1453     %
1454     We note that the last function needed (for quadrupole-quadrupole) is
1455     %
1456     \begin{equation}
1457     u_4(r)=B_0^{(5)} \Big \lvert _r - B_0^{(5)} \Big \lvert _{r_c} .
1458     \end{equation}
1459    
1460     The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1461     from $0$ to $r_c$. The functions needed are listed schematically below:
1462     %
1463     \begin{eqnarray}
1464     f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1465     g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1466     h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1467     s_2 \quad s_3 \quad &s_4 \nonumber \\
1468     t_3 \quad &t_4 \nonumber \\
1469     &u_4 \nonumber .
1470     \end{eqnarray}
1471    
1472     Using these functions, we find
1473     %
1474     \begin{equation}
1475     \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1476     \end{equation}
1477     %
1478     \begin{equation}
1479     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1480     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1481     \end{equation}
1482     %
1483     \begin{equation}
1484     \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1485     \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1486     \delta_{ \beta \gamma} r_\alpha \right)
1487     \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1488     + r_\alpha r_\beta r_\gamma
1489     \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1490     \end{equation}
1491     %
1492     \begin{eqnarray}
1493     \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1494     \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1495     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1496     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1497     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1498     + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1499     + \text{5 perm}
1500     \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1501     \right) \nonumber \\
1502     + r_\alpha r_\beta r_\gamma r_\delta
1503     \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1504     + \frac{t_n}{r^4} \right)
1505     \end{eqnarray}
1506     %
1507     \begin{eqnarray}
1508     \frac{\partial^5 f_n}
1509     {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1510     \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1511     + \text{14 perm} \right)
1512     \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1513     + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1514     + \text{9 perm}
1515     \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1516     \right) \nonumber \\
1517     + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1518     \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1519     - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1520     \end{eqnarray}
1521     %
1522     %
1523     %
1524     \section{Method 2, the $r$-dependent factors}
1525    
1526     In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1527     see Eq. (20?). For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1528     of the kernel $B_0(r)$. To denote these terms, we generalize the notation of the previous appendix.
1529     For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1530     %
1531     \begin{eqnarray}
1532     g(r)= \frac{df}{d r}\\
1533     h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1534     s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1535     t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1536     u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1537     \end{eqnarray}
1538     %
1539     For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.'' Checks of algebra can be made by using limiting forms
1540     of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$. Equations (B9) to B(13)
1541     are correct for method 2 if one just eliminates the subscript $n$.
1542    
1543     \section{Extra Material}
1544     %
1545     %
1546     %Energy in body coordinate form ---------------------------------------------------------------
1547     %
1548     Here are the interaction energies written in terms of the body coordinates:
1549    
1550     %
1551     % u ca cb
1552     %
1553     \begin{equation}
1554     U_{C_{\bf a}C_{\bf b}}(r)=
1555     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1556     \end{equation}
1557     %
1558     % u ca db
1559     %
1560     \begin{equation}
1561     U_{C_{\bf a}D_{\bf b}}(r)=
1562     \frac{C_{\bf a}}{4\pi \epsilon_0}
1563     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1564     \end{equation}
1565     %
1566     % u ca qb
1567     %
1568     \begin{equation}
1569     U_{C_{\bf a}Q_{\bf b}}(r)=
1570     \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1571     v_{21}(r) \nonumber \\
1572     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1573     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1574     v_{22}(r)
1575     \end{equation}
1576     %
1577     % u da cb
1578     %
1579     \begin{equation}
1580     U_{D_{\bf a}C_{\bf b}}(r)=
1581     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1582     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1583     \end{equation}
1584     %
1585     % u da db
1586     %
1587     \begin{equation}
1588     \begin{split}
1589     % 1
1590     U_{D_{\bf a}D_{\bf b}}(r)&=
1591     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1592     (\hat{a}_m \cdot \hat{b}_n)
1593     D_{\mathbf{b}n} v_{21}(r) \\
1594     % 2
1595     &-\frac{1}{4\pi \epsilon_0}
1596     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1597     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1598     v_{22}(r)
1599     \end{split}
1600     \end{equation}
1601     %
1602     % u da qb
1603     %
1604     \begin{equation}
1605     \begin{split}
1606     % 1
1607     U_{D_{\bf a}Q_{\bf b}}(r)&=
1608     -\frac{1}{4\pi \epsilon_0} \left(
1609     \text{Tr}Q_{\mathbf{b}}
1610     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1611     +2\sum_{lmn}D_{\mathbf{a}l}
1612     (\hat{a}_l \cdot \hat{b}_m)
1613     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1614     \right) v_{31}(r) \\
1615     % 2
1616     &-\frac{1}{4\pi \epsilon_0}
1617     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1618     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1619     Q_{{\mathbf b}mn}
1620     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1621     \end{split}
1622     \end{equation}
1623     %
1624     % u qa cb
1625     %
1626     \begin{equation}
1627     U_{Q_{\bf a}C_{\bf b}}(r)=
1628     \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1629     +\frac{C_{\bf b}}{4\pi \epsilon_0}
1630     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1631     \end{equation}
1632     %
1633     % u qa db
1634     %
1635     \begin{equation}
1636     \begin{split}
1637     %1
1638     U_{Q_{\bf a}D_{\bf b}}(r)&=
1639     \frac{1}{4\pi \epsilon_0} \left(
1640     \text{Tr}Q_{\mathbf{a}}
1641     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1642     +2\sum_{lmn}D_{\mathbf{b}l}
1643     (\hat{b}_l \cdot \hat{a}_m)
1644     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1645     \right) v_{31}(r) \\
1646     % 2
1647     &+\frac{1}{4\pi \epsilon_0}
1648     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1649     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1650     Q_{{\mathbf a}mn}
1651     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1652     \end{split}
1653     \end{equation}
1654     %
1655     % u qa qb
1656     %
1657     \begin{equation}
1658     \begin{split}
1659     %1
1660     U_{Q_{\bf a}Q_{\bf b}}(r)&=
1661     \frac{1}{4\pi \epsilon_0} \Bigl[
1662     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1663     +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1664     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1665     (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1666     v_{41}(r) \\
1667     % 2
1668     &+ \frac{1}{4\pi \epsilon_0}
1669     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1670     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1671     Q_{{\mathbf b}lm}
1672     (\hat{b}_m \cdot \hat{r})
1673     +\text{Tr}Q_{\mathbf{b}}
1674     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1675     Q_{{\mathbf a}lm}
1676     (\hat{a}_m \cdot \hat{r}) \\
1677     % 3
1678     &+4 \sum_{lmnp}
1679     (\hat{r} \cdot \hat{a}_l )
1680     Q_{{\mathbf a}lm}
1681     (\hat{a}_m \cdot \hat{b}_n)
1682     Q_{{\mathbf b}np}
1683     (\hat{b}_p \cdot \hat{r})
1684     \Bigr] v_{42}(r) \\
1685     % 4
1686     &+ \frac{1}{4\pi \epsilon_0}
1687     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1688     Q_{{\mathbf a}lm}
1689     (\hat{a}_m \cdot \hat{r})
1690     \sum_{np} (\hat{r} \cdot \hat{b}_n)
1691     Q_{{\mathbf b}np}
1692     (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1693     \end{split}
1694     \end{equation}
1695     %
1696    
1697    
1698     % BODY coordinates force equations --------------------------------------------
1699     %
1700     %
1701     Here are the force equations written in terms of body coordinates.
1702     %
1703     % f ca cb
1704     %
1705     \begin{equation}
1706     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1707     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1708     \end{equation}
1709     %
1710     % f ca db
1711     %
1712     \begin{equation}
1713     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1714     \frac{C_{\bf a}}{4\pi \epsilon_0}
1715     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1716     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1717     \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1718     \end{equation}
1719     %
1720     % f ca qb
1721     %
1722     \begin{equation}
1723     \begin{split}
1724     % 1
1725     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1726     \frac{1}{4\pi \epsilon_0}
1727     C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1728     + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1729     % 2
1730     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1731     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1732     \end{split}
1733     \end{equation}
1734     %
1735     % f da cb
1736     %
1737     \begin{equation}
1738     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1739     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1740     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1741     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1742     \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1743     \end{equation}
1744     %
1745     % f da db
1746     %
1747     \begin{equation}
1748     \begin{split}
1749     % 1
1750     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1751     -\frac{1}{4\pi \epsilon_0}
1752     \sum_{mn} D_{\mathbf {a}m}
1753     (\hat{a}_m \cdot \hat{b}_n)
1754     D_{\mathbf{b}n} w_d(r) \hat{r}
1755     -\frac{1}{4\pi \epsilon_0}
1756     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1757     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1758     % 2
1759     & \quad + \frac{1}{4\pi \epsilon_0}
1760     \Bigl[ \sum_m D_{\mathbf {a}m}
1761     \hat{a}_m \sum_n D_{\mathbf{b}n}
1762     (\hat{b}_n \cdot \hat{r})
1763     + \sum_m D_{\mathbf {b}m}
1764     \hat{b}_m \sum_n D_{\mathbf{a}n}
1765     (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1766     \end{split}
1767     \end{equation}
1768     %
1769     % f da qb
1770     %
1771     \begin{equation}
1772     \begin{split}
1773     % 1
1774     &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1775     - \frac{1}{4\pi \epsilon_0} \Bigl[
1776     \text{Tr}Q_{\mathbf{b}}
1777     \sum_l D_{\mathbf{a}l} \hat{a}_l
1778     +2\sum_{lmn} D_{\mathbf{a}l}
1779     (\hat{a}_l \cdot \hat{b}_m)
1780     Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1781     % 3
1782     & - \frac{1}{4\pi \epsilon_0} \Bigl[
1783     \text{Tr}Q_{\mathbf{b}}
1784     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1785     +2\sum_{lmn}D_{\mathbf{a}l}
1786     (\hat{a}_l \cdot \hat{b}_m)
1787     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1788     % 4
1789     &+ \frac{1}{4\pi \epsilon_0}
1790     \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1791     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1792     Q_{{\mathbf b}mn}
1793     (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1794     D_{\mathbf{a}l}
1795     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1796     Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1797     % 6
1798     & -\frac{1}{4\pi \epsilon_0}
1799     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1800     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1801     Q_{{\mathbf b}mn}
1802     (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1803     \end{split}
1804     \end{equation}
1805     %
1806     % force qa cb
1807     %
1808     \begin{equation}
1809     \begin{split}
1810     % 1
1811     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1812     \frac{1}{4\pi \epsilon_0}
1813     C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1814     + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1815     % 2
1816     & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1817     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1818     \end{split}
1819     \end{equation}
1820     %
1821     % f qa db
1822     %
1823     \begin{equation}
1824     \begin{split}
1825     % 1
1826     &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1827     \frac{1}{4\pi \epsilon_0} \Bigl[
1828     \text{Tr}Q_{\mathbf{a}}
1829     \sum_l D_{\mathbf{b}l} \hat{b}_l
1830     +2\sum_{lmn} D_{\mathbf{b}l}
1831     (\hat{b}_l \cdot \hat{a}_m)
1832     Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1833     w_g(r)\\
1834     % 3
1835     & + \frac{1}{4\pi \epsilon_0} \Bigl[
1836     \text{Tr}Q_{\mathbf{a}}
1837     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1838     +2\sum_{lmn}D_{\mathbf{b}l}
1839     (\hat{b}_l \cdot \hat{a}_m)
1840     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1841     % 4
1842     & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1843     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1844     Q_{{\mathbf a}mn}
1845     (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1846     D_{\mathbf{b}l}
1847     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1848     Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1849     % 6
1850     & +\frac{1}{4\pi \epsilon_0}
1851     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1852     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1853     Q_{{\mathbf a}mn}
1854     (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1855     \end{split}
1856     \end{equation}
1857     %
1858     % f qa qb
1859     %
1860     \begin{equation}
1861     \begin{split}
1862     &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1863     \frac{1}{4\pi \epsilon_0} \Bigl[
1864     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1865     + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1866     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1867     (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1868     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1869     2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1870     + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1871     &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1872     + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1873     \Bigr] w_n(r) \\
1874     &+ \frac{1}{4\pi \epsilon_0}
1875     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1876     \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1877     + \text{Tr}Q_{\mathbf{b}}
1878     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1879     &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1880     Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1881     %
1882     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1883     2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1884     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1885     &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1886     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1887     & + \frac{1}{4\pi \epsilon_0}
1888     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1889     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1890     \end{split}
1891     \end{equation}
1892     %
1893     Here we list the form of the non-zero damped shifted multipole torques showing
1894     explicitly dependences on body axes:
1895     %
1896     % t ca db
1897     %
1898     \begin{equation}
1899     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1900     \frac{C_{\bf a}}{4\pi \epsilon_0}
1901     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1902     \end{equation}
1903     %
1904     % t ca qb
1905     %
1906     \begin{equation}
1907     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1908     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1909     \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1910     \end{equation}
1911     %
1912     % t da cb
1913     %
1914     \begin{equation}
1915     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1916     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1917     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1918     \end{equation}%
1919     %
1920     %
1921     % ta da db
1922     %
1923     \begin{equation}
1924     \begin{split}
1925     % 1
1926     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1927     \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1928     (\hat{a}_m \times \hat{b}_n)
1929     D_{\mathbf{b}n} v_{21}(r) \\
1930     % 2
1931     &-\frac{1}{4\pi \epsilon_0}
1932     \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1933     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1934     \end{split}
1935     \end{equation}
1936     %
1937     % tb da db
1938     %
1939     \begin{equation}
1940     \begin{split}
1941     % 1
1942     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1943     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1944     (\hat{a}_m \times \hat{b}_n)
1945     D_{\mathbf{b}n} v_{21}(r) \\
1946     % 2
1947     &+\frac{1}{4\pi \epsilon_0}
1948     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1949     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1950     \end{split}
1951     \end{equation}
1952     %
1953     % ta da qb
1954     %
1955     \begin{equation}
1956     \begin{split}
1957     % 1
1958     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1959     \frac{1}{4\pi \epsilon_0} \left(
1960     -\text{Tr}Q_{\mathbf{b}}
1961     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1962     +2\sum_{lmn}D_{\mathbf{a}l}
1963     (\hat{a}_l \times \hat{b}_m)
1964     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1965     \right) v_{31}(r)\\
1966     % 2
1967     &-\frac{1}{4\pi \epsilon_0}
1968     \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
1969     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1970     Q_{{\mathbf b}mn}
1971     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1972     \end{split}
1973     \end{equation}
1974     %
1975     % tb da qb
1976     %
1977     \begin{equation}
1978     \begin{split}
1979     % 1
1980     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
1981     \frac{1}{4\pi \epsilon_0} \left(
1982     -2\sum_{lmn}D_{\mathbf{a}l}
1983     (\hat{a}_l \cdot \hat{b}_m)
1984     Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
1985     -2\sum_{lmn}D_{\mathbf{a}l}
1986     (\hat{a}_l \times \hat{b}_m)
1987     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1988     \right) v_{31}(r) \\
1989     % 2
1990     &-\frac{2}{4\pi \epsilon_0}
1991     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1992     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1993     Q_{{\mathbf b}mn}
1994     (\hat{r}\times \hat{b}_n) v_{32}(r)
1995     \end{split}
1996     \end{equation}
1997     %
1998     % ta qa cb
1999     %
2000     \begin{equation}
2001     \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2002     \frac{2C_{\bf a}}{4\pi \epsilon_0}
2003     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2004     \end{equation}
2005     %
2006     % ta qa db
2007     %
2008     \begin{equation}
2009     \begin{split}
2010     % 1
2011     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2012     \frac{1}{4\pi \epsilon_0} \left(
2013     2\sum_{lmn}D_{\mathbf{b}l}
2014     (\hat{b}_l \cdot \hat{a}_m)
2015     Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2016     +2\sum_{lmn}D_{\mathbf{b}l}
2017     (\hat{a}_l \times \hat{b}_m)
2018     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2019     \right) v_{31}(r) \\
2020     % 2
2021     &+\frac{2}{4\pi \epsilon_0}
2022     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2023     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2024     Q_{{\mathbf a}mn}
2025     (\hat{r}\times \hat{a}_n) v_{32}(r)
2026     \end{split}
2027     \end{equation}
2028     %
2029     % tb qa db
2030     %
2031     \begin{equation}
2032     \begin{split}
2033     % 1
2034     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2035     \frac{1}{4\pi \epsilon_0} \left(
2036     \text{Tr}Q_{\mathbf{a}}
2037     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2038     +2\sum_{lmn}D_{\mathbf{b}l}
2039     (\hat{a}_l \times \hat{b}_m)
2040     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2041     \right) v_{31}(r)\\
2042     % 2
2043     &\frac{1}{4\pi \epsilon_0}
2044     \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2045     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2046     Q_{{\mathbf a}mn}
2047     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2048     \end{split}
2049     \end{equation}
2050     %
2051     % ta qa qb
2052     %
2053     \begin{equation}
2054     \begin{split}
2055     % 1
2056     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2057     -\frac{4}{4\pi \epsilon_0}
2058     \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2059     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2060     (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2061     % 2
2062     &+ \frac{1}{4\pi \epsilon_0}
2063     \Bigl[
2064     2\text{Tr}Q_{\mathbf{b}}
2065     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2066     Q_{{\mathbf a}lm}
2067     (\hat{r} \times \hat{a}_m)
2068     +4 \sum_{lmnp}
2069     (\hat{r} \times \hat{a}_l )
2070     Q_{{\mathbf a}lm}
2071     (\hat{a}_m \cdot \hat{b}_n)
2072     Q_{{\mathbf b}np}
2073     (\hat{b}_p \cdot \hat{r}) \\
2074     % 3
2075     &-4 \sum_{lmnp}
2076     (\hat{r} \cdot \hat{a}_l )
2077     Q_{{\mathbf a}lm}
2078     (\hat{a}_m \times \hat{b}_n)
2079     Q_{{\mathbf b}np}
2080     (\hat{b}_p \cdot \hat{r})
2081     \Bigr] v_{42}(r) \\
2082     % 4
2083     &+ \frac{2}{4\pi \epsilon_0}
2084     \sum_{lm} (\hat{r} \times \hat{a}_l)
2085     Q_{{\mathbf a}lm}
2086     (\hat{a}_m \cdot \hat{r})
2087     \sum_{np} (\hat{r} \cdot \hat{b}_n)
2088     Q_{{\mathbf b}np}
2089     (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2090     \end{split}
2091     \end{equation}
2092     %
2093     % tb qa qb
2094     %
2095     \begin{equation}
2096     \begin{split}
2097     % 1
2098     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2099     \frac{4}{4\pi \epsilon_0}
2100     \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2101     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2102     (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2103     % 2
2104     &+ \frac{1}{4\pi \epsilon_0}
2105     \Bigl[
2106     2\text{Tr}Q_{\mathbf{a}}
2107     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2108     Q_{{\mathbf b}lm}
2109     (\hat{r} \times \hat{b}_m)
2110     +4 \sum_{lmnp}
2111     (\hat{r} \cdot \hat{a}_l )
2112     Q_{{\mathbf a}lm}
2113     (\hat{a}_m \cdot \hat{b}_n)
2114     Q_{{\mathbf b}np}
2115     (\hat{r} \times \hat{b}_p) \\
2116     % 3
2117     &+4 \sum_{lmnp}
2118     (\hat{r} \cdot \hat{a}_l )
2119     Q_{{\mathbf a}lm}
2120     (\hat{a}_m \times \hat{b}_n)
2121     Q_{{\mathbf b}np}
2122     (\hat{b}_p \cdot \hat{r})
2123     \Bigr] v_{42}(r) \\
2124     % 4
2125     &+ \frac{2}{4\pi \epsilon_0}
2126     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2127     Q_{{\mathbf a}lm}
2128     (\hat{a}_m \cdot \hat{r})
2129     \sum_{np} (\hat{r} \times \hat{b}_n)
2130     Q_{{\mathbf b}np}
2131     (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2132     \end{split}
2133     \end{equation}
2134     %
2135     \begin{table*}
2136     \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2137     \begin{ruledtabular}
2138     \begin{tabular}{ccc}
2139     Generic&Method 1&Method 2
2140     \\ \hline
2141     %
2142     %
2143     %
2144     $w_a(r)$&
2145     $g_0(r)$&
2146     $g(r)-g(r_c)$ \\
2147     %
2148     %
2149     $w_b(r)$ &
2150     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2151     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2152     %
2153     $w_c(r)$ &
2154     $\frac{g_1(r)}{r} $ &
2155     $\frac{v_{11}(r)}{r}$ \\
2156     %
2157     %
2158     $w_d(r)$&
2159     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2160     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2161     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2162     %
2163     $w_e(r)$ &
2164     $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2165     $\frac{v_{22}(r)}{r}$ \\
2166     %
2167     %
2168     $w_f(r)$&
2169     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2170     $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2171     &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2172     %
2173     $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2174     $\frac{v_{31}(r)}{r}$\\
2175     %
2176     $w_h(r)$ &
2177     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2178     $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2179     &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2180     &&$-\frac{v_{31}(r)}{r}$\\
2181     % 2
2182     $w_i(r)$ &
2183     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2184     $\frac{v_{32}(r)}{r}$ \\
2185     %
2186     $w_j(r)$ &
2187     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2188     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2189     &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2190     %
2191     $w_k(r)$ &
2192     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2193     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2194     &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2195     %
2196     $w_l(r)$ &
2197     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2198     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2199     &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2200     -\frac{2v_{42}(r)}{r}$ \\
2201     %
2202     $w_m(r)$ &
2203     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2204     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2205     &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2206     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2207     &&$-\frac{4v_{43}(r)}{r}$ \\
2208     %
2209     $w_n(r)$ &
2210     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2211     $\frac{v_{42}(r)}{r}$ \\
2212     %
2213     $w_o(r)$ &
2214     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2215     $\frac{v_{43}(r)}{r}$ \\
2216     %
2217     \end{tabular}
2218     \end{ruledtabular}
2219     \end{table*}
2220 gezelter 3980
2221     \newpage
2222    
2223     \bibliography{multipole}
2224    
2225 gezelter 3906 \end{document}
2226     %
2227     % ****** End of file multipole.tex ******