ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3982
Committed: Fri Dec 27 17:41:17 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 77641 byte(s)
Log Message:
More work on the methodology section

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     ]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37    
38 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
39     %\linenumbers\relax % Commence numbering lines
40    
41     \begin{document}
42    
43     \preprint{AIP/123-QED}
44    
45 gezelter 3980 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
46     {Real space alternatives to the Ewald
47     Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48 gezelter 3906
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52    
53     \author{J. Daniel Gezelter}
54     \email{gezelter@nd.edu.}
55     \affiliation{Department of Chemistry and Biochemistry, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58     \author{Kathie E. Newman}
59     \affiliation{Department of Physics, University
60     of Notre Dame, Notre Dame, IN 46556}
61    
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \begin{abstract}
67 gezelter 3980 We have extended the original damped-shifted force (DSF)
68     electrostatic kernel and have been able to derive two new
69     electrostatic potentials for higher-order multipoles that are based
70     on truncated Taylor expansions around the cutoff radius. For
71     multipole-multipole interactions, we find that each of the distinct
72     orientational contributions has a separate radial function to ensure
73     that the overall forces and torques vanish at the cutoff radius. In
74     this paper, we present energy, force, and torque expressions for the
75     new models, and compare these real-space interaction models to exact
76     results for ordered arrays of multipoles.
77 gezelter 3906 \end{abstract}
78    
79     \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80     % Classification Scheme.
81     \keywords{Suggested keywords}%Use showkeys class option if keyword
82     %display desired
83     \maketitle
84    
85     \section{Introduction}
86 gezelter 3982 There has been increasing interest in real-space methods for
87     calculating electrostatic interactions in computer simulations of
88     condensed molecular
89 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90     The simplest of these techniques was developed by Wolf {\it et al.}
91     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
93     simple damped shifted force (DSF) modification to Wolf's method could
94     give nearly quantitative agreement with smooth particle mesh Ewald
95     (SPME)\cite{Essmann95} configurational energy differences as well as
96     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97 gezelter 3906
98 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
99     surprisingly good, particularly for systems with uniform charge
100     density. Additionally, dielectric constants obtained using DSF and
101     similar methods where the force vanishes at $R_\textrm{c}$ are
102     essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103     related methods have now been widely investigated,\cite{Hansen:2012uq}
104     and DSF is now used routinely in simulations of ionic
105     liquids,\cite{doi:10.1021/la400226g,McCann:2013fk} flow in carbon
106     nanotubes,\cite{kannam:094701} gas sorption in metal-organic framework
107     materials,\cite{Forrest:2012ly} thermal conductivity of methane
108     hydrates,\cite{English:2008kx} condensation coefficients of
109     water,\cite{Louden:2013ve} and in tribology at solid-liquid-solid
110     interfaces.\cite{Tokumasu:2013zr} DSF electrostatics provides a
111     compromise between the computational speed of real-space cutoffs and
112     the accuracy of fully-periodic Ewald treatments.
113 gezelter 3906
114 gezelter 3982 \subsection{Coarse Graining using Point Multipoles}
115 gezelter 3980 One common feature of many coarse-graining approaches, which treat
116     entire molecular subsystems as a single rigid body, is simplification
117     of the electrostatic interactions between these bodies so that fewer
118     site-site interactions are required to compute configurational
119     energies. Notably, the force matching approaches of Voth and coworkers
120     are an exciting development in their ability to represent realistic
121     (and {\it reactive}) chemical systems for very large length scales and
122     long times. This approach utilized a coarse-graining in interaction
123     space (CGIS) which fits an effective force for the coarse grained
124     system using a variational force-matching method to a fine-grained
125     simulation.\cite{Izvekov:2008wo}
126 gezelter 3906
127 gezelter 3980 The coarse-graining approaches of Ren \& coworkers,\cite{Golubkov06}
128     and Essex \&
129     coworkers,\cite{ISI:000276097500009,ISI:000298664400012}
130     both utilize Gay-Berne
131     ellipsoids~\cite{Berne72,Gay81,Luckhurst90,Cleaver96,Berardi98,Ravichandran:1999fk,Berardi99,Pasterny00}
132     to model dispersive interactions and point multipoles to model
133     electrostatics for entire molecules or functional groups.
134 gezelter 3906
135 gezelter 3980 Ichiye and coworkers have recently introduced a number of very fast
136     water models based on a ``sticky'' multipole model which are
137     qualitatively better at reproducing the behavior of real water than
138     the more common point-charge models (SPC/E, TIPnP). The point charge
139     models are also substantially more computationally demanding than the
140     sticky multipole
141     approach.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The
142     SSDQO model requires the use of an approximate multipole expansion
143     (AME) as the exact multipole expansion is quite expensive
144     (particularly when handled via the Ewald sum).\cite{Ichiye:2006qy}
145     Another particularly important use of point multipoles (and multipole
146     polarizability) is in the very high-quality AMOEBA water model and
147     related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
148 gezelter 3906
149 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
150     dynamics. Multipolar interactions are inherently short-ranged, and
151     should not need the relatively expensive Ewald treatment. However,
152     real-space cutoff methods are normally applied in an orientation-blind
153     fashion so multipoles which leave and then re-enter a cutoff sphere in
154     a different orientation can cause energy discontinuities.
155 gezelter 3906
156 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
157 gezelter 3982 kernel to point multipoles. We have developed two distinct real-space
158     interaction models for higher-order multipoles based on two truncated
159     Taylor expansions that are carried out at the cutoff radius. We are
160     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
161     electrostatics. Because of differences in the initial assumptions,
162     the two methods yield related, but different expressions for energies,
163     forces, and torques.
164 gezelter 3906
165 gezelter 3982 In this paper we outline the new methodology and give functional forms
166     for the energies, forces, and torques up to quadrupole-quadrupole
167     order. We also compare the new methods to analytic energy constants
168     for periodic arrays of point multipoles. In the following paper, we
169     provide extensive numerical comparisons to Ewald-based electrostatics
170     in common simulation enviornments.
171    
172 gezelter 3980 \section{Methodology}
173 gezelter 3906
174 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
175     The DSF and Wolf methods operate by neutralizing the total charge
176     contained within the cutoff sphere surrounding each particle. This is
177     accomplished by shifting the potential functions to generate image
178     charges on the surface of the cutoff sphere for each pair interaction
179 gezelter 3982 computed within $R_\textrm{c}$. Damping using a complementary error
180     function is applied to the potential to accelerate convergence. The
181     potential for the DSF method, where $\alpha$ is the adjustable damping
182     parameter, is given by
183 gezelter 3980 \begin{equation*}
184     V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
185     \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
186     - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
187     + \frac{2\alpha}{\pi^{1/2}}
188     \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
189     \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
190     \label{eq:DSFPot}
191     \end{equation*}
192    
193     To insure net charge neutrality within each cutoff sphere, an
194     additional ``self'' term is added to the potential. This term is
195     constant (as long as the charges and cutoff radius do not change), and
196     exists outside the normal pair-loop for molecular simulations. It can
197     be thought of as a contribution from a charge opposite in sign, but
198     equal in magnitude, to the central charge, which has been spread out
199     over the surface of the cutoff sphere. A portion of the self term is
200     identical to the self term in the Ewald summation, and comes from the
201     utilization of the complimentary error function for electrostatic
202     damping.\cite{deLeeuw80,Wolf99}
203    
204 gezelter 3982 There have been recent efforts to extend the Wolf self-neutralization
205     method to zero out the dipole and higher order multipoles contained
206     within the cutoff
207     sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
208    
209     In this work, we will be extending the idea of self-neutralization for
210     the point multipoles in a similar way. In Figure
211     \ref{fig:shiftedMultipoles}, the central dipolar site $\mathbf{D}_i$
212     is interacting with point dipole $\mathbf{D}_j$ and point quadrupole,
213     $\mathbf{Q}_k$. The self-neutralization scheme for point multipoles
214     involves projecting opposing multipoles for sites $j$ and $k$ on the
215     surface of the cutoff sphere.
216    
217 gezelter 3980 \begin{figure}
218 gezelter 3982 \includegraphics[width=3in]{SM}
219 gezelter 3980 \caption{Reversed multipoles are projected onto the surface of the
220     cutoff sphere. The forces, torques, and potential are then smoothly
221     shifted to zero as the sites leave the cutoff region.}
222     \label{fig:shiftedMultipoles}
223     \end{figure}
224    
225 gezelter 3982 As in the point-charge approach, there is a contribution from
226     self-neutralization of site $i$. The self term for multipoles is
227     described in section \ref{sec:selfTerm}.
228 gezelter 3906
229 gezelter 3982 \subsection{The multipole expansion}
230    
231 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
232 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
233     interact via electrostatics only and describe those interactions in
234     terms of a standard multipole expansion. Putting the origin of the
235     coordinate system at the center of mass of $\bf a$, we use vectors
236 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
237     a$. Then the electrostatic potential of object $\bf a$ at
238     $\mathbf{r}$ is given by
239 gezelter 3906 \begin{equation}
240     V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
241     \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
242     \end{equation}
243 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
244     notation. Here Greek indices are used to indicate space coordinates
245     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
246     labelling specific charges in $\bf a$ and $\bf b$ respectively. The
247     Taylor expansion,
248 gezelter 3906 \begin{equation}
249     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
250     \left( 1
251     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
252     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
253     \right)
254 gezelter 3982 \frac{1}{r} ,
255 gezelter 3906 \end{equation}
256 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
257     terms of multipole operators,
258 gezelter 3906 \begin{equation}
259     V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
260     \end{equation}
261     where
262     \begin{equation}
263     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
264     + Q_{{\bf a}\alpha\beta}
265     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
266     \end{equation}
267 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
268     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
269 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
270     which can be expressed as a distribution of charges,
271     \begin{align}
272     C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
273     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
274     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
275     \end{align}
276     Note that the definition of the primitive quadrupole here differs from
277     the standard traceless form, and contains an additional Taylor-series
278     based factor of $1/2$.
279 gezelter 3906
280     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
281     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
282     \begin{equation}
283 gezelter 3982 U_{\bf{ab}}(r)
284     = \frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
285     \end{equation}
286     This can also be expanded as a Taylor series in $r$. Using a notation
287     similar to before to define the multipoles on object {\bf b},
288     \begin{equation}
289 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
290     + Q_{{\bf b}\alpha\beta}
291     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
292     \end{equation}
293 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
294 gezelter 3906 \begin{equation}
295     U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
296     \end{equation}
297 gezelter 3982 This form has the benefit of separating out the energies of
298     interaction into contributions from the charge, dipole, and quadrupole
299     of $\bf a$ interacting with the same multipoles $\bf b$.
300 gezelter 3906
301 gezelter 3982 \subsection{Damped Coulomb interactions}
302     In the standard multipole expansion, one typically uses the bare
303     Coulomb potential, with radial dependence $1/r$, as shown in
304     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
305     interaction, which results from replacing point charges with Gaussian
306     distributions of charge with width $\alpha$. In damped multipole
307     electrostatics, the kernel ($1/r$) of the expansion is replaced with
308     the function:
309 gezelter 3906 \begin{equation}
310     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
311     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
312     \end{equation}
313 gezelter 3982 We develop equations below using the function $f(r)$ to represent
314     either $1/r$ or $B_0(r)$, and all of the techniques can be applied
315     either to bare or damped Coulomb kernels as long as derivatives of
316     these functions are known. Smith's convenient functions $B_l(r)$ are
317     summarized in Appendix A.
318 gezelter 3906
319 gezelter 3982 \subsection{Taylor-shifted force (TSF) electrostatics}
320 gezelter 3906
321 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
322     energy as well as forces and torques as $r\rightarrow r_c$. To
323     describe how this goal may be met, we use two examples, charge-charge
324     and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
325     the idea.
326 gezelter 3906
327 gezelter 3982 In the shifted-force approximation, the interaction energy for two
328     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
329     written:
330 gezelter 3906 \begin{equation}
331     U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
332     \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
333     \right) .
334     \end{equation}
335 gezelter 3982 Two shifting terms appear in this equations, one from the
336     neutralization procedure ($-1/r_c$), and one that will make the first
337     derivative also vanish at the cutoff radius.
338    
339     Since one derivative of the interaction energy is needed for the
340     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
341     interaction energy, that is:
342 gezelter 3906 \begin{equation}
343     \frac{d\,}{dr}
344     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
345     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
346     \right) .
347     \end{equation}
348 gezelter 3982 There are a number of ways to generalize this derivative shift for
349     higher-order multipoles.
350 gezelter 3906
351 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
352     is based on a Taylor expansion containing the same number of
353     derivatives required for each force term to vanish at the cutoff. For
354     example, the quadrupole-quadrupole interaction energy requires four
355     derivatives of the kernel, and the force requires one additional
356     derivative. We therefore require shifted energy expressions that
357     include enough terms so that all energies, forces, and torques are
358     zero as $r \rightarrow r_c$. In each case, we will subtract off a
359     function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$. The
360     index $n$ indicates the number of derivatives to be taken when
361     deriving a given multipole energy. We choose a function with
362     guaranteed smooth derivatives --- a truncated Taylor series of the
363     function $f(r)$, e.g.,
364 gezelter 3906 %
365     \begin{equation}
366     f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert _{r_c} .
367     \end{equation}
368     %
369     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
370     Thus, for $f(r)=1/r$, we find
371     %
372     \begin{equation}
373     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
374     \end{equation}
375     %
376 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
377     dipole $\bf b$, we write
378 gezelter 3906 %
379     \begin{equation}
380     U_{C_{\bf a}D_{\bf b}}(r)=
381     \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
382     =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
383     \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
384     \end{equation}
385     %
386     The force that dipole $\bf b$ puts on charge $\bf a$ is
387     %
388     \begin{equation}
389     F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
390     \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
391     \frac{r_\alpha r_\beta}{r^2}
392     \left( -\frac{1}{r} \frac {\partial} {\partial r}
393     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
394     \end{equation}
395     %
396     For $f(r)=1/r$, we find
397     %
398     \begin{equation}
399     F_{C_{\bf a}D_{\bf b}\beta} =
400     \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
401     \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
402     +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
403     \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
404     \end{equation}
405     %
406     This expansion shows the expected $1/r^3$ dependence of the force.
407    
408     In general, we write
409     %
410     \begin{equation}
411     U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
412     \label{generic}
413     \end{equation}
414     %
415     where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
416     and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
417     An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
418     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
419     $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
420     implied summation combining the space indices.
421    
422     To apply this method to the smeared-charge approach,
423     we write $f(r)=\text{erfc}(\alpha r)/r$. By using one function $f(r)$ for both
424     approaches, we simplify the tabulation of equations used. Because
425     of the many derivatives that are taken, the algebra is tedious and are summarized
426     in Appendices A and B.
427    
428 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
429 gezelter 3906
430     Note the method used in the previous subsection to shift a force is basically that of using
431     a truncated Taylor Series in the radius $r$. An alternate method exists, best explained by
432     writing one shifted formula for all interaction energies $U(r)$:
433     \begin{equation}
434     U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
435     \end{equation}
436     Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
437     $(r-r_c)^n$ appear. The primary difference between methods 1 and 2 originates
438     with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
439     kernel. In method 2, it is applied to individual interaction energies of the multipole expansion.
440     Terms from this method thus have the general form:
441     \begin{equation}
442     U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
443     \label{generic2}
444     \end{equation}
445    
446     Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
447     and are listed in Table I below.
448    
449     \subsection{\label{sec:level2}Body and space axes}
450    
451     Up to this point, all energies and forces have been written in terms of fixed space
452     coordinates $x$, $y$, $z$. Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
453     combine prefactors with radial functions. But because objects
454     $\bf a$ and $\bf b$ both translate and rotate as part of a MD simulation,
455     it is desirable to contract all $r$-dependent terms with dipole and quadrupole
456     moments expressed in terms of their body axes.
457     Since the interaction energy expressions will be used to derive both forces and torques,
458     we follow here the development of Allen and Germano, which was itself based on an
459     earlier paper by Price \em et al.\em
460    
461     Denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
462     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
463     set of inertial body axes. (Note, these body axes are generally not the same as those for which the
464     quadrupole moment is diagonal.) Then,
465     %
466     \begin{eqnarray}
467     \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
468     \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
469     \end{eqnarray}
470     Allen and Germano define matrices $\hat{\mathbf {a}}$
471     and $\hat{\mathbf {b}}$ using these unit vectors:
472     \begin{eqnarray}
473     \hat{\mathbf {a}} =
474     \begin{pmatrix}
475     \hat{a}_1 \\
476     \hat{a}_2 \\
477     \hat{a}_3
478     \end{pmatrix}
479     =
480     \begin{pmatrix}
481     a_{1x} \quad a_{1y} \quad a_{1z} \\
482     a_{2x} \quad a_{2y} \quad a_{2z} \\
483     a_{3x} \quad a_{3y} \quad a_{3z}
484     \end{pmatrix}\\
485     \hat{\mathbf {b}} =
486     \begin{pmatrix}
487     \hat{b}_1 \\
488     \hat{b}_2 \\
489     \hat{b}_3
490     \end{pmatrix}
491     =
492     \begin{pmatrix}
493     b_{1x}\quad b_{1y} \quad b_{1z} \\
494     b_{2x} \quad b_{2y} \quad b_{2z} \\
495     b_{3x} \quad b_{3y} \quad b_{3z}
496     \end{pmatrix} .
497     \end{eqnarray}
498     %
499     These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
500     All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
501     It proves to be equally convenient to just write any contraction in terms of unit vectors
502     $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
503     We have found it useful to write angular-dependent terms in three different fashions,
504     illustrated by the following
505     three examples from the interaction-energy expressions:
506     %
507     \begin{eqnarray}
508     \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
509     =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
510     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
511     r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
512     r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
513     \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
514     r ( \mathbf{D}_{\mathbf{a}} \cdot
515     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
516     D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
517     =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
518     (\hat{b}_n \cdot \hat{r}) .
519     \end{eqnarray}
520     %
521     [Dan, perhaps there are better examples to show here.]
522    
523     In each line, the first two terms are written using space coordinates. The first form is standard
524     in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
525     form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
526     We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
527     in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
528     be discussed below.
529    
530 gezelter 3980
531 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
532    
533 gezelter 3980 The Wolf summation~\cite{Wolf99} and the later damped shifted force
534     (DSF) extension~\cite{Fennell06} included self-interactions that are
535     handled separately from the pairwise interactions between sites. The
536     self-term is normally calculated via a single loop over all sites in
537     the system, and is relatively cheap to evaluate. The self-interaction
538     has contributions from two sources:
539     \begin{itemize}
540     \item The neutralization procedure within the cutoff radius requires a
541     contribution from a charge opposite in sign, but equal in magnitude,
542     to the central charge, which has been spread out over the surface of
543     the cutoff sphere. For a system of undamped charges, the total
544     self-term is
545     \begin{equation}
546     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
547     \label{eq:selfTerm}
548     \end{equation}
549     Note that in this potential and in all electrostatic quantities that
550     follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
551     clarity.
552     \item Charge damping with the complementary error function is a
553     partial analogy to the Ewald procedure which splits the interaction
554     into real and reciprocal space sums. The real space sum is retained
555     in the Wolf and DSF methods. The reciprocal space sum is first
556     minimized by folding the largest contribution (the self-interaction)
557     into the self-interaction from charge neutralization of the damped
558     potential. The remainder of the reciprocal space portion is then
559     discarded (as this contributes the largest computational cost and
560     complexity to the Ewald sum). For a system containing only damped
561     charges, the complete self-interaction can be written as
562     \begin{equation}
563     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
564     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
565     C_{\bf a}^{2}.
566     \label{eq:dampSelfTerm}
567     \end{equation}
568     \end{itemize}
569    
570     The extension of DSF electrostatics to point multipoles requires
571     treatment of {\it both} the self-neutralization and reciprocal
572     contributions to the self-interaction for higher order multipoles. In
573     this section we give formulae for these interactions up to quadrupolar
574     order.
575    
576     The self-neutralization term is computed by taking the {\it
577     non-shifted} kernel for each interaction, placing a multipole of
578     equal magnitude (but opposite in polarization) on the surface of the
579     cutoff sphere, and averaging over the surface of the cutoff sphere.
580     Because the self term is carried out as a single sum over sites, the
581     reciprocal-space portion is identical to half of the self-term
582     obtained by Smith and Aguado and Madden for the application of the
583     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
584     site which posesses a charge, dipole, and multipole, both types of
585     contribution are given in table \ref{tab:tableSelf}.
586    
587     \begin{table*}
588     \caption{\label{tab:tableSelf} Self-interaction contributions for
589     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
590     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
591     \begin{ruledtabular}
592     \begin{tabular}{lccc}
593     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
594     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
595     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
596     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
597     Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
598     $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
599     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
600     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
601     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
602     \end{tabular}
603     \end{ruledtabular}
604     \end{table*}
605    
606     For sites which simultaneously contain charges and quadrupoles, the
607     self-interaction includes a cross-interaction between these two
608     multipole orders. Symmetry prevents the charge-dipole and
609     dipole-quadrupole interactions from contributing to the
610     self-interaction. The functions that go into the self-neutralization
611     terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
612     derivatives of the electrostatic kernel (either the undamped $1/r$ or
613     the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that are
614     evaluated at the cutoff distance. For undamped interactions, $f(r_c)
615     = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For damped interactions,
616     $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so on. Appendix XX
617     contains recursion relations that allow rapid evaluation of these
618     derivatives.
619    
620 gezelter 3906 \section{Energies, forces, and torques}
621     \subsection{Interaction energies}
622    
623     We now list multipole interaction energies for the four types of approximation.
624     A ``generic'' set of radial functions is introduced so to be able to present the results in Table I. This set of
625     equations is written in terms of space coordinates:
626    
627     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
628     %
629     %
630     % u ca cb
631     %
632     \begin{equation}
633     U_{C_{\bf a}C_{\bf b}}(r)=
634     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
635     \end{equation}
636     %
637     % u ca db
638     %
639     \begin{equation}
640     U_{C_{\bf a}D_{\bf b}}(r)=
641     \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
642     \label{uchdip}
643     \end{equation}
644     %
645     % u ca qb
646     %
647     \begin{equation}
648     U_{C_{\bf a}Q_{\bf b}}(r)=
649     \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
650     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
651     \label{uchquad}
652     \end{equation}
653     %
654     % u da cb
655     %
656     \begin{equation}
657     U_{D_{\bf a}C_{\bf b}}(r)=
658     -\frac{C_{\bf b}}{4\pi \epsilon_0}
659     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
660     \end{equation}
661     %
662     % u da db
663     %
664     \begin{equation}
665     U_{D_{\bf a}D_{\bf b}}(r)=
666     -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
667     \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
668     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
669     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
670     v_{22}(r) \Bigr]
671     \label{udipdip}
672     \end{equation}
673     %
674     % u da qb
675     %
676     \begin{equation}
677     \begin{split}
678     % 1
679     U_{D_{\bf a}Q_{\bf b}}(r)&=
680     -\frac{1}{4\pi \epsilon_0} \Bigl[
681     \text{Tr}\mathbf{Q}_{\mathbf{b}}
682     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
683     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
684     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
685     % 2
686     &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
687     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
688     \label{udipquad}
689     \end{split}
690     \end{equation}
691     %
692     % u qa cb
693     %
694     \begin{equation}
695     U_{Q_{\bf a}C_{\bf b}}(r)=
696     \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
697     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
698     \label{uquadch}
699     \end{equation}
700     %
701     % u qa db
702     %
703     \begin{equation}
704     \begin{split}
705     %1
706     U_{Q_{\bf a}D_{\bf b}}(r)&=
707     \frac{1}{4\pi \epsilon_0} \Bigl[
708     \text{Tr}\mathbf{Q}_{\mathbf{a}}
709     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
710     +2 ( \mathbf{D}_{\mathbf{b}} \cdot
711     \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
712     % 2
713     +\frac{1}{4\pi \epsilon_0}
714     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
715     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
716     \label{uquaddip}
717     \end{split}
718     \end{equation}
719     %
720     % u qa qb
721     %
722     \begin{equation}
723     \begin{split}
724     %1
725     U_{Q_{\bf a}Q_{\bf b}}(r)&=
726     \frac{1}{4\pi \epsilon_0} \Bigl[
727     \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
728     +2 \text{Tr} \left(
729     \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
730     \\
731     % 2
732     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
733     \left( \hat{r} \cdot
734     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
735     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
736     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
737     \cdot \hat{r} \right) +4 (\hat{r} \cdot
738     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
739     \Bigr] v_{42}(r)
740     \\
741     % 4
742     &+ \frac{1}{4\pi \epsilon_0}
743     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
744     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
745     \label{uquadquad}
746     \end{split}
747     \end{equation}
748    
749    
750     %
751     %
752     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
753     %
754    
755     \begin{table*}
756     \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
757     used in this table are defined in Appendices B and C.}
758     \begin{ruledtabular}
759     \begin{tabular}{cccc}
760     Generic&Coulomb&Method 1&Method 2
761     \\ \hline
762     %
763     %
764     %
765     %Ch-Ch&
766     $v_{01}(r)$ &
767     $\frac{1}{r}$ &
768     $f_0(r)$ &
769     $f(r)-f(r_c)-(r-r_c)g(r_c)$
770     \\
771     %
772     %
773     %
774     %Ch-Di&
775     $v_{11}(r)$ &
776     $-\frac{1}{r^2}$ &
777     $g_1(r)$ &
778     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
779     %
780     %
781     %
782     %Ch-Qu/Di-Di&
783     $v_{21}(r)$ &
784     $-\frac{1}{r^3} $ &
785     $\frac{g_2(r)}{r} $ &
786     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
787     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
788     $v_{22}(r)$ &
789     $\frac{3}{r^3} $ &
790     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
791     $\left(-\frac{g(r)}{r}+h(r) \right)
792     -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
793     &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
794     \\
795     %
796     %
797     %
798     %Di-Qu &
799     $v_{31}(r)$ &
800     $\frac{3}{r^4} $ &
801     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
802     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
803     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
804     &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
805     \\
806     %
807     $v_{32}(r)$ &
808     $-\frac{15}{r^4} $ &
809     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
810     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
811     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
812     &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
813     \\
814     %
815     %
816     %
817     %Qu-Qu&
818     $v_{41}(r)$ &
819     $\frac{3}{r^5} $ &
820     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
821     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
822     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
823     &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
824     \\
825     % 2
826     $v_{42}(r)$ &
827     $- \frac{15}{r^5} $ &
828     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
829     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
830     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
831     &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
832     -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
833     \\
834     % 3
835     $v_{43}(r)$ &
836     $ \frac{105}{r^5} $ &
837     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
838     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
839     &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
840     &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
841     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
842     \end{tabular}
843     \end{ruledtabular}
844     \end{table*}
845     %
846     %
847     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
848     %
849    
850     \begin{table}
851     \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
852     \begin{ruledtabular}
853     \begin{tabular}{cc}
854     Generic&Method 1 or Method 2
855     \\ \hline
856     %
857     %
858     %
859     $w_a(r)$&
860     $\frac{d v_{01}}{dr}$ \\
861     %
862     %
863     $w_b(r)$ &
864     $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
865     %
866     $w_c(r)$ &
867     $\frac{v_{11}(r)}{r}$ \\
868     %
869     %
870     $w_d(r)$&
871     $\frac{d v_{21}}{dr}$ \\
872     %
873     $w_e(r)$ &
874     $\frac{v_{22}(r)}{r}$ \\
875     %
876     %
877     $w_f(r)$&
878     $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
879     %
880     $w_g(r)$&
881     $\frac{v_{31}(r)}{r}$\\
882     %
883     $w_h(r)$ &
884     $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
885     % 2
886     $w_i(r)$ &
887     $\frac{v_{32}(r)}{r}$ \\
888     %
889     $w_j(r)$ &
890     $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
891     %
892     $w_k(r)$ &
893     $\frac{d v_{41}}{dr} $ \\
894     %
895     $w_l(r)$ &
896     $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
897     %
898     $w_m(r)$ &
899     $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
900     %
901     $w_n(r)$ &
902     $\frac{v_{42}(r)}{r}$ \\
903     %
904     $w_o(r)$ &
905     $\frac{v_{43}(r)}{r}$ \\
906     %
907    
908     \end{tabular}
909     \end{ruledtabular}
910     \end{table}
911     %
912     %
913     %
914    
915     \subsection{Forces}
916    
917     The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
918     the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
919     interaction, these forces will point along the $\pm \hat{r}$ directions, where
920     $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
921     %
922     \begin{equation}
923     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
924     \quad \text{and} \quad F_{\bf b \alpha}
925     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
926     \end{equation}
927     %
928     The concept of obtaining a force from an energy by taking a gradient is the same for
929     higher-order multipole interactions, the trick is to make sure that all
930     $r$-dependent derivatives are considered.
931     As is pointed out by Allen and Germano, this is straightforward if the
932     interaction energies are written recognizing explicit
933     $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
934     %
935     \begin{equation}
936     U(r,\{\hat{a}_m \cdot \hat{r} \},
937     \{\hat{b}_n\cdot \hat{r} \}
938     \{\hat{a}_m \cdot \hat{b}_n \}) .
939     \label{ugeneral}
940     \end{equation}
941     %
942     Then,
943     %
944     \begin{equation}
945     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
946     = \frac{\partial U}{\partial r} \hat{r}
947     + \sum_m \left[
948     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
949     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
950     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
951     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
952     \right] \label{forceequation}.
953     \end{equation}
954     %
955     Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
956     that of Allen and Germano. In simplifying the algebra, we also use:
957     %
958     \begin{eqnarray}
959     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
960     = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
961     \right) \\
962     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
963     = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
964     \right) .
965     \end{eqnarray}
966     %
967     We list below the force equations written in terms of space coordinates. The
968     radial functions used in the two methods are listed in Table II.
969     %
970     %SPACE COORDINATES FORCE EQUTIONS
971     %
972     % **************************************************************************
973     % f ca cb
974     %
975     \begin{equation}
976     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
977     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
978     \end{equation}
979     %
980     %
981     %
982     \begin{equation}
983     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
984     \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
985     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
986     w_b(r) \hat{r}
987     + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
988     \end{equation}
989     %
990     %
991     %
992     \begin{equation}
993     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
994     \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
995     \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
996     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
997     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
998     \end{equation}
999     %
1000     %
1001     %
1002     \begin{equation}
1003     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1004     -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
1005     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1006     + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1007     \end{equation}
1008     %
1009     %
1010     %
1011     \begin{equation}
1012     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
1013     \frac{1}{4\pi \epsilon_0} \Bigl[
1014     - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1015     + \left( \mathbf{D}_{\mathbf {a}}
1016     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1017     + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
1018     % 2
1019     - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1020     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
1021     \end{equation}
1022     %
1023     %
1024     %
1025     \begin{equation}
1026     \begin{split}
1027     \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1028     & - \frac{1}{4\pi \epsilon_0} \Bigl[
1029     \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1030     +2 \mathbf{D}_{\mathbf{a}} \cdot
1031     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1032     - \frac{1}{4\pi \epsilon_0} \Bigl[
1033     \text{Tr}\mathbf{Q}_{\mathbf{b}}
1034     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1035     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1036     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1037     % 3
1038     & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1039     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1040     w_i(r)
1041     % 4
1042     -\frac{1}{4\pi \epsilon_0}
1043     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1044     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
1045     \end{split}
1046     \end{equation}
1047     %
1048     %
1049     \begin{equation}
1050     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1051     \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1052     \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1053     + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1054     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1055     \end{equation}
1056     %
1057     \begin{equation}
1058     \begin{split}
1059     \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1060     &\frac{1}{4\pi \epsilon_0} \Bigl[
1061     \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1062     +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1063     % 2
1064     + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1065     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1066     +2 (\mathbf{D}_{\mathbf{b}} \cdot
1067     \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1068     % 3
1069     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1070     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1071     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1072     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1073     % 4
1074     +\frac{1}{4\pi \epsilon_0}
1075     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1076     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1077     \end{split}
1078     \end{equation}
1079     %
1080     %
1081     %
1082     \begin{equation}
1083     \begin{split}
1084     \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1085     +\frac{1}{4\pi \epsilon_0} \Bigl[
1086     \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1087     + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1088     % 2
1089     +\frac{1}{4\pi \epsilon_0} \Bigl[
1090     2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1091     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1092     % 3
1093     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1094     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1095     % 4
1096     + \frac{1}{4\pi \epsilon_0} \Bigl[
1097     \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1098     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1099     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1100     % 5
1101     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1102     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1103     %
1104     + \frac{1}{4\pi \epsilon_0} \Bigl[
1105     + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1106     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1107     %6
1108     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1109     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1110     % 7
1111     + \frac{1}{4\pi \epsilon_0}
1112     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1113     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1114     \end{split}
1115     \end{equation}
1116     %
1117     %
1118     % TORQUES SECTION -----------------------------------------------------------------------------------------
1119     %
1120     \subsection{Torques}
1121    
1122     Following again Allen and Germano, when energies are written in the form
1123     of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1124     %
1125     \begin{eqnarray}
1126     \mathbf{\tau}_{\bf a} =
1127     \sum_m
1128     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1129     ( \hat{r} \times \hat{a}_m )
1130     -\sum_{mn}
1131     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1132     (\hat{a}_m \times \hat{b}_n) \\
1133     %
1134     \mathbf{\tau}_{\bf b} =
1135     \sum_m
1136     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1137     ( \hat{r} \times \hat{b}_m)
1138     +\sum_{mn}
1139     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1140     (\hat{a}_m \times \hat{b}_n) .
1141     \end{eqnarray}
1142     %
1143     %
1144     Here we list the torque equations written in terms of space coordinates.
1145     %
1146     %
1147     %
1148     \begin{equation}
1149     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1150     \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
1151     \end{equation}
1152     %
1153     %
1154     %
1155     \begin{equation}
1156     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1157     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1158     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
1159     \end{equation}
1160     %
1161     %
1162     %
1163     \begin{equation}
1164     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1165     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1166     (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1167     \end{equation}
1168     %
1169     %
1170     %
1171     \begin{equation}
1172     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
1173     \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1174     % 2
1175     -\frac{1}{4\pi \epsilon_0}
1176     (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1177     (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1178     \end{equation}
1179     %
1180     %
1181     %
1182     \begin{equation}
1183     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1184     -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1185     % 2
1186     +\frac{1}{4\pi \epsilon_0}
1187     (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1188     (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1189     \end{equation}
1190     %
1191     %
1192     %
1193     \begin{equation}
1194     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1195     \frac{1}{4\pi \epsilon_0} \Bigl[
1196     -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1197     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1198     +2 \mathbf{D}_{\mathbf{a}} \times
1199     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1200     \Bigr] v_{31}(r)
1201     % 3
1202     -\frac{1}{4\pi \epsilon_0}
1203     \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1204     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
1205     \end{equation}
1206     %
1207     %
1208     %
1209     \begin{equation}
1210     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
1211     \frac{1}{4\pi \epsilon_0} \Bigl[
1212     +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1213     \hat{r}
1214     -2 \mathbf{D}_{\mathbf{a}} \times
1215     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1216     \Bigr] v_{31}(r)
1217     % 2
1218     +\frac{2}{4\pi \epsilon_0}
1219     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1220     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1221     \end{equation}
1222     %
1223     %
1224     %
1225     \begin{equation}
1226     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1227     \frac{1}{4\pi \epsilon_0} \Bigl[
1228     -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1229     +2 \mathbf{D}_{\mathbf{b}} \times
1230     (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1231     \Bigr] v_{31}(r)
1232     % 3
1233     - \frac{2}{4\pi \epsilon_0}
1234     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1235     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1236     \end{equation}
1237     %
1238     %
1239     %
1240     \begin{equation}
1241     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1242     \frac{1}{4\pi \epsilon_0} \Bigl[
1243     \text{Tr}\mathbf{Q}_{\mathbf{a}}
1244     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1245     +2 \mathbf{D}_{\mathbf{b}} \times
1246     ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1247     % 2
1248     +\frac{1}{4\pi \epsilon_0}
1249     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1250     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1251     \end{equation}
1252     %
1253     %
1254     %
1255     \begin{equation}
1256     \begin{split}
1257     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1258     &-\frac{4}{4\pi \epsilon_0}
1259     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1260     v_{41}(r) \\
1261     % 2
1262     &+ \frac{1}{4\pi \epsilon_0}
1263     \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1264     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1265     +4 \hat{r} \times
1266     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1267     % 3
1268     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1269     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1270     % 4
1271     &+ \frac{2}{4\pi \epsilon_0}
1272     \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1273     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1274     \end{split}
1275     \end{equation}
1276     %
1277     %
1278     %
1279     \begin{equation}
1280     \begin{split}
1281     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1282     &\frac{4}{4\pi \epsilon_0}
1283     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1284     % 2
1285     &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1286     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1287     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1288     \mathbf{Q}_{{\mathbf b}} ) \times
1289     \hat{r}
1290     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1291     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1292     \Bigr] v_{42}(r) \\
1293     % 4
1294     &+ \frac{2}{4\pi \epsilon_0}
1295     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1296     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1297     \end{split}
1298     \end{equation}
1299     %
1300 gezelter 3980
1301     \section{Comparison to known multipolar energies}
1302    
1303     To understand how these new real-space multipole methods behave in
1304     computer simulations, it is vital to test against established methods
1305     for computing electrostatic interactions in periodic systems, and to
1306     evaluate the size and sources of any errors that arise from the
1307     real-space cutoffs. In this paper we test Taylor-shifted and
1308     Gradient-shifted electrostatics against analytical methods for
1309     computing the energies of ordered multipolar arrays. In the following
1310     paper, we test the new methods against the multipolar Ewald sum for
1311     computing the energies, forces and torques for a wide range of typical
1312     condensed-phase (disordered) systems.
1313    
1314     Because long-range electrostatic effects can be significant in
1315     crystalline materials, ordered multipolar arrays present one of the
1316     biggest challenges for real-space cutoff methods. The dipolar
1317     analogues to the Madelung constants were first worked out by Sauer,
1318     who computed the energies of ordered dipole arrays of zero
1319     magnetization and obtained a number of these constants.\cite{Sauer}
1320     This theory was developed more completely by Luttinger and
1321     Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1322     other periodic structures. We have repeated the Luttinger \& Tisza
1323     series summations to much higher order and obtained the following
1324     energy constants (converged to one part in $10^9$):
1325     \begin{table*}
1326     \centering{
1327     \caption{Luttinger \& Tisza arrays and their associated
1328     energy constants. Type "A" arrays have nearest neighbor strings of
1329     antiparallel dipoles. Type "B" arrays have nearest neighbor
1330     strings of antiparallel dipoles if the dipoles are contained in a
1331     plane perpendicular to the dipole direction that passes through
1332     the dipole.}
1333     }
1334     \label{tab:LT}
1335     \begin{ruledtabular}
1336     \begin{tabular}{cccc}
1337     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1338     A & SC & 001 & -2.676788684 \\
1339     A & BCC & 001 & 0 \\
1340     A & BCC & 111 & -1.770078733 \\
1341     A & FCC & 001 & 2.166932835 \\
1342     A & FCC & 011 & -1.083466417 \\
1343    
1344     * & BCC & minimum & -1.985920929 \\
1345    
1346     B & SC & 001 & -2.676788684 \\
1347     B & BCC & 001 & -1.338394342 \\
1348     B & BCC & 111 & -1.770078733 \\
1349     B & FCC & 001 & -1.083466417 \\
1350     B & FCC & 011 & -1.807573634
1351     \end{tabular}
1352     \end{ruledtabular}
1353     \end{table*}
1354    
1355     In addition to the A and B arrays, there is an additional minimum
1356     energy structure for the BCC lattice that was found by Luttinger \&
1357     Tisza. The total electrostatic energy for an array is given by:
1358     \begin{equation}
1359     E = C N^2 \mu^2
1360     \end{equation}
1361     where $C$ is the energy constant given above, $N$ is the number of
1362     dipoles per unit volume, and $\mu$ is the strength of the dipole.
1363    
1364     {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1365     computed the energies of selected quadrupole arrays based on
1366     extensions to the Luttinger and Tisza
1367     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1368     energy constants for the lowest energy configurations for linear
1369     quadrupoles shown in table \ref{tab:NNQ}
1370    
1371     \begin{table*}
1372     \centering{
1373     \caption{Nagai and Nakamura Quadurpolar arrays}}
1374     \label{tab:NNQ}
1375     \begin{ruledtabular}
1376     \begin{tabular}{ccc}
1377     Lattice & Quadrupole Direction & Energy constants \\ \hline
1378     SC & 111 & -8.3 \\
1379     BCC & 011 & -21.7 \\
1380     FCC & 111 & -80.5
1381     \end{tabular}
1382     \end{ruledtabular}
1383     \end{table*}
1384    
1385     In analogy to the dipolar arrays, the total electrostatic energy for
1386     the quadrupolar arrays is:
1387     \begin{equation}
1388     E = C \frac{3}{4} N^2 Q^2
1389     \end{equation}
1390     where $Q$ is the quadrupole moment.
1391    
1392    
1393    
1394    
1395    
1396    
1397    
1398    
1399 gezelter 3906 \begin{acknowledgments}
1400 gezelter 3980 Support for this project was provided by the National Science
1401     Foundation under grant CHE-0848243. Computational time was provided by
1402     the Center for Research Computing (CRC) at the University of Notre
1403     Dame.
1404 gezelter 3906 \end{acknowledgments}
1405    
1406     \appendix
1407    
1408     \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1409    
1410     The following summarizes Smith's $B_l(r)$ functions and
1411     includes formulas given in his appendix.
1412    
1413     The first function $B_0(r)$ is defined by
1414     %
1415     \begin{equation}
1416     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1417     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1418     \end{equation}
1419     %
1420     The first derivative of this function is
1421     %
1422     \begin{equation}
1423     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1424     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1425     \end{equation}
1426     %
1427     and can be rewritten in terms of a function $B_1(r)$:
1428     %
1429     \begin{equation}
1430     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1431     \end{equation}
1432     %
1433     In general,
1434     \begin{equation}
1435     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1436     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1437     \text{e}^{-{\alpha}^2r^2}
1438     \right] .
1439     \end{equation}
1440     %
1441     Using these formulas, we find
1442     %
1443     \begin{eqnarray}
1444     \frac{dB_0}{dr}=-rB_1(r) \\
1445     \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1446     \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1447     \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1448     \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1449     \end{eqnarray}
1450     %
1451     As noted by Smith,
1452     %
1453     \begin{equation}
1454     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1455     +\text{O}(r) .
1456     \end{equation}
1457    
1458     \section{Method 1, the $r$-dependent factors}
1459    
1460     Using the shifted damped functions $f_n(r)$ defined by:
1461     %
1462     \begin{equation}
1463     f_n(r)= B_0 \Big \lvert _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert _{r_c} ,
1464     \end{equation}
1465     %
1466     we first provide formulas for successive derivatives of this function. (If there is
1467     no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.) First, we find:
1468     %
1469     \begin{equation}
1470     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1471     \end{equation}
1472     %
1473     This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1474     define higher-order derivatives as follows:
1475     %
1476     \begin{eqnarray}
1477     g_n(r)= \frac{d f_n}{d r} =
1478     B_0^{(1)} \Big \lvert _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert _{r_c} \\
1479     h_n(r)= \frac{d^2f_n}{d r^2} =
1480     B_0^{(2)} \Big \lvert _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert _{r_c} \\
1481     s_n(r)= \frac{d^3f_n}{d r^3} =
1482     B_0^{(3)} \Big \lvert _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert _{r_c} \\
1483     t_n(r)= \frac{d^4f_n}{d r^4} =
1484     B_0^{(4)} \Big \lvert _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert _{r_c} \\
1485     u_n(r)= \frac{d^5f_n}{d r^5} =
1486     B_0^{(5)} \Big \lvert _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert _{r_c} .
1487     \end{eqnarray}
1488     %
1489     We note that the last function needed (for quadrupole-quadrupole) is
1490     %
1491     \begin{equation}
1492     u_4(r)=B_0^{(5)} \Big \lvert _r - B_0^{(5)} \Big \lvert _{r_c} .
1493     \end{equation}
1494    
1495     The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1496     from $0$ to $r_c$. The functions needed are listed schematically below:
1497     %
1498     \begin{eqnarray}
1499     f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1500     g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1501     h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1502     s_2 \quad s_3 \quad &s_4 \nonumber \\
1503     t_3 \quad &t_4 \nonumber \\
1504     &u_4 \nonumber .
1505     \end{eqnarray}
1506    
1507     Using these functions, we find
1508     %
1509     \begin{equation}
1510     \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1511     \end{equation}
1512     %
1513     \begin{equation}
1514     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1515     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1516     \end{equation}
1517     %
1518     \begin{equation}
1519     \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1520     \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1521     \delta_{ \beta \gamma} r_\alpha \right)
1522     \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1523     + r_\alpha r_\beta r_\gamma
1524     \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1525     \end{equation}
1526     %
1527     \begin{eqnarray}
1528     \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1529     \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1530     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1531     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1532     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1533     + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1534     + \text{5 perm}
1535     \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1536     \right) \nonumber \\
1537     + r_\alpha r_\beta r_\gamma r_\delta
1538     \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1539     + \frac{t_n}{r^4} \right)
1540     \end{eqnarray}
1541     %
1542     \begin{eqnarray}
1543     \frac{\partial^5 f_n}
1544     {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1545     \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1546     + \text{14 perm} \right)
1547     \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1548     + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1549     + \text{9 perm}
1550     \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1551     \right) \nonumber \\
1552     + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1553     \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1554     - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1555     \end{eqnarray}
1556     %
1557     %
1558     %
1559     \section{Method 2, the $r$-dependent factors}
1560    
1561     In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1562     see Eq. (20?). For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1563     of the kernel $B_0(r)$. To denote these terms, we generalize the notation of the previous appendix.
1564     For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1565     %
1566     \begin{eqnarray}
1567     g(r)= \frac{df}{d r}\\
1568     h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1569     s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1570     t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1571     u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1572     \end{eqnarray}
1573     %
1574     For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.'' Checks of algebra can be made by using limiting forms
1575     of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$. Equations (B9) to B(13)
1576     are correct for method 2 if one just eliminates the subscript $n$.
1577    
1578     \section{Extra Material}
1579     %
1580     %
1581     %Energy in body coordinate form ---------------------------------------------------------------
1582     %
1583     Here are the interaction energies written in terms of the body coordinates:
1584    
1585     %
1586     % u ca cb
1587     %
1588     \begin{equation}
1589     U_{C_{\bf a}C_{\bf b}}(r)=
1590     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1591     \end{equation}
1592     %
1593     % u ca db
1594     %
1595     \begin{equation}
1596     U_{C_{\bf a}D_{\bf b}}(r)=
1597     \frac{C_{\bf a}}{4\pi \epsilon_0}
1598     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1599     \end{equation}
1600     %
1601     % u ca qb
1602     %
1603     \begin{equation}
1604     U_{C_{\bf a}Q_{\bf b}}(r)=
1605     \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1606     v_{21}(r) \nonumber \\
1607     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1608     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1609     v_{22}(r)
1610     \end{equation}
1611     %
1612     % u da cb
1613     %
1614     \begin{equation}
1615     U_{D_{\bf a}C_{\bf b}}(r)=
1616     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1617     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1618     \end{equation}
1619     %
1620     % u da db
1621     %
1622     \begin{equation}
1623     \begin{split}
1624     % 1
1625     U_{D_{\bf a}D_{\bf b}}(r)&=
1626     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1627     (\hat{a}_m \cdot \hat{b}_n)
1628     D_{\mathbf{b}n} v_{21}(r) \\
1629     % 2
1630     &-\frac{1}{4\pi \epsilon_0}
1631     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1632     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1633     v_{22}(r)
1634     \end{split}
1635     \end{equation}
1636     %
1637     % u da qb
1638     %
1639     \begin{equation}
1640     \begin{split}
1641     % 1
1642     U_{D_{\bf a}Q_{\bf b}}(r)&=
1643     -\frac{1}{4\pi \epsilon_0} \left(
1644     \text{Tr}Q_{\mathbf{b}}
1645     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1646     +2\sum_{lmn}D_{\mathbf{a}l}
1647     (\hat{a}_l \cdot \hat{b}_m)
1648     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1649     \right) v_{31}(r) \\
1650     % 2
1651     &-\frac{1}{4\pi \epsilon_0}
1652     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1653     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1654     Q_{{\mathbf b}mn}
1655     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1656     \end{split}
1657     \end{equation}
1658     %
1659     % u qa cb
1660     %
1661     \begin{equation}
1662     U_{Q_{\bf a}C_{\bf b}}(r)=
1663     \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1664     +\frac{C_{\bf b}}{4\pi \epsilon_0}
1665     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1666     \end{equation}
1667     %
1668     % u qa db
1669     %
1670     \begin{equation}
1671     \begin{split}
1672     %1
1673     U_{Q_{\bf a}D_{\bf b}}(r)&=
1674     \frac{1}{4\pi \epsilon_0} \left(
1675     \text{Tr}Q_{\mathbf{a}}
1676     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1677     +2\sum_{lmn}D_{\mathbf{b}l}
1678     (\hat{b}_l \cdot \hat{a}_m)
1679     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1680     \right) v_{31}(r) \\
1681     % 2
1682     &+\frac{1}{4\pi \epsilon_0}
1683     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1684     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1685     Q_{{\mathbf a}mn}
1686     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1687     \end{split}
1688     \end{equation}
1689     %
1690     % u qa qb
1691     %
1692     \begin{equation}
1693     \begin{split}
1694     %1
1695     U_{Q_{\bf a}Q_{\bf b}}(r)&=
1696     \frac{1}{4\pi \epsilon_0} \Bigl[
1697     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1698     +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1699     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1700     (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1701     v_{41}(r) \\
1702     % 2
1703     &+ \frac{1}{4\pi \epsilon_0}
1704     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1705     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1706     Q_{{\mathbf b}lm}
1707     (\hat{b}_m \cdot \hat{r})
1708     +\text{Tr}Q_{\mathbf{b}}
1709     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1710     Q_{{\mathbf a}lm}
1711     (\hat{a}_m \cdot \hat{r}) \\
1712     % 3
1713     &+4 \sum_{lmnp}
1714     (\hat{r} \cdot \hat{a}_l )
1715     Q_{{\mathbf a}lm}
1716     (\hat{a}_m \cdot \hat{b}_n)
1717     Q_{{\mathbf b}np}
1718     (\hat{b}_p \cdot \hat{r})
1719     \Bigr] v_{42}(r) \\
1720     % 4
1721     &+ \frac{1}{4\pi \epsilon_0}
1722     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1723     Q_{{\mathbf a}lm}
1724     (\hat{a}_m \cdot \hat{r})
1725     \sum_{np} (\hat{r} \cdot \hat{b}_n)
1726     Q_{{\mathbf b}np}
1727     (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1728     \end{split}
1729     \end{equation}
1730     %
1731    
1732    
1733     % BODY coordinates force equations --------------------------------------------
1734     %
1735     %
1736     Here are the force equations written in terms of body coordinates.
1737     %
1738     % f ca cb
1739     %
1740     \begin{equation}
1741     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1742     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1743     \end{equation}
1744     %
1745     % f ca db
1746     %
1747     \begin{equation}
1748     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1749     \frac{C_{\bf a}}{4\pi \epsilon_0}
1750     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1751     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1752     \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1753     \end{equation}
1754     %
1755     % f ca qb
1756     %
1757     \begin{equation}
1758     \begin{split}
1759     % 1
1760     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1761     \frac{1}{4\pi \epsilon_0}
1762     C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1763     + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1764     % 2
1765     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1766     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1767     \end{split}
1768     \end{equation}
1769     %
1770     % f da cb
1771     %
1772     \begin{equation}
1773     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1774     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1775     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1776     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1777     \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1778     \end{equation}
1779     %
1780     % f da db
1781     %
1782     \begin{equation}
1783     \begin{split}
1784     % 1
1785     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1786     -\frac{1}{4\pi \epsilon_0}
1787     \sum_{mn} D_{\mathbf {a}m}
1788     (\hat{a}_m \cdot \hat{b}_n)
1789     D_{\mathbf{b}n} w_d(r) \hat{r}
1790     -\frac{1}{4\pi \epsilon_0}
1791     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1792     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1793     % 2
1794     & \quad + \frac{1}{4\pi \epsilon_0}
1795     \Bigl[ \sum_m D_{\mathbf {a}m}
1796     \hat{a}_m \sum_n D_{\mathbf{b}n}
1797     (\hat{b}_n \cdot \hat{r})
1798     + \sum_m D_{\mathbf {b}m}
1799     \hat{b}_m \sum_n D_{\mathbf{a}n}
1800     (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1801     \end{split}
1802     \end{equation}
1803     %
1804     % f da qb
1805     %
1806     \begin{equation}
1807     \begin{split}
1808     % 1
1809     &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1810     - \frac{1}{4\pi \epsilon_0} \Bigl[
1811     \text{Tr}Q_{\mathbf{b}}
1812     \sum_l D_{\mathbf{a}l} \hat{a}_l
1813     +2\sum_{lmn} D_{\mathbf{a}l}
1814     (\hat{a}_l \cdot \hat{b}_m)
1815     Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1816     % 3
1817     & - \frac{1}{4\pi \epsilon_0} \Bigl[
1818     \text{Tr}Q_{\mathbf{b}}
1819     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1820     +2\sum_{lmn}D_{\mathbf{a}l}
1821     (\hat{a}_l \cdot \hat{b}_m)
1822     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1823     % 4
1824     &+ \frac{1}{4\pi \epsilon_0}
1825     \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1826     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1827     Q_{{\mathbf b}mn}
1828     (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1829     D_{\mathbf{a}l}
1830     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1831     Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1832     % 6
1833     & -\frac{1}{4\pi \epsilon_0}
1834     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1835     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1836     Q_{{\mathbf b}mn}
1837     (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1838     \end{split}
1839     \end{equation}
1840     %
1841     % force qa cb
1842     %
1843     \begin{equation}
1844     \begin{split}
1845     % 1
1846     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1847     \frac{1}{4\pi \epsilon_0}
1848     C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1849     + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1850     % 2
1851     & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1852     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1853     \end{split}
1854     \end{equation}
1855     %
1856     % f qa db
1857     %
1858     \begin{equation}
1859     \begin{split}
1860     % 1
1861     &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1862     \frac{1}{4\pi \epsilon_0} \Bigl[
1863     \text{Tr}Q_{\mathbf{a}}
1864     \sum_l D_{\mathbf{b}l} \hat{b}_l
1865     +2\sum_{lmn} D_{\mathbf{b}l}
1866     (\hat{b}_l \cdot \hat{a}_m)
1867     Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1868     w_g(r)\\
1869     % 3
1870     & + \frac{1}{4\pi \epsilon_0} \Bigl[
1871     \text{Tr}Q_{\mathbf{a}}
1872     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1873     +2\sum_{lmn}D_{\mathbf{b}l}
1874     (\hat{b}_l \cdot \hat{a}_m)
1875     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1876     % 4
1877     & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1878     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1879     Q_{{\mathbf a}mn}
1880     (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1881     D_{\mathbf{b}l}
1882     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1883     Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1884     % 6
1885     & +\frac{1}{4\pi \epsilon_0}
1886     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1887     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1888     Q_{{\mathbf a}mn}
1889     (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1890     \end{split}
1891     \end{equation}
1892     %
1893     % f qa qb
1894     %
1895     \begin{equation}
1896     \begin{split}
1897     &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1898     \frac{1}{4\pi \epsilon_0} \Bigl[
1899     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1900     + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1901     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1902     (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1903     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1904     2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1905     + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1906     &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1907     + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1908     \Bigr] w_n(r) \\
1909     &+ \frac{1}{4\pi \epsilon_0}
1910     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1911     \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1912     + \text{Tr}Q_{\mathbf{b}}
1913     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1914     &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1915     Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1916     %
1917     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1918     2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1919     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1920     &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1921     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1922     & + \frac{1}{4\pi \epsilon_0}
1923     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1924     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1925     \end{split}
1926     \end{equation}
1927     %
1928     Here we list the form of the non-zero damped shifted multipole torques showing
1929     explicitly dependences on body axes:
1930     %
1931     % t ca db
1932     %
1933     \begin{equation}
1934     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1935     \frac{C_{\bf a}}{4\pi \epsilon_0}
1936     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1937     \end{equation}
1938     %
1939     % t ca qb
1940     %
1941     \begin{equation}
1942     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1943     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1944     \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1945     \end{equation}
1946     %
1947     % t da cb
1948     %
1949     \begin{equation}
1950     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1951     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1952     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1953     \end{equation}%
1954     %
1955     %
1956     % ta da db
1957     %
1958     \begin{equation}
1959     \begin{split}
1960     % 1
1961     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1962     \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1963     (\hat{a}_m \times \hat{b}_n)
1964     D_{\mathbf{b}n} v_{21}(r) \\
1965     % 2
1966     &-\frac{1}{4\pi \epsilon_0}
1967     \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1968     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1969     \end{split}
1970     \end{equation}
1971     %
1972     % tb da db
1973     %
1974     \begin{equation}
1975     \begin{split}
1976     % 1
1977     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1978     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1979     (\hat{a}_m \times \hat{b}_n)
1980     D_{\mathbf{b}n} v_{21}(r) \\
1981     % 2
1982     &+\frac{1}{4\pi \epsilon_0}
1983     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1984     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1985     \end{split}
1986     \end{equation}
1987     %
1988     % ta da qb
1989     %
1990     \begin{equation}
1991     \begin{split}
1992     % 1
1993     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1994     \frac{1}{4\pi \epsilon_0} \left(
1995     -\text{Tr}Q_{\mathbf{b}}
1996     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1997     +2\sum_{lmn}D_{\mathbf{a}l}
1998     (\hat{a}_l \times \hat{b}_m)
1999     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2000     \right) v_{31}(r)\\
2001     % 2
2002     &-\frac{1}{4\pi \epsilon_0}
2003     \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2004     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2005     Q_{{\mathbf b}mn}
2006     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2007     \end{split}
2008     \end{equation}
2009     %
2010     % tb da qb
2011     %
2012     \begin{equation}
2013     \begin{split}
2014     % 1
2015     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2016     \frac{1}{4\pi \epsilon_0} \left(
2017     -2\sum_{lmn}D_{\mathbf{a}l}
2018     (\hat{a}_l \cdot \hat{b}_m)
2019     Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2020     -2\sum_{lmn}D_{\mathbf{a}l}
2021     (\hat{a}_l \times \hat{b}_m)
2022     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2023     \right) v_{31}(r) \\
2024     % 2
2025     &-\frac{2}{4\pi \epsilon_0}
2026     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2027     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2028     Q_{{\mathbf b}mn}
2029     (\hat{r}\times \hat{b}_n) v_{32}(r)
2030     \end{split}
2031     \end{equation}
2032     %
2033     % ta qa cb
2034     %
2035     \begin{equation}
2036     \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2037     \frac{2C_{\bf a}}{4\pi \epsilon_0}
2038     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2039     \end{equation}
2040     %
2041     % ta qa db
2042     %
2043     \begin{equation}
2044     \begin{split}
2045     % 1
2046     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2047     \frac{1}{4\pi \epsilon_0} \left(
2048     2\sum_{lmn}D_{\mathbf{b}l}
2049     (\hat{b}_l \cdot \hat{a}_m)
2050     Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2051     +2\sum_{lmn}D_{\mathbf{b}l}
2052     (\hat{a}_l \times \hat{b}_m)
2053     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2054     \right) v_{31}(r) \\
2055     % 2
2056     &+\frac{2}{4\pi \epsilon_0}
2057     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2058     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2059     Q_{{\mathbf a}mn}
2060     (\hat{r}\times \hat{a}_n) v_{32}(r)
2061     \end{split}
2062     \end{equation}
2063     %
2064     % tb qa db
2065     %
2066     \begin{equation}
2067     \begin{split}
2068     % 1
2069     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2070     \frac{1}{4\pi \epsilon_0} \left(
2071     \text{Tr}Q_{\mathbf{a}}
2072     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2073     +2\sum_{lmn}D_{\mathbf{b}l}
2074     (\hat{a}_l \times \hat{b}_m)
2075     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2076     \right) v_{31}(r)\\
2077     % 2
2078     &\frac{1}{4\pi \epsilon_0}
2079     \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2080     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2081     Q_{{\mathbf a}mn}
2082     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2083     \end{split}
2084     \end{equation}
2085     %
2086     % ta qa qb
2087     %
2088     \begin{equation}
2089     \begin{split}
2090     % 1
2091     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2092     -\frac{4}{4\pi \epsilon_0}
2093     \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2094     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2095     (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2096     % 2
2097     &+ \frac{1}{4\pi \epsilon_0}
2098     \Bigl[
2099     2\text{Tr}Q_{\mathbf{b}}
2100     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2101     Q_{{\mathbf a}lm}
2102     (\hat{r} \times \hat{a}_m)
2103     +4 \sum_{lmnp}
2104     (\hat{r} \times \hat{a}_l )
2105     Q_{{\mathbf a}lm}
2106     (\hat{a}_m \cdot \hat{b}_n)
2107     Q_{{\mathbf b}np}
2108     (\hat{b}_p \cdot \hat{r}) \\
2109     % 3
2110     &-4 \sum_{lmnp}
2111     (\hat{r} \cdot \hat{a}_l )
2112     Q_{{\mathbf a}lm}
2113     (\hat{a}_m \times \hat{b}_n)
2114     Q_{{\mathbf b}np}
2115     (\hat{b}_p \cdot \hat{r})
2116     \Bigr] v_{42}(r) \\
2117     % 4
2118     &+ \frac{2}{4\pi \epsilon_0}
2119     \sum_{lm} (\hat{r} \times \hat{a}_l)
2120     Q_{{\mathbf a}lm}
2121     (\hat{a}_m \cdot \hat{r})
2122     \sum_{np} (\hat{r} \cdot \hat{b}_n)
2123     Q_{{\mathbf b}np}
2124     (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2125     \end{split}
2126     \end{equation}
2127     %
2128     % tb qa qb
2129     %
2130     \begin{equation}
2131     \begin{split}
2132     % 1
2133     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2134     \frac{4}{4\pi \epsilon_0}
2135     \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2136     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2137     (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2138     % 2
2139     &+ \frac{1}{4\pi \epsilon_0}
2140     \Bigl[
2141     2\text{Tr}Q_{\mathbf{a}}
2142     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2143     Q_{{\mathbf b}lm}
2144     (\hat{r} \times \hat{b}_m)
2145     +4 \sum_{lmnp}
2146     (\hat{r} \cdot \hat{a}_l )
2147     Q_{{\mathbf a}lm}
2148     (\hat{a}_m \cdot \hat{b}_n)
2149     Q_{{\mathbf b}np}
2150     (\hat{r} \times \hat{b}_p) \\
2151     % 3
2152     &+4 \sum_{lmnp}
2153     (\hat{r} \cdot \hat{a}_l )
2154     Q_{{\mathbf a}lm}
2155     (\hat{a}_m \times \hat{b}_n)
2156     Q_{{\mathbf b}np}
2157     (\hat{b}_p \cdot \hat{r})
2158     \Bigr] v_{42}(r) \\
2159     % 4
2160     &+ \frac{2}{4\pi \epsilon_0}
2161     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2162     Q_{{\mathbf a}lm}
2163     (\hat{a}_m \cdot \hat{r})
2164     \sum_{np} (\hat{r} \times \hat{b}_n)
2165     Q_{{\mathbf b}np}
2166     (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2167     \end{split}
2168     \end{equation}
2169     %
2170     \begin{table*}
2171     \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2172     \begin{ruledtabular}
2173     \begin{tabular}{ccc}
2174     Generic&Method 1&Method 2
2175     \\ \hline
2176     %
2177     %
2178     %
2179     $w_a(r)$&
2180     $g_0(r)$&
2181     $g(r)-g(r_c)$ \\
2182     %
2183     %
2184     $w_b(r)$ &
2185     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2186     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2187     %
2188     $w_c(r)$ &
2189     $\frac{g_1(r)}{r} $ &
2190     $\frac{v_{11}(r)}{r}$ \\
2191     %
2192     %
2193     $w_d(r)$&
2194     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2195     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2196     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2197     %
2198     $w_e(r)$ &
2199     $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2200     $\frac{v_{22}(r)}{r}$ \\
2201     %
2202     %
2203     $w_f(r)$&
2204     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2205     $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2206     &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2207     %
2208     $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2209     $\frac{v_{31}(r)}{r}$\\
2210     %
2211     $w_h(r)$ &
2212     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2213     $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2214     &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2215     &&$-\frac{v_{31}(r)}{r}$\\
2216     % 2
2217     $w_i(r)$ &
2218     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2219     $\frac{v_{32}(r)}{r}$ \\
2220     %
2221     $w_j(r)$ &
2222     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2223     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2224     &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2225     %
2226     $w_k(r)$ &
2227     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2228     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2229     &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2230     %
2231     $w_l(r)$ &
2232     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2233     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2234     &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2235     -\frac{2v_{42}(r)}{r}$ \\
2236     %
2237     $w_m(r)$ &
2238     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2239     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2240     &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2241     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2242     &&$-\frac{4v_{43}(r)}{r}$ \\
2243     %
2244     $w_n(r)$ &
2245     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2246     $\frac{v_{42}(r)}{r}$ \\
2247     %
2248     $w_o(r)$ &
2249     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2250     $\frac{v_{43}(r)}{r}$ \\
2251     %
2252     \end{tabular}
2253     \end{ruledtabular}
2254     \end{table*}
2255 gezelter 3980
2256     \newpage
2257    
2258     \bibliography{multipole}
2259    
2260 gezelter 3906 \end{document}
2261     %
2262     % ****** End of file multipole.tex ******