ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3983
Committed: Fri Dec 27 18:09:59 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 77703 byte(s)
Log Message:
More edits for brevity

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     ]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37    
38 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
39     %\linenumbers\relax % Commence numbering lines
40    
41     \begin{document}
42    
43     \preprint{AIP/123-QED}
44    
45 gezelter 3980 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
46     {Real space alternatives to the Ewald
47     Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48 gezelter 3906
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52    
53     \author{J. Daniel Gezelter}
54     \email{gezelter@nd.edu.}
55     \affiliation{Department of Chemistry and Biochemistry, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58     \author{Kathie E. Newman}
59     \affiliation{Department of Physics, University
60     of Notre Dame, Notre Dame, IN 46556}
61    
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \begin{abstract}
67 gezelter 3980 We have extended the original damped-shifted force (DSF)
68     electrostatic kernel and have been able to derive two new
69     electrostatic potentials for higher-order multipoles that are based
70     on truncated Taylor expansions around the cutoff radius. For
71     multipole-multipole interactions, we find that each of the distinct
72     orientational contributions has a separate radial function to ensure
73     that the overall forces and torques vanish at the cutoff radius. In
74     this paper, we present energy, force, and torque expressions for the
75     new models, and compare these real-space interaction models to exact
76     results for ordered arrays of multipoles.
77 gezelter 3906 \end{abstract}
78    
79     \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80     % Classification Scheme.
81     \keywords{Suggested keywords}%Use showkeys class option if keyword
82     %display desired
83     \maketitle
84    
85     \section{Introduction}
86 gezelter 3982 There has been increasing interest in real-space methods for
87     calculating electrostatic interactions in computer simulations of
88     condensed molecular
89 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90     The simplest of these techniques was developed by Wolf {\it et al.}
91     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
93     simple damped shifted force (DSF) modification to Wolf's method could
94     give nearly quantitative agreement with smooth particle mesh Ewald
95     (SPME)\cite{Essmann95} configurational energy differences as well as
96     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97 gezelter 3906
98 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
99     surprisingly good, particularly for systems with uniform charge
100     density. Additionally, dielectric constants obtained using DSF and
101     similar methods where the force vanishes at $R_\textrm{c}$ are
102     essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103     related methods have now been widely investigated,\cite{Hansen:2012uq}
104     and DSF is now used routinely in simulations of ionic
105     liquids,\cite{doi:10.1021/la400226g,McCann:2013fk} flow in carbon
106     nanotubes,\cite{kannam:094701} gas sorption in metal-organic framework
107     materials,\cite{Forrest:2012ly} thermal conductivity of methane
108     hydrates,\cite{English:2008kx} condensation coefficients of
109     water,\cite{Louden:2013ve} and in tribology at solid-liquid-solid
110     interfaces.\cite{Tokumasu:2013zr} DSF electrostatics provides a
111     compromise between the computational speed of real-space cutoffs and
112     the accuracy of fully-periodic Ewald treatments.
113 gezelter 3906
114 gezelter 3982 \subsection{Coarse Graining using Point Multipoles}
115 gezelter 3980 One common feature of many coarse-graining approaches, which treat
116     entire molecular subsystems as a single rigid body, is simplification
117     of the electrostatic interactions between these bodies so that fewer
118     site-site interactions are required to compute configurational
119     energies. Notably, the force matching approaches of Voth and coworkers
120     are an exciting development in their ability to represent realistic
121     (and {\it reactive}) chemical systems for very large length scales and
122     long times. This approach utilized a coarse-graining in interaction
123     space (CGIS) which fits an effective force for the coarse grained
124     system using a variational force-matching method to a fine-grained
125     simulation.\cite{Izvekov:2008wo}
126 gezelter 3906
127 gezelter 3980 The coarse-graining approaches of Ren \& coworkers,\cite{Golubkov06}
128     and Essex \&
129     coworkers,\cite{ISI:000276097500009,ISI:000298664400012}
130     both utilize Gay-Berne
131     ellipsoids~\cite{Berne72,Gay81,Luckhurst90,Cleaver96,Berardi98,Ravichandran:1999fk,Berardi99,Pasterny00}
132     to model dispersive interactions and point multipoles to model
133     electrostatics for entire molecules or functional groups.
134 gezelter 3906
135 gezelter 3980 Ichiye and coworkers have recently introduced a number of very fast
136     water models based on a ``sticky'' multipole model which are
137     qualitatively better at reproducing the behavior of real water than
138     the more common point-charge models (SPC/E, TIPnP). The point charge
139     models are also substantially more computationally demanding than the
140     sticky multipole
141     approach.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The
142     SSDQO model requires the use of an approximate multipole expansion
143     (AME) as the exact multipole expansion is quite expensive
144     (particularly when handled via the Ewald sum).\cite{Ichiye:2006qy}
145     Another particularly important use of point multipoles (and multipole
146     polarizability) is in the very high-quality AMOEBA water model and
147     related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
148 gezelter 3906
149 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
150     dynamics. Multipolar interactions are inherently short-ranged, and
151     should not need the relatively expensive Ewald treatment. However,
152     real-space cutoff methods are normally applied in an orientation-blind
153     fashion so multipoles which leave and then re-enter a cutoff sphere in
154     a different orientation can cause energy discontinuities.
155 gezelter 3906
156 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
157 gezelter 3982 kernel to point multipoles. We have developed two distinct real-space
158     interaction models for higher-order multipoles based on two truncated
159     Taylor expansions that are carried out at the cutoff radius. We are
160     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
161     electrostatics. Because of differences in the initial assumptions,
162     the two methods yield related, but different expressions for energies,
163     forces, and torques.
164 gezelter 3906
165 gezelter 3982 In this paper we outline the new methodology and give functional forms
166     for the energies, forces, and torques up to quadrupole-quadrupole
167     order. We also compare the new methods to analytic energy constants
168     for periodic arrays of point multipoles. In the following paper, we
169     provide extensive numerical comparisons to Ewald-based electrostatics
170     in common simulation enviornments.
171    
172 gezelter 3980 \section{Methodology}
173 gezelter 3906
174 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
175     The DSF and Wolf methods operate by neutralizing the total charge
176     contained within the cutoff sphere surrounding each particle. This is
177     accomplished by shifting the potential functions to generate image
178     charges on the surface of the cutoff sphere for each pair interaction
179 gezelter 3982 computed within $R_\textrm{c}$. Damping using a complementary error
180     function is applied to the potential to accelerate convergence. The
181     potential for the DSF method, where $\alpha$ is the adjustable damping
182     parameter, is given by
183 gezelter 3980 \begin{equation*}
184     V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
185     \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
186     - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
187     + \frac{2\alpha}{\pi^{1/2}}
188     \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
189     \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
190     \label{eq:DSFPot}
191     \end{equation*}
192    
193     To insure net charge neutrality within each cutoff sphere, an
194     additional ``self'' term is added to the potential. This term is
195     constant (as long as the charges and cutoff radius do not change), and
196     exists outside the normal pair-loop for molecular simulations. It can
197     be thought of as a contribution from a charge opposite in sign, but
198     equal in magnitude, to the central charge, which has been spread out
199     over the surface of the cutoff sphere. A portion of the self term is
200     identical to the self term in the Ewald summation, and comes from the
201     utilization of the complimentary error function for electrostatic
202     damping.\cite{deLeeuw80,Wolf99}
203    
204 gezelter 3982 There have been recent efforts to extend the Wolf self-neutralization
205     method to zero out the dipole and higher order multipoles contained
206     within the cutoff
207     sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
208    
209     In this work, we will be extending the idea of self-neutralization for
210     the point multipoles in a similar way. In Figure
211     \ref{fig:shiftedMultipoles}, the central dipolar site $\mathbf{D}_i$
212     is interacting with point dipole $\mathbf{D}_j$ and point quadrupole,
213     $\mathbf{Q}_k$. The self-neutralization scheme for point multipoles
214     involves projecting opposing multipoles for sites $j$ and $k$ on the
215     surface of the cutoff sphere.
216    
217 gezelter 3980 \begin{figure}
218 gezelter 3982 \includegraphics[width=3in]{SM}
219 gezelter 3980 \caption{Reversed multipoles are projected onto the surface of the
220     cutoff sphere. The forces, torques, and potential are then smoothly
221     shifted to zero as the sites leave the cutoff region.}
222     \label{fig:shiftedMultipoles}
223     \end{figure}
224    
225 gezelter 3982 As in the point-charge approach, there is a contribution from
226     self-neutralization of site $i$. The self term for multipoles is
227     described in section \ref{sec:selfTerm}.
228 gezelter 3906
229 gezelter 3982 \subsection{The multipole expansion}
230    
231 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
232 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
233     interact via electrostatics only and describe those interactions in
234     terms of a standard multipole expansion. Putting the origin of the
235     coordinate system at the center of mass of $\bf a$, we use vectors
236 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
237     a$. Then the electrostatic potential of object $\bf a$ at
238     $\mathbf{r}$ is given by
239 gezelter 3906 \begin{equation}
240     V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
241     \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
242     \end{equation}
243 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
244     notation. Here Greek indices are used to indicate space coordinates
245     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
246     labelling specific charges in $\bf a$ and $\bf b$ respectively. The
247     Taylor expansion,
248 gezelter 3906 \begin{equation}
249     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
250     \left( 1
251     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
252     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
253     \right)
254 gezelter 3982 \frac{1}{r} ,
255 gezelter 3906 \end{equation}
256 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
257     terms of multipole operators,
258 gezelter 3906 \begin{equation}
259     V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
260     \end{equation}
261     where
262     \begin{equation}
263     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
264     + Q_{{\bf a}\alpha\beta}
265     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
266     \end{equation}
267 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
268     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
269 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
270     which can be expressed as a distribution of charges,
271     \begin{align}
272     C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
273     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
274     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
275     \end{align}
276     Note that the definition of the primitive quadrupole here differs from
277     the standard traceless form, and contains an additional Taylor-series
278     based factor of $1/2$.
279 gezelter 3906
280     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
281     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
282     \begin{equation}
283 gezelter 3982 U_{\bf{ab}}(r)
284     = \frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
285     \end{equation}
286     This can also be expanded as a Taylor series in $r$. Using a notation
287     similar to before to define the multipoles on object {\bf b},
288     \begin{equation}
289 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
290     + Q_{{\bf b}\alpha\beta}
291     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
292     \end{equation}
293 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
294 gezelter 3906 \begin{equation}
295     U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
296     \end{equation}
297 gezelter 3982 This form has the benefit of separating out the energies of
298     interaction into contributions from the charge, dipole, and quadrupole
299     of $\bf a$ interacting with the same multipoles $\bf b$.
300 gezelter 3906
301 gezelter 3982 \subsection{Damped Coulomb interactions}
302     In the standard multipole expansion, one typically uses the bare
303     Coulomb potential, with radial dependence $1/r$, as shown in
304     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
305     interaction, which results from replacing point charges with Gaussian
306     distributions of charge with width $\alpha$. In damped multipole
307     electrostatics, the kernel ($1/r$) of the expansion is replaced with
308     the function:
309 gezelter 3906 \begin{equation}
310     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
311     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
312     \end{equation}
313 gezelter 3982 We develop equations below using the function $f(r)$ to represent
314     either $1/r$ or $B_0(r)$, and all of the techniques can be applied
315     either to bare or damped Coulomb kernels as long as derivatives of
316     these functions are known. Smith's convenient functions $B_l(r)$ are
317     summarized in Appendix A.
318 gezelter 3906
319 gezelter 3982 \subsection{Taylor-shifted force (TSF) electrostatics}
320 gezelter 3906
321 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
322     energy as well as forces and torques as $r\rightarrow r_c$. To
323     describe how this goal may be met, we use two examples, charge-charge
324     and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
325     the idea.
326 gezelter 3906
327 gezelter 3982 In the shifted-force approximation, the interaction energy for two
328     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
329     written:
330 gezelter 3906 \begin{equation}
331     U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
332     \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
333     \right) .
334     \end{equation}
335 gezelter 3982 Two shifting terms appear in this equations, one from the
336     neutralization procedure ($-1/r_c$), and one that will make the first
337     derivative also vanish at the cutoff radius.
338    
339     Since one derivative of the interaction energy is needed for the
340     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
341     interaction energy, that is:
342 gezelter 3906 \begin{equation}
343     \frac{d\,}{dr}
344     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
345     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
346     \right) .
347     \end{equation}
348 gezelter 3982 There are a number of ways to generalize this derivative shift for
349     higher-order multipoles.
350 gezelter 3906
351 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
352     is based on a Taylor expansion containing the same number of
353     derivatives required for each force term to vanish at the cutoff. For
354     example, the quadrupole-quadrupole interaction energy requires four
355     derivatives of the kernel, and the force requires one additional
356     derivative. We therefore require shifted energy expressions that
357     include enough terms so that all energies, forces, and torques are
358     zero as $r \rightarrow r_c$. In each case, we will subtract off a
359     function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$. The
360     index $n$ indicates the number of derivatives to be taken when
361     deriving a given multipole energy. We choose a function with
362     guaranteed smooth derivatives --- a truncated Taylor series of the
363     function $f(r)$, e.g.,
364 gezelter 3906 %
365     \begin{equation}
366     f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert _{r_c} .
367     \end{equation}
368     %
369     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
370     Thus, for $f(r)=1/r$, we find
371     %
372     \begin{equation}
373     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
374     \end{equation}
375     %
376 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
377     dipole $\bf b$, we write
378 gezelter 3906 %
379     \begin{equation}
380     U_{C_{\bf a}D_{\bf b}}(r)=
381     \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
382     =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
383     \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
384     \end{equation}
385     %
386     The force that dipole $\bf b$ puts on charge $\bf a$ is
387     %
388     \begin{equation}
389     F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
390     \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
391     \frac{r_\alpha r_\beta}{r^2}
392     \left( -\frac{1}{r} \frac {\partial} {\partial r}
393     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
394     \end{equation}
395     %
396     For $f(r)=1/r$, we find
397     %
398     \begin{equation}
399     F_{C_{\bf a}D_{\bf b}\beta} =
400     \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
401     \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
402     +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
403     \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
404     \end{equation}
405     %
406     This expansion shows the expected $1/r^3$ dependence of the force.
407    
408     In general, we write
409     %
410     \begin{equation}
411     U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
412     \label{generic}
413     \end{equation}
414     %
415     where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
416     and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
417     An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
418     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
419     $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
420     implied summation combining the space indices.
421    
422     To apply this method to the smeared-charge approach,
423     we write $f(r)=\text{erfc}(\alpha r)/r$. By using one function $f(r)$ for both
424     approaches, we simplify the tabulation of equations used. Because
425     of the many derivatives that are taken, the algebra is tedious and are summarized
426     in Appendices A and B.
427    
428 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
429 gezelter 3906
430     Note the method used in the previous subsection to shift a force is basically that of using
431     a truncated Taylor Series in the radius $r$. An alternate method exists, best explained by
432     writing one shifted formula for all interaction energies $U(r)$:
433     \begin{equation}
434     U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
435     \end{equation}
436     Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
437     $(r-r_c)^n$ appear. The primary difference between methods 1 and 2 originates
438     with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
439     kernel. In method 2, it is applied to individual interaction energies of the multipole expansion.
440     Terms from this method thus have the general form:
441     \begin{equation}
442     U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
443     \label{generic2}
444     \end{equation}
445    
446     Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
447     and are listed in Table I below.
448    
449     \subsection{\label{sec:level2}Body and space axes}
450    
451     Up to this point, all energies and forces have been written in terms of fixed space
452     coordinates $x$, $y$, $z$. Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
453     combine prefactors with radial functions. But because objects
454     $\bf a$ and $\bf b$ both translate and rotate as part of a MD simulation,
455     it is desirable to contract all $r$-dependent terms with dipole and quadrupole
456     moments expressed in terms of their body axes.
457     Since the interaction energy expressions will be used to derive both forces and torques,
458     we follow here the development of Allen and Germano, which was itself based on an
459     earlier paper by Price \em et al.\em
460    
461     Denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
462     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
463     set of inertial body axes. (Note, these body axes are generally not the same as those for which the
464     quadrupole moment is diagonal.) Then,
465     %
466     \begin{eqnarray}
467     \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
468     \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
469     \end{eqnarray}
470     Allen and Germano define matrices $\hat{\mathbf {a}}$
471     and $\hat{\mathbf {b}}$ using these unit vectors:
472     \begin{eqnarray}
473     \hat{\mathbf {a}} =
474     \begin{pmatrix}
475     \hat{a}_1 \\
476     \hat{a}_2 \\
477     \hat{a}_3
478     \end{pmatrix}
479     =
480     \begin{pmatrix}
481     a_{1x} \quad a_{1y} \quad a_{1z} \\
482     a_{2x} \quad a_{2y} \quad a_{2z} \\
483     a_{3x} \quad a_{3y} \quad a_{3z}
484     \end{pmatrix}\\
485     \hat{\mathbf {b}} =
486     \begin{pmatrix}
487     \hat{b}_1 \\
488     \hat{b}_2 \\
489     \hat{b}_3
490     \end{pmatrix}
491     =
492     \begin{pmatrix}
493     b_{1x}\quad b_{1y} \quad b_{1z} \\
494     b_{2x} \quad b_{2y} \quad b_{2z} \\
495     b_{3x} \quad b_{3y} \quad b_{3z}
496     \end{pmatrix} .
497     \end{eqnarray}
498     %
499     These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
500     All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
501     It proves to be equally convenient to just write any contraction in terms of unit vectors
502     $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
503     We have found it useful to write angular-dependent terms in three different fashions,
504     illustrated by the following
505     three examples from the interaction-energy expressions:
506     %
507     \begin{eqnarray}
508     \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
509     =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
510     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
511     r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
512     r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
513     \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
514     r ( \mathbf{D}_{\mathbf{a}} \cdot
515     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
516     D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
517     =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
518     (\hat{b}_n \cdot \hat{r}) .
519     \end{eqnarray}
520     %
521     [Dan, perhaps there are better examples to show here.]
522    
523     In each line, the first two terms are written using space coordinates. The first form is standard
524     in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
525     form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
526     We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
527     in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
528     be discussed below.
529    
530 gezelter 3980
531 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
532    
533 gezelter 3980 The Wolf summation~\cite{Wolf99} and the later damped shifted force
534     (DSF) extension~\cite{Fennell06} included self-interactions that are
535     handled separately from the pairwise interactions between sites. The
536     self-term is normally calculated via a single loop over all sites in
537     the system, and is relatively cheap to evaluate. The self-interaction
538     has contributions from two sources:
539     \begin{itemize}
540     \item The neutralization procedure within the cutoff radius requires a
541     contribution from a charge opposite in sign, but equal in magnitude,
542     to the central charge, which has been spread out over the surface of
543     the cutoff sphere. For a system of undamped charges, the total
544     self-term is
545     \begin{equation}
546     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
547     \label{eq:selfTerm}
548     \end{equation}
549     Note that in this potential and in all electrostatic quantities that
550     follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
551     clarity.
552     \item Charge damping with the complementary error function is a
553     partial analogy to the Ewald procedure which splits the interaction
554     into real and reciprocal space sums. The real space sum is retained
555     in the Wolf and DSF methods. The reciprocal space sum is first
556     minimized by folding the largest contribution (the self-interaction)
557     into the self-interaction from charge neutralization of the damped
558     potential. The remainder of the reciprocal space portion is then
559     discarded (as this contributes the largest computational cost and
560     complexity to the Ewald sum). For a system containing only damped
561     charges, the complete self-interaction can be written as
562     \begin{equation}
563     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
564     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
565     C_{\bf a}^{2}.
566     \label{eq:dampSelfTerm}
567     \end{equation}
568     \end{itemize}
569    
570     The extension of DSF electrostatics to point multipoles requires
571     treatment of {\it both} the self-neutralization and reciprocal
572     contributions to the self-interaction for higher order multipoles. In
573     this section we give formulae for these interactions up to quadrupolar
574     order.
575    
576     The self-neutralization term is computed by taking the {\it
577     non-shifted} kernel for each interaction, placing a multipole of
578     equal magnitude (but opposite in polarization) on the surface of the
579     cutoff sphere, and averaging over the surface of the cutoff sphere.
580     Because the self term is carried out as a single sum over sites, the
581     reciprocal-space portion is identical to half of the self-term
582     obtained by Smith and Aguado and Madden for the application of the
583     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
584     site which posesses a charge, dipole, and multipole, both types of
585     contribution are given in table \ref{tab:tableSelf}.
586    
587     \begin{table*}
588     \caption{\label{tab:tableSelf} Self-interaction contributions for
589     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
590     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
591     \begin{ruledtabular}
592     \begin{tabular}{lccc}
593     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
594     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
595     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
596     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
597     Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
598     $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
599     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
600     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
601     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
602     \end{tabular}
603     \end{ruledtabular}
604     \end{table*}
605    
606     For sites which simultaneously contain charges and quadrupoles, the
607     self-interaction includes a cross-interaction between these two
608     multipole orders. Symmetry prevents the charge-dipole and
609     dipole-quadrupole interactions from contributing to the
610     self-interaction. The functions that go into the self-neutralization
611     terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
612     derivatives of the electrostatic kernel (either the undamped $1/r$ or
613     the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that are
614     evaluated at the cutoff distance. For undamped interactions, $f(r_c)
615     = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For damped interactions,
616     $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so on. Appendix XX
617     contains recursion relations that allow rapid evaluation of these
618     derivatives.
619    
620 gezelter 3906 \section{Energies, forces, and torques}
621     \subsection{Interaction energies}
622    
623 gezelter 3983 We now list multipole interaction energies using a set of generic
624     radial functions. Table \ref{tab:tableenergy} maps between the
625     generic functions and the radial functions derived for both the
626     Taylor-shifted and Gradient-shifted methods. This set of equations is
627     written in terms of space coordinates:
628 gezelter 3906
629     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
630     %
631     %
632     % u ca cb
633     %
634 gezelter 3983 \begin{align}
635     U_{C_{\bf a}C_{\bf b}}(r)=&
636 gezelter 3906 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
637 gezelter 3983 \\
638 gezelter 3906 %
639     % u ca db
640     %
641 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
642 gezelter 3906 \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
643     \label{uchdip}
644 gezelter 3983 \\
645 gezelter 3906 %
646     % u ca qb
647     %
648 gezelter 3983 U_{C_{\bf a}Q_{\bf b}}(r)=&
649 gezelter 3906 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
650     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
651     \label{uchquad}
652 gezelter 3983 \\
653 gezelter 3906 %
654     % u da cb
655     %
656 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
657     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
658     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
659     %\\
660 gezelter 3906 %
661     % u da db
662     %
663 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
664 gezelter 3906 -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
665     \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
666     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
667     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
668     v_{22}(r) \Bigr]
669     \label{udipdip}
670 gezelter 3983 \\
671 gezelter 3906 %
672     % u da qb
673     %
674     \begin{split}
675     % 1
676 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
677 gezelter 3906 -\frac{1}{4\pi \epsilon_0} \Bigl[
678     \text{Tr}\mathbf{Q}_{\mathbf{b}}
679     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
680     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
681     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
682     % 2
683     &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
684     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
685     \label{udipquad}
686     \end{split}
687 gezelter 3983 \\
688 gezelter 3906 %
689     % u qa cb
690     %
691 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
692     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
693     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
694     %\label{uquadch}
695     %\\
696 gezelter 3906 %
697     % u qa db
698     %
699 gezelter 3983 %\begin{split}
700 gezelter 3906 %1
701 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
702     %\frac{1}{4\pi \epsilon_0} \Bigl[
703     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
704     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
705     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
706     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
707 gezelter 3906 % 2
708 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
709     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
710     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
711     %\label{uquaddip}
712     %\end{split}
713     %\\
714 gezelter 3906 %
715     % u qa qb
716     %
717     \begin{split}
718     %1
719 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
720 gezelter 3906 \frac{1}{4\pi \epsilon_0} \Bigl[
721     \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
722     +2 \text{Tr} \left(
723     \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
724     \\
725     % 2
726     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
727     \left( \hat{r} \cdot
728     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
729     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
730     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
731     \cdot \hat{r} \right) +4 (\hat{r} \cdot
732     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
733     \Bigr] v_{42}(r)
734     \\
735     % 4
736     &+ \frac{1}{4\pi \epsilon_0}
737     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
738     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
739     \label{uquadquad}
740     \end{split}
741 gezelter 3983 \end{align}
742 gezelter 3906
743 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
744     with those on site $\mathbf{a}$ can be obtained by swapping indices
745     along with the sign of the intersite vector, $\hat{r}$.
746 gezelter 3906
747     %
748     %
749     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
750     %
751    
752     \begin{table*}
753     \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
754     used in this table are defined in Appendices B and C.}
755     \begin{ruledtabular}
756 gezelter 3983 \begin{tabular}{|l|c|l|l}
757     Generic&Coulomb&Taylor-Shifted&Gradient-Shifted
758 gezelter 3906 \\ \hline
759     %
760     %
761     %
762     %Ch-Ch&
763     $v_{01}(r)$ &
764     $\frac{1}{r}$ &
765     $f_0(r)$ &
766     $f(r)-f(r_c)-(r-r_c)g(r_c)$
767     \\
768     %
769     %
770     %
771     %Ch-Di&
772     $v_{11}(r)$ &
773     $-\frac{1}{r^2}$ &
774     $g_1(r)$ &
775     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
776     %
777     %
778     %
779     %Ch-Qu/Di-Di&
780     $v_{21}(r)$ &
781     $-\frac{1}{r^3} $ &
782     $\frac{g_2(r)}{r} $ &
783     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
784     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
785     $v_{22}(r)$ &
786     $\frac{3}{r^3} $ &
787     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
788     $\left(-\frac{g(r)}{r}+h(r) \right)
789     -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
790     &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
791     \\
792     %
793     %
794     %
795     %Di-Qu &
796     $v_{31}(r)$ &
797     $\frac{3}{r^4} $ &
798     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
799     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
800     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
801     &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
802     \\
803     %
804     $v_{32}(r)$ &
805     $-\frac{15}{r^4} $ &
806     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
807     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
808     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
809     &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
810     \\
811     %
812     %
813     %
814     %Qu-Qu&
815     $v_{41}(r)$ &
816     $\frac{3}{r^5} $ &
817     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
818     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
819     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
820     &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
821     \\
822     % 2
823     $v_{42}(r)$ &
824     $- \frac{15}{r^5} $ &
825     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
826     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
827     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
828     &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
829     -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
830     \\
831     % 3
832     $v_{43}(r)$ &
833     $ \frac{105}{r^5} $ &
834     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
835     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
836     &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
837     &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
838     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
839     \end{tabular}
840     \end{ruledtabular}
841     \end{table*}
842     %
843     %
844     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
845     %
846    
847     \begin{table}
848     \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
849     \begin{ruledtabular}
850     \begin{tabular}{cc}
851     Generic&Method 1 or Method 2
852     \\ \hline
853     %
854     %
855     %
856     $w_a(r)$&
857     $\frac{d v_{01}}{dr}$ \\
858     %
859     %
860     $w_b(r)$ &
861     $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
862     %
863     $w_c(r)$ &
864     $\frac{v_{11}(r)}{r}$ \\
865     %
866     %
867     $w_d(r)$&
868     $\frac{d v_{21}}{dr}$ \\
869     %
870     $w_e(r)$ &
871     $\frac{v_{22}(r)}{r}$ \\
872     %
873     %
874     $w_f(r)$&
875     $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
876     %
877     $w_g(r)$&
878     $\frac{v_{31}(r)}{r}$\\
879     %
880     $w_h(r)$ &
881     $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
882     % 2
883     $w_i(r)$ &
884     $\frac{v_{32}(r)}{r}$ \\
885     %
886     $w_j(r)$ &
887     $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
888     %
889     $w_k(r)$ &
890     $\frac{d v_{41}}{dr} $ \\
891     %
892     $w_l(r)$ &
893     $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
894     %
895     $w_m(r)$ &
896     $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
897     %
898     $w_n(r)$ &
899     $\frac{v_{42}(r)}{r}$ \\
900     %
901     $w_o(r)$ &
902     $\frac{v_{43}(r)}{r}$ \\
903     %
904    
905     \end{tabular}
906     \end{ruledtabular}
907     \end{table}
908     %
909     %
910     %
911    
912     \subsection{Forces}
913    
914     The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
915     the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
916     interaction, these forces will point along the $\pm \hat{r}$ directions, where
917     $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
918     %
919     \begin{equation}
920     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
921     \quad \text{and} \quad F_{\bf b \alpha}
922     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
923     \end{equation}
924     %
925     The concept of obtaining a force from an energy by taking a gradient is the same for
926     higher-order multipole interactions, the trick is to make sure that all
927     $r$-dependent derivatives are considered.
928     As is pointed out by Allen and Germano, this is straightforward if the
929     interaction energies are written recognizing explicit
930     $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
931     %
932     \begin{equation}
933     U(r,\{\hat{a}_m \cdot \hat{r} \},
934     \{\hat{b}_n\cdot \hat{r} \}
935     \{\hat{a}_m \cdot \hat{b}_n \}) .
936     \label{ugeneral}
937     \end{equation}
938     %
939     Then,
940     %
941     \begin{equation}
942     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
943     = \frac{\partial U}{\partial r} \hat{r}
944     + \sum_m \left[
945     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
946     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
947     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
948     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
949     \right] \label{forceequation}.
950     \end{equation}
951     %
952     Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
953     that of Allen and Germano. In simplifying the algebra, we also use:
954     %
955     \begin{eqnarray}
956     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
957     = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
958     \right) \\
959     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
960     = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
961     \right) .
962     \end{eqnarray}
963     %
964     We list below the force equations written in terms of space coordinates. The
965     radial functions used in the two methods are listed in Table II.
966     %
967     %SPACE COORDINATES FORCE EQUTIONS
968     %
969     % **************************************************************************
970     % f ca cb
971     %
972     \begin{equation}
973     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
974     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
975     \end{equation}
976     %
977     %
978     %
979     \begin{equation}
980     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
981     \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
982     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
983     w_b(r) \hat{r}
984     + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
985     \end{equation}
986     %
987     %
988     %
989     \begin{equation}
990     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
991     \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
992     \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
993     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
994     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
995     \end{equation}
996     %
997     %
998     %
999     \begin{equation}
1000     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1001     -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
1002     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1003     + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1004     \end{equation}
1005     %
1006     %
1007     %
1008     \begin{equation}
1009     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
1010     \frac{1}{4\pi \epsilon_0} \Bigl[
1011     - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1012     + \left( \mathbf{D}_{\mathbf {a}}
1013     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1014     + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
1015     % 2
1016     - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1017     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
1018     \end{equation}
1019     %
1020     %
1021     %
1022     \begin{equation}
1023     \begin{split}
1024     \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1025     & - \frac{1}{4\pi \epsilon_0} \Bigl[
1026     \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1027     +2 \mathbf{D}_{\mathbf{a}} \cdot
1028     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1029     - \frac{1}{4\pi \epsilon_0} \Bigl[
1030     \text{Tr}\mathbf{Q}_{\mathbf{b}}
1031     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1032     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1033     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1034     % 3
1035     & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1036     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1037     w_i(r)
1038     % 4
1039     -\frac{1}{4\pi \epsilon_0}
1040     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1041     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
1042     \end{split}
1043     \end{equation}
1044     %
1045     %
1046     \begin{equation}
1047     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1048     \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1049     \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1050     + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1051     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1052     \end{equation}
1053     %
1054     \begin{equation}
1055     \begin{split}
1056     \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1057     &\frac{1}{4\pi \epsilon_0} \Bigl[
1058     \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1059     +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1060     % 2
1061     + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1062     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1063     +2 (\mathbf{D}_{\mathbf{b}} \cdot
1064     \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1065     % 3
1066     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1067     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1068     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1069     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1070     % 4
1071     +\frac{1}{4\pi \epsilon_0}
1072     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1073     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1074     \end{split}
1075     \end{equation}
1076     %
1077     %
1078     %
1079     \begin{equation}
1080     \begin{split}
1081     \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1082     +\frac{1}{4\pi \epsilon_0} \Bigl[
1083     \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1084     + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1085     % 2
1086     +\frac{1}{4\pi \epsilon_0} \Bigl[
1087     2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1088     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1089     % 3
1090     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1091     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1092     % 4
1093     + \frac{1}{4\pi \epsilon_0} \Bigl[
1094     \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1095     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1096     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1097     % 5
1098     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1099     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1100     %
1101     + \frac{1}{4\pi \epsilon_0} \Bigl[
1102     + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1103     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1104     %6
1105     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1106     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1107     % 7
1108     + \frac{1}{4\pi \epsilon_0}
1109     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1110     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1111     \end{split}
1112     \end{equation}
1113     %
1114     %
1115     % TORQUES SECTION -----------------------------------------------------------------------------------------
1116     %
1117     \subsection{Torques}
1118    
1119     Following again Allen and Germano, when energies are written in the form
1120     of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1121     %
1122     \begin{eqnarray}
1123     \mathbf{\tau}_{\bf a} =
1124     \sum_m
1125     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1126     ( \hat{r} \times \hat{a}_m )
1127     -\sum_{mn}
1128     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1129     (\hat{a}_m \times \hat{b}_n) \\
1130     %
1131     \mathbf{\tau}_{\bf b} =
1132     \sum_m
1133     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1134     ( \hat{r} \times \hat{b}_m)
1135     +\sum_{mn}
1136     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1137     (\hat{a}_m \times \hat{b}_n) .
1138     \end{eqnarray}
1139     %
1140     %
1141     Here we list the torque equations written in terms of space coordinates.
1142     %
1143     %
1144     %
1145     \begin{equation}
1146     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1147     \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
1148     \end{equation}
1149     %
1150     %
1151     %
1152     \begin{equation}
1153     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1154     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1155     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
1156     \end{equation}
1157     %
1158     %
1159     %
1160     \begin{equation}
1161     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1162     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1163     (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1164     \end{equation}
1165     %
1166     %
1167     %
1168     \begin{equation}
1169     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
1170     \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1171     % 2
1172     -\frac{1}{4\pi \epsilon_0}
1173     (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1174     (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1175     \end{equation}
1176     %
1177     %
1178     %
1179     \begin{equation}
1180     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1181     -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1182     % 2
1183     +\frac{1}{4\pi \epsilon_0}
1184     (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1185     (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1186     \end{equation}
1187     %
1188     %
1189     %
1190     \begin{equation}
1191     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1192     \frac{1}{4\pi \epsilon_0} \Bigl[
1193     -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1194     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1195     +2 \mathbf{D}_{\mathbf{a}} \times
1196     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1197     \Bigr] v_{31}(r)
1198     % 3
1199     -\frac{1}{4\pi \epsilon_0}
1200     \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1201     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
1202     \end{equation}
1203     %
1204     %
1205     %
1206     \begin{equation}
1207     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
1208     \frac{1}{4\pi \epsilon_0} \Bigl[
1209     +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1210     \hat{r}
1211     -2 \mathbf{D}_{\mathbf{a}} \times
1212     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1213     \Bigr] v_{31}(r)
1214     % 2
1215     +\frac{2}{4\pi \epsilon_0}
1216     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1217     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1218     \end{equation}
1219     %
1220     %
1221     %
1222     \begin{equation}
1223     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1224     \frac{1}{4\pi \epsilon_0} \Bigl[
1225     -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1226     +2 \mathbf{D}_{\mathbf{b}} \times
1227     (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1228     \Bigr] v_{31}(r)
1229     % 3
1230     - \frac{2}{4\pi \epsilon_0}
1231     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1232     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1233     \end{equation}
1234     %
1235     %
1236     %
1237     \begin{equation}
1238     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1239     \frac{1}{4\pi \epsilon_0} \Bigl[
1240     \text{Tr}\mathbf{Q}_{\mathbf{a}}
1241     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1242     +2 \mathbf{D}_{\mathbf{b}} \times
1243     ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1244     % 2
1245     +\frac{1}{4\pi \epsilon_0}
1246     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1247     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1248     \end{equation}
1249     %
1250     %
1251     %
1252     \begin{equation}
1253     \begin{split}
1254     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1255     &-\frac{4}{4\pi \epsilon_0}
1256     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1257     v_{41}(r) \\
1258     % 2
1259     &+ \frac{1}{4\pi \epsilon_0}
1260     \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1261     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1262     +4 \hat{r} \times
1263     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1264     % 3
1265     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1266     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1267     % 4
1268     &+ \frac{2}{4\pi \epsilon_0}
1269     \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1270     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1271     \end{split}
1272     \end{equation}
1273     %
1274     %
1275     %
1276     \begin{equation}
1277     \begin{split}
1278     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1279     &\frac{4}{4\pi \epsilon_0}
1280     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1281     % 2
1282     &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1283     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1284     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1285     \mathbf{Q}_{{\mathbf b}} ) \times
1286     \hat{r}
1287     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1288     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1289     \Bigr] v_{42}(r) \\
1290     % 4
1291     &+ \frac{2}{4\pi \epsilon_0}
1292     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1293     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1294     \end{split}
1295     \end{equation}
1296     %
1297 gezelter 3980
1298     \section{Comparison to known multipolar energies}
1299    
1300     To understand how these new real-space multipole methods behave in
1301     computer simulations, it is vital to test against established methods
1302     for computing electrostatic interactions in periodic systems, and to
1303     evaluate the size and sources of any errors that arise from the
1304     real-space cutoffs. In this paper we test Taylor-shifted and
1305     Gradient-shifted electrostatics against analytical methods for
1306     computing the energies of ordered multipolar arrays. In the following
1307     paper, we test the new methods against the multipolar Ewald sum for
1308     computing the energies, forces and torques for a wide range of typical
1309     condensed-phase (disordered) systems.
1310    
1311     Because long-range electrostatic effects can be significant in
1312     crystalline materials, ordered multipolar arrays present one of the
1313     biggest challenges for real-space cutoff methods. The dipolar
1314     analogues to the Madelung constants were first worked out by Sauer,
1315     who computed the energies of ordered dipole arrays of zero
1316     magnetization and obtained a number of these constants.\cite{Sauer}
1317     This theory was developed more completely by Luttinger and
1318     Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1319     other periodic structures. We have repeated the Luttinger \& Tisza
1320     series summations to much higher order and obtained the following
1321     energy constants (converged to one part in $10^9$):
1322     \begin{table*}
1323     \centering{
1324     \caption{Luttinger \& Tisza arrays and their associated
1325     energy constants. Type "A" arrays have nearest neighbor strings of
1326     antiparallel dipoles. Type "B" arrays have nearest neighbor
1327     strings of antiparallel dipoles if the dipoles are contained in a
1328     plane perpendicular to the dipole direction that passes through
1329     the dipole.}
1330     }
1331     \label{tab:LT}
1332     \begin{ruledtabular}
1333     \begin{tabular}{cccc}
1334     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1335     A & SC & 001 & -2.676788684 \\
1336     A & BCC & 001 & 0 \\
1337     A & BCC & 111 & -1.770078733 \\
1338     A & FCC & 001 & 2.166932835 \\
1339     A & FCC & 011 & -1.083466417 \\
1340    
1341     * & BCC & minimum & -1.985920929 \\
1342    
1343     B & SC & 001 & -2.676788684 \\
1344     B & BCC & 001 & -1.338394342 \\
1345     B & BCC & 111 & -1.770078733 \\
1346     B & FCC & 001 & -1.083466417 \\
1347     B & FCC & 011 & -1.807573634
1348     \end{tabular}
1349     \end{ruledtabular}
1350     \end{table*}
1351    
1352     In addition to the A and B arrays, there is an additional minimum
1353     energy structure for the BCC lattice that was found by Luttinger \&
1354     Tisza. The total electrostatic energy for an array is given by:
1355     \begin{equation}
1356     E = C N^2 \mu^2
1357     \end{equation}
1358     where $C$ is the energy constant given above, $N$ is the number of
1359     dipoles per unit volume, and $\mu$ is the strength of the dipole.
1360    
1361     {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1362     computed the energies of selected quadrupole arrays based on
1363     extensions to the Luttinger and Tisza
1364     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1365     energy constants for the lowest energy configurations for linear
1366     quadrupoles shown in table \ref{tab:NNQ}
1367    
1368     \begin{table*}
1369     \centering{
1370     \caption{Nagai and Nakamura Quadurpolar arrays}}
1371     \label{tab:NNQ}
1372     \begin{ruledtabular}
1373     \begin{tabular}{ccc}
1374     Lattice & Quadrupole Direction & Energy constants \\ \hline
1375     SC & 111 & -8.3 \\
1376     BCC & 011 & -21.7 \\
1377     FCC & 111 & -80.5
1378     \end{tabular}
1379     \end{ruledtabular}
1380     \end{table*}
1381    
1382     In analogy to the dipolar arrays, the total electrostatic energy for
1383     the quadrupolar arrays is:
1384     \begin{equation}
1385     E = C \frac{3}{4} N^2 Q^2
1386     \end{equation}
1387     where $Q$ is the quadrupole moment.
1388    
1389    
1390    
1391    
1392    
1393    
1394    
1395    
1396 gezelter 3906 \begin{acknowledgments}
1397 gezelter 3980 Support for this project was provided by the National Science
1398     Foundation under grant CHE-0848243. Computational time was provided by
1399     the Center for Research Computing (CRC) at the University of Notre
1400     Dame.
1401 gezelter 3906 \end{acknowledgments}
1402    
1403     \appendix
1404    
1405     \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1406    
1407     The following summarizes Smith's $B_l(r)$ functions and
1408     includes formulas given in his appendix.
1409    
1410     The first function $B_0(r)$ is defined by
1411     %
1412     \begin{equation}
1413     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1414     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1415     \end{equation}
1416     %
1417     The first derivative of this function is
1418     %
1419     \begin{equation}
1420     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1421     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1422     \end{equation}
1423     %
1424     and can be rewritten in terms of a function $B_1(r)$:
1425     %
1426     \begin{equation}
1427     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1428     \end{equation}
1429     %
1430     In general,
1431     \begin{equation}
1432     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1433     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1434     \text{e}^{-{\alpha}^2r^2}
1435     \right] .
1436     \end{equation}
1437     %
1438     Using these formulas, we find
1439     %
1440     \begin{eqnarray}
1441     \frac{dB_0}{dr}=-rB_1(r) \\
1442     \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1443     \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1444     \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1445     \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1446     \end{eqnarray}
1447     %
1448     As noted by Smith,
1449     %
1450     \begin{equation}
1451     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1452     +\text{O}(r) .
1453     \end{equation}
1454    
1455     \section{Method 1, the $r$-dependent factors}
1456    
1457     Using the shifted damped functions $f_n(r)$ defined by:
1458     %
1459     \begin{equation}
1460     f_n(r)= B_0 \Big \lvert _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert _{r_c} ,
1461     \end{equation}
1462     %
1463     we first provide formulas for successive derivatives of this function. (If there is
1464     no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.) First, we find:
1465     %
1466     \begin{equation}
1467     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1468     \end{equation}
1469     %
1470     This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1471     define higher-order derivatives as follows:
1472     %
1473     \begin{eqnarray}
1474     g_n(r)= \frac{d f_n}{d r} =
1475     B_0^{(1)} \Big \lvert _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert _{r_c} \\
1476     h_n(r)= \frac{d^2f_n}{d r^2} =
1477     B_0^{(2)} \Big \lvert _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert _{r_c} \\
1478     s_n(r)= \frac{d^3f_n}{d r^3} =
1479     B_0^{(3)} \Big \lvert _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert _{r_c} \\
1480     t_n(r)= \frac{d^4f_n}{d r^4} =
1481     B_0^{(4)} \Big \lvert _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert _{r_c} \\
1482     u_n(r)= \frac{d^5f_n}{d r^5} =
1483     B_0^{(5)} \Big \lvert _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert _{r_c} .
1484     \end{eqnarray}
1485     %
1486     We note that the last function needed (for quadrupole-quadrupole) is
1487     %
1488     \begin{equation}
1489     u_4(r)=B_0^{(5)} \Big \lvert _r - B_0^{(5)} \Big \lvert _{r_c} .
1490     \end{equation}
1491    
1492     The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1493     from $0$ to $r_c$. The functions needed are listed schematically below:
1494     %
1495     \begin{eqnarray}
1496     f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1497     g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1498     h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1499     s_2 \quad s_3 \quad &s_4 \nonumber \\
1500     t_3 \quad &t_4 \nonumber \\
1501     &u_4 \nonumber .
1502     \end{eqnarray}
1503    
1504     Using these functions, we find
1505     %
1506     \begin{equation}
1507     \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1508     \end{equation}
1509     %
1510     \begin{equation}
1511     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1512     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1513     \end{equation}
1514     %
1515     \begin{equation}
1516     \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1517     \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1518     \delta_{ \beta \gamma} r_\alpha \right)
1519     \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1520     + r_\alpha r_\beta r_\gamma
1521     \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1522     \end{equation}
1523     %
1524     \begin{eqnarray}
1525     \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1526     \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1527     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1528     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1529     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1530     + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1531     + \text{5 perm}
1532     \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1533     \right) \nonumber \\
1534     + r_\alpha r_\beta r_\gamma r_\delta
1535     \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1536     + \frac{t_n}{r^4} \right)
1537     \end{eqnarray}
1538     %
1539     \begin{eqnarray}
1540     \frac{\partial^5 f_n}
1541     {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1542     \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1543     + \text{14 perm} \right)
1544     \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1545     + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1546     + \text{9 perm}
1547     \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1548     \right) \nonumber \\
1549     + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1550     \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1551     - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1552     \end{eqnarray}
1553     %
1554     %
1555     %
1556     \section{Method 2, the $r$-dependent factors}
1557    
1558     In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1559     see Eq. (20?). For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1560     of the kernel $B_0(r)$. To denote these terms, we generalize the notation of the previous appendix.
1561     For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1562     %
1563     \begin{eqnarray}
1564     g(r)= \frac{df}{d r}\\
1565     h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1566     s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1567     t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1568     u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1569     \end{eqnarray}
1570     %
1571     For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.'' Checks of algebra can be made by using limiting forms
1572     of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$. Equations (B9) to B(13)
1573     are correct for method 2 if one just eliminates the subscript $n$.
1574    
1575     \section{Extra Material}
1576     %
1577     %
1578     %Energy in body coordinate form ---------------------------------------------------------------
1579     %
1580     Here are the interaction energies written in terms of the body coordinates:
1581    
1582     %
1583     % u ca cb
1584     %
1585     \begin{equation}
1586     U_{C_{\bf a}C_{\bf b}}(r)=
1587     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1588     \end{equation}
1589     %
1590     % u ca db
1591     %
1592     \begin{equation}
1593     U_{C_{\bf a}D_{\bf b}}(r)=
1594     \frac{C_{\bf a}}{4\pi \epsilon_0}
1595     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1596     \end{equation}
1597     %
1598     % u ca qb
1599     %
1600     \begin{equation}
1601     U_{C_{\bf a}Q_{\bf b}}(r)=
1602     \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1603     v_{21}(r) \nonumber \\
1604     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1605     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1606     v_{22}(r)
1607     \end{equation}
1608     %
1609     % u da cb
1610     %
1611     \begin{equation}
1612     U_{D_{\bf a}C_{\bf b}}(r)=
1613     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1614     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1615     \end{equation}
1616     %
1617     % u da db
1618     %
1619     \begin{equation}
1620     \begin{split}
1621     % 1
1622     U_{D_{\bf a}D_{\bf b}}(r)&=
1623     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1624     (\hat{a}_m \cdot \hat{b}_n)
1625     D_{\mathbf{b}n} v_{21}(r) \\
1626     % 2
1627     &-\frac{1}{4\pi \epsilon_0}
1628     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1629     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1630     v_{22}(r)
1631     \end{split}
1632     \end{equation}
1633     %
1634     % u da qb
1635     %
1636     \begin{equation}
1637     \begin{split}
1638     % 1
1639     U_{D_{\bf a}Q_{\bf b}}(r)&=
1640     -\frac{1}{4\pi \epsilon_0} \left(
1641     \text{Tr}Q_{\mathbf{b}}
1642     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1643     +2\sum_{lmn}D_{\mathbf{a}l}
1644     (\hat{a}_l \cdot \hat{b}_m)
1645     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1646     \right) v_{31}(r) \\
1647     % 2
1648     &-\frac{1}{4\pi \epsilon_0}
1649     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1650     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1651     Q_{{\mathbf b}mn}
1652     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1653     \end{split}
1654     \end{equation}
1655     %
1656     % u qa cb
1657     %
1658     \begin{equation}
1659     U_{Q_{\bf a}C_{\bf b}}(r)=
1660     \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1661     +\frac{C_{\bf b}}{4\pi \epsilon_0}
1662     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1663     \end{equation}
1664     %
1665     % u qa db
1666     %
1667     \begin{equation}
1668     \begin{split}
1669     %1
1670     U_{Q_{\bf a}D_{\bf b}}(r)&=
1671     \frac{1}{4\pi \epsilon_0} \left(
1672     \text{Tr}Q_{\mathbf{a}}
1673     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1674     +2\sum_{lmn}D_{\mathbf{b}l}
1675     (\hat{b}_l \cdot \hat{a}_m)
1676     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1677     \right) v_{31}(r) \\
1678     % 2
1679     &+\frac{1}{4\pi \epsilon_0}
1680     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1681     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1682     Q_{{\mathbf a}mn}
1683     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1684     \end{split}
1685     \end{equation}
1686     %
1687     % u qa qb
1688     %
1689     \begin{equation}
1690     \begin{split}
1691     %1
1692     U_{Q_{\bf a}Q_{\bf b}}(r)&=
1693     \frac{1}{4\pi \epsilon_0} \Bigl[
1694     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1695     +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1696     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1697     (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1698     v_{41}(r) \\
1699     % 2
1700     &+ \frac{1}{4\pi \epsilon_0}
1701     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1702     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1703     Q_{{\mathbf b}lm}
1704     (\hat{b}_m \cdot \hat{r})
1705     +\text{Tr}Q_{\mathbf{b}}
1706     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1707     Q_{{\mathbf a}lm}
1708     (\hat{a}_m \cdot \hat{r}) \\
1709     % 3
1710     &+4 \sum_{lmnp}
1711     (\hat{r} \cdot \hat{a}_l )
1712     Q_{{\mathbf a}lm}
1713     (\hat{a}_m \cdot \hat{b}_n)
1714     Q_{{\mathbf b}np}
1715     (\hat{b}_p \cdot \hat{r})
1716     \Bigr] v_{42}(r) \\
1717     % 4
1718     &+ \frac{1}{4\pi \epsilon_0}
1719     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1720     Q_{{\mathbf a}lm}
1721     (\hat{a}_m \cdot \hat{r})
1722     \sum_{np} (\hat{r} \cdot \hat{b}_n)
1723     Q_{{\mathbf b}np}
1724     (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1725     \end{split}
1726     \end{equation}
1727     %
1728    
1729    
1730     % BODY coordinates force equations --------------------------------------------
1731     %
1732     %
1733     Here are the force equations written in terms of body coordinates.
1734     %
1735     % f ca cb
1736     %
1737     \begin{equation}
1738     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1739     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1740     \end{equation}
1741     %
1742     % f ca db
1743     %
1744     \begin{equation}
1745     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1746     \frac{C_{\bf a}}{4\pi \epsilon_0}
1747     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1748     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1749     \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1750     \end{equation}
1751     %
1752     % f ca qb
1753     %
1754     \begin{equation}
1755     \begin{split}
1756     % 1
1757     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1758     \frac{1}{4\pi \epsilon_0}
1759     C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1760     + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1761     % 2
1762     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1763     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1764     \end{split}
1765     \end{equation}
1766     %
1767     % f da cb
1768     %
1769     \begin{equation}
1770     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1771     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1772     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1773     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1774     \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1775     \end{equation}
1776     %
1777     % f da db
1778     %
1779     \begin{equation}
1780     \begin{split}
1781     % 1
1782     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1783     -\frac{1}{4\pi \epsilon_0}
1784     \sum_{mn} D_{\mathbf {a}m}
1785     (\hat{a}_m \cdot \hat{b}_n)
1786     D_{\mathbf{b}n} w_d(r) \hat{r}
1787     -\frac{1}{4\pi \epsilon_0}
1788     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1789     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1790     % 2
1791     & \quad + \frac{1}{4\pi \epsilon_0}
1792     \Bigl[ \sum_m D_{\mathbf {a}m}
1793     \hat{a}_m \sum_n D_{\mathbf{b}n}
1794     (\hat{b}_n \cdot \hat{r})
1795     + \sum_m D_{\mathbf {b}m}
1796     \hat{b}_m \sum_n D_{\mathbf{a}n}
1797     (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1798     \end{split}
1799     \end{equation}
1800     %
1801     % f da qb
1802     %
1803     \begin{equation}
1804     \begin{split}
1805     % 1
1806     &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1807     - \frac{1}{4\pi \epsilon_0} \Bigl[
1808     \text{Tr}Q_{\mathbf{b}}
1809     \sum_l D_{\mathbf{a}l} \hat{a}_l
1810     +2\sum_{lmn} D_{\mathbf{a}l}
1811     (\hat{a}_l \cdot \hat{b}_m)
1812     Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1813     % 3
1814     & - \frac{1}{4\pi \epsilon_0} \Bigl[
1815     \text{Tr}Q_{\mathbf{b}}
1816     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1817     +2\sum_{lmn}D_{\mathbf{a}l}
1818     (\hat{a}_l \cdot \hat{b}_m)
1819     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1820     % 4
1821     &+ \frac{1}{4\pi \epsilon_0}
1822     \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1823     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1824     Q_{{\mathbf b}mn}
1825     (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1826     D_{\mathbf{a}l}
1827     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1828     Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1829     % 6
1830     & -\frac{1}{4\pi \epsilon_0}
1831     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1832     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1833     Q_{{\mathbf b}mn}
1834     (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1835     \end{split}
1836     \end{equation}
1837     %
1838     % force qa cb
1839     %
1840     \begin{equation}
1841     \begin{split}
1842     % 1
1843     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1844     \frac{1}{4\pi \epsilon_0}
1845     C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1846     + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1847     % 2
1848     & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1849     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1850     \end{split}
1851     \end{equation}
1852     %
1853     % f qa db
1854     %
1855     \begin{equation}
1856     \begin{split}
1857     % 1
1858     &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1859     \frac{1}{4\pi \epsilon_0} \Bigl[
1860     \text{Tr}Q_{\mathbf{a}}
1861     \sum_l D_{\mathbf{b}l} \hat{b}_l
1862     +2\sum_{lmn} D_{\mathbf{b}l}
1863     (\hat{b}_l \cdot \hat{a}_m)
1864     Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1865     w_g(r)\\
1866     % 3
1867     & + \frac{1}{4\pi \epsilon_0} \Bigl[
1868     \text{Tr}Q_{\mathbf{a}}
1869     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1870     +2\sum_{lmn}D_{\mathbf{b}l}
1871     (\hat{b}_l \cdot \hat{a}_m)
1872     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1873     % 4
1874     & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1875     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1876     Q_{{\mathbf a}mn}
1877     (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1878     D_{\mathbf{b}l}
1879     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1880     Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1881     % 6
1882     & +\frac{1}{4\pi \epsilon_0}
1883     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1884     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1885     Q_{{\mathbf a}mn}
1886     (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1887     \end{split}
1888     \end{equation}
1889     %
1890     % f qa qb
1891     %
1892     \begin{equation}
1893     \begin{split}
1894     &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1895     \frac{1}{4\pi \epsilon_0} \Bigl[
1896     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1897     + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1898     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1899     (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1900     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1901     2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1902     + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1903     &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1904     + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1905     \Bigr] w_n(r) \\
1906     &+ \frac{1}{4\pi \epsilon_0}
1907     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1908     \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1909     + \text{Tr}Q_{\mathbf{b}}
1910     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1911     &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1912     Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1913     %
1914     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1915     2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1916     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1917     &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1918     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1919     & + \frac{1}{4\pi \epsilon_0}
1920     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1921     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1922     \end{split}
1923     \end{equation}
1924     %
1925     Here we list the form of the non-zero damped shifted multipole torques showing
1926     explicitly dependences on body axes:
1927     %
1928     % t ca db
1929     %
1930     \begin{equation}
1931     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1932     \frac{C_{\bf a}}{4\pi \epsilon_0}
1933     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1934     \end{equation}
1935     %
1936     % t ca qb
1937     %
1938     \begin{equation}
1939     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1940     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1941     \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1942     \end{equation}
1943     %
1944     % t da cb
1945     %
1946     \begin{equation}
1947     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1948     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1949     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1950     \end{equation}%
1951     %
1952     %
1953     % ta da db
1954     %
1955     \begin{equation}
1956     \begin{split}
1957     % 1
1958     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1959     \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1960     (\hat{a}_m \times \hat{b}_n)
1961     D_{\mathbf{b}n} v_{21}(r) \\
1962     % 2
1963     &-\frac{1}{4\pi \epsilon_0}
1964     \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1965     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1966     \end{split}
1967     \end{equation}
1968     %
1969     % tb da db
1970     %
1971     \begin{equation}
1972     \begin{split}
1973     % 1
1974     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1975     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1976     (\hat{a}_m \times \hat{b}_n)
1977     D_{\mathbf{b}n} v_{21}(r) \\
1978     % 2
1979     &+\frac{1}{4\pi \epsilon_0}
1980     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1981     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1982     \end{split}
1983     \end{equation}
1984     %
1985     % ta da qb
1986     %
1987     \begin{equation}
1988     \begin{split}
1989     % 1
1990     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1991     \frac{1}{4\pi \epsilon_0} \left(
1992     -\text{Tr}Q_{\mathbf{b}}
1993     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1994     +2\sum_{lmn}D_{\mathbf{a}l}
1995     (\hat{a}_l \times \hat{b}_m)
1996     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1997     \right) v_{31}(r)\\
1998     % 2
1999     &-\frac{1}{4\pi \epsilon_0}
2000     \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2001     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2002     Q_{{\mathbf b}mn}
2003     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2004     \end{split}
2005     \end{equation}
2006     %
2007     % tb da qb
2008     %
2009     \begin{equation}
2010     \begin{split}
2011     % 1
2012     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2013     \frac{1}{4\pi \epsilon_0} \left(
2014     -2\sum_{lmn}D_{\mathbf{a}l}
2015     (\hat{a}_l \cdot \hat{b}_m)
2016     Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2017     -2\sum_{lmn}D_{\mathbf{a}l}
2018     (\hat{a}_l \times \hat{b}_m)
2019     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2020     \right) v_{31}(r) \\
2021     % 2
2022     &-\frac{2}{4\pi \epsilon_0}
2023     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2024     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2025     Q_{{\mathbf b}mn}
2026     (\hat{r}\times \hat{b}_n) v_{32}(r)
2027     \end{split}
2028     \end{equation}
2029     %
2030     % ta qa cb
2031     %
2032     \begin{equation}
2033     \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2034     \frac{2C_{\bf a}}{4\pi \epsilon_0}
2035     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2036     \end{equation}
2037     %
2038     % ta qa db
2039     %
2040     \begin{equation}
2041     \begin{split}
2042     % 1
2043     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2044     \frac{1}{4\pi \epsilon_0} \left(
2045     2\sum_{lmn}D_{\mathbf{b}l}
2046     (\hat{b}_l \cdot \hat{a}_m)
2047     Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2048     +2\sum_{lmn}D_{\mathbf{b}l}
2049     (\hat{a}_l \times \hat{b}_m)
2050     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2051     \right) v_{31}(r) \\
2052     % 2
2053     &+\frac{2}{4\pi \epsilon_0}
2054     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2055     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2056     Q_{{\mathbf a}mn}
2057     (\hat{r}\times \hat{a}_n) v_{32}(r)
2058     \end{split}
2059     \end{equation}
2060     %
2061     % tb qa db
2062     %
2063     \begin{equation}
2064     \begin{split}
2065     % 1
2066     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2067     \frac{1}{4\pi \epsilon_0} \left(
2068     \text{Tr}Q_{\mathbf{a}}
2069     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2070     +2\sum_{lmn}D_{\mathbf{b}l}
2071     (\hat{a}_l \times \hat{b}_m)
2072     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2073     \right) v_{31}(r)\\
2074     % 2
2075     &\frac{1}{4\pi \epsilon_0}
2076     \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2077     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2078     Q_{{\mathbf a}mn}
2079     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2080     \end{split}
2081     \end{equation}
2082     %
2083     % ta qa qb
2084     %
2085     \begin{equation}
2086     \begin{split}
2087     % 1
2088     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2089     -\frac{4}{4\pi \epsilon_0}
2090     \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2091     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2092     (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2093     % 2
2094     &+ \frac{1}{4\pi \epsilon_0}
2095     \Bigl[
2096     2\text{Tr}Q_{\mathbf{b}}
2097     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2098     Q_{{\mathbf a}lm}
2099     (\hat{r} \times \hat{a}_m)
2100     +4 \sum_{lmnp}
2101     (\hat{r} \times \hat{a}_l )
2102     Q_{{\mathbf a}lm}
2103     (\hat{a}_m \cdot \hat{b}_n)
2104     Q_{{\mathbf b}np}
2105     (\hat{b}_p \cdot \hat{r}) \\
2106     % 3
2107     &-4 \sum_{lmnp}
2108     (\hat{r} \cdot \hat{a}_l )
2109     Q_{{\mathbf a}lm}
2110     (\hat{a}_m \times \hat{b}_n)
2111     Q_{{\mathbf b}np}
2112     (\hat{b}_p \cdot \hat{r})
2113     \Bigr] v_{42}(r) \\
2114     % 4
2115     &+ \frac{2}{4\pi \epsilon_0}
2116     \sum_{lm} (\hat{r} \times \hat{a}_l)
2117     Q_{{\mathbf a}lm}
2118     (\hat{a}_m \cdot \hat{r})
2119     \sum_{np} (\hat{r} \cdot \hat{b}_n)
2120     Q_{{\mathbf b}np}
2121     (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2122     \end{split}
2123     \end{equation}
2124     %
2125     % tb qa qb
2126     %
2127     \begin{equation}
2128     \begin{split}
2129     % 1
2130     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2131     \frac{4}{4\pi \epsilon_0}
2132     \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2133     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2134     (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2135     % 2
2136     &+ \frac{1}{4\pi \epsilon_0}
2137     \Bigl[
2138     2\text{Tr}Q_{\mathbf{a}}
2139     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2140     Q_{{\mathbf b}lm}
2141     (\hat{r} \times \hat{b}_m)
2142     +4 \sum_{lmnp}
2143     (\hat{r} \cdot \hat{a}_l )
2144     Q_{{\mathbf a}lm}
2145     (\hat{a}_m \cdot \hat{b}_n)
2146     Q_{{\mathbf b}np}
2147     (\hat{r} \times \hat{b}_p) \\
2148     % 3
2149     &+4 \sum_{lmnp}
2150     (\hat{r} \cdot \hat{a}_l )
2151     Q_{{\mathbf a}lm}
2152     (\hat{a}_m \times \hat{b}_n)
2153     Q_{{\mathbf b}np}
2154     (\hat{b}_p \cdot \hat{r})
2155     \Bigr] v_{42}(r) \\
2156     % 4
2157     &+ \frac{2}{4\pi \epsilon_0}
2158     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2159     Q_{{\mathbf a}lm}
2160     (\hat{a}_m \cdot \hat{r})
2161     \sum_{np} (\hat{r} \times \hat{b}_n)
2162     Q_{{\mathbf b}np}
2163     (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2164     \end{split}
2165     \end{equation}
2166     %
2167     \begin{table*}
2168     \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2169     \begin{ruledtabular}
2170     \begin{tabular}{ccc}
2171     Generic&Method 1&Method 2
2172     \\ \hline
2173     %
2174     %
2175     %
2176     $w_a(r)$&
2177     $g_0(r)$&
2178     $g(r)-g(r_c)$ \\
2179     %
2180     %
2181     $w_b(r)$ &
2182     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2183     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2184     %
2185     $w_c(r)$ &
2186     $\frac{g_1(r)}{r} $ &
2187     $\frac{v_{11}(r)}{r}$ \\
2188     %
2189     %
2190     $w_d(r)$&
2191     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2192     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2193     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2194     %
2195     $w_e(r)$ &
2196     $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2197     $\frac{v_{22}(r)}{r}$ \\
2198     %
2199     %
2200     $w_f(r)$&
2201     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2202     $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2203     &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2204     %
2205     $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2206     $\frac{v_{31}(r)}{r}$\\
2207     %
2208     $w_h(r)$ &
2209     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2210     $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2211     &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2212     &&$-\frac{v_{31}(r)}{r}$\\
2213     % 2
2214     $w_i(r)$ &
2215     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2216     $\frac{v_{32}(r)}{r}$ \\
2217     %
2218     $w_j(r)$ &
2219     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2220     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2221     &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2222     %
2223     $w_k(r)$ &
2224     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2225     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2226     &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2227     %
2228     $w_l(r)$ &
2229     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2230     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2231     &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2232     -\frac{2v_{42}(r)}{r}$ \\
2233     %
2234     $w_m(r)$ &
2235     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2236     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2237     &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2238     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2239     &&$-\frac{4v_{43}(r)}{r}$ \\
2240     %
2241     $w_n(r)$ &
2242     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2243     $\frac{v_{42}(r)}{r}$ \\
2244     %
2245     $w_o(r)$ &
2246     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2247     $\frac{v_{43}(r)}{r}$ \\
2248     %
2249     \end{tabular}
2250     \end{ruledtabular}
2251     \end{table*}
2252 gezelter 3980
2253     \newpage
2254    
2255     \bibliography{multipole}
2256    
2257 gezelter 3906 \end{document}
2258     %
2259     % ****** End of file multipole.tex ******