ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3984
Committed: Sat Dec 28 18:41:19 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 77999 byte(s)
Log Message:
more edits

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37    
38 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
39     %\linenumbers\relax % Commence numbering lines
40    
41     \begin{document}
42    
43     \preprint{AIP/123-QED}
44    
45 gezelter 3980 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
46     {Real space alternatives to the Ewald
47     Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48 gezelter 3906
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52    
53     \author{J. Daniel Gezelter}
54     \email{gezelter@nd.edu.}
55     \affiliation{Department of Chemistry and Biochemistry, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58     \author{Kathie E. Newman}
59     \affiliation{Department of Physics, University
60     of Notre Dame, Notre Dame, IN 46556}
61    
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \begin{abstract}
67 gezelter 3980 We have extended the original damped-shifted force (DSF)
68     electrostatic kernel and have been able to derive two new
69     electrostatic potentials for higher-order multipoles that are based
70     on truncated Taylor expansions around the cutoff radius. For
71     multipole-multipole interactions, we find that each of the distinct
72     orientational contributions has a separate radial function to ensure
73     that the overall forces and torques vanish at the cutoff radius. In
74     this paper, we present energy, force, and torque expressions for the
75     new models, and compare these real-space interaction models to exact
76     results for ordered arrays of multipoles.
77 gezelter 3906 \end{abstract}
78    
79     \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80     % Classification Scheme.
81     \keywords{Suggested keywords}%Use showkeys class option if keyword
82     %display desired
83     \maketitle
84    
85     \section{Introduction}
86 gezelter 3982 There has been increasing interest in real-space methods for
87     calculating electrostatic interactions in computer simulations of
88     condensed molecular
89 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90     The simplest of these techniques was developed by Wolf {\it et al.}
91     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
93     simple damped shifted force (DSF) modification to Wolf's method could
94     give nearly quantitative agreement with smooth particle mesh Ewald
95     (SPME)\cite{Essmann95} configurational energy differences as well as
96     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97 gezelter 3906
98 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
99     surprisingly good, particularly for systems with uniform charge
100     density. Additionally, dielectric constants obtained using DSF and
101     similar methods where the force vanishes at $R_\textrm{c}$ are
102     essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103     related methods have now been widely investigated,\cite{Hansen:2012uq}
104     and DSF is now used routinely in simulations of ionic
105     liquids,\cite{doi:10.1021/la400226g,McCann:2013fk} flow in carbon
106     nanotubes,\cite{kannam:094701} gas sorption in metal-organic framework
107     materials,\cite{Forrest:2012ly} thermal conductivity of methane
108     hydrates,\cite{English:2008kx} condensation coefficients of
109     water,\cite{Louden:2013ve} and in tribology at solid-liquid-solid
110     interfaces.\cite{Tokumasu:2013zr} DSF electrostatics provides a
111     compromise between the computational speed of real-space cutoffs and
112     the accuracy of fully-periodic Ewald treatments.
113 gezelter 3906
114 gezelter 3982 \subsection{Coarse Graining using Point Multipoles}
115 gezelter 3980 One common feature of many coarse-graining approaches, which treat
116     entire molecular subsystems as a single rigid body, is simplification
117     of the electrostatic interactions between these bodies so that fewer
118     site-site interactions are required to compute configurational
119     energies. Notably, the force matching approaches of Voth and coworkers
120     are an exciting development in their ability to represent realistic
121     (and {\it reactive}) chemical systems for very large length scales and
122     long times. This approach utilized a coarse-graining in interaction
123     space (CGIS) which fits an effective force for the coarse grained
124     system using a variational force-matching method to a fine-grained
125     simulation.\cite{Izvekov:2008wo}
126 gezelter 3906
127 gezelter 3980 The coarse-graining approaches of Ren \& coworkers,\cite{Golubkov06}
128     and Essex \&
129     coworkers,\cite{ISI:000276097500009,ISI:000298664400012}
130     both utilize Gay-Berne
131     ellipsoids~\cite{Berne72,Gay81,Luckhurst90,Cleaver96,Berardi98,Ravichandran:1999fk,Berardi99,Pasterny00}
132     to model dispersive interactions and point multipoles to model
133     electrostatics for entire molecules or functional groups.
134 gezelter 3906
135 gezelter 3980 Ichiye and coworkers have recently introduced a number of very fast
136     water models based on a ``sticky'' multipole model which are
137     qualitatively better at reproducing the behavior of real water than
138     the more common point-charge models (SPC/E, TIPnP). The point charge
139     models are also substantially more computationally demanding than the
140     sticky multipole
141     approach.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The
142     SSDQO model requires the use of an approximate multipole expansion
143     (AME) as the exact multipole expansion is quite expensive
144     (particularly when handled via the Ewald sum).\cite{Ichiye:2006qy}
145     Another particularly important use of point multipoles (and multipole
146     polarizability) is in the very high-quality AMOEBA water model and
147     related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
148 gezelter 3906
149 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
150     dynamics. Multipolar interactions are inherently short-ranged, and
151     should not need the relatively expensive Ewald treatment. However,
152     real-space cutoff methods are normally applied in an orientation-blind
153     fashion so multipoles which leave and then re-enter a cutoff sphere in
154     a different orientation can cause energy discontinuities.
155 gezelter 3906
156 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
157 gezelter 3982 kernel to point multipoles. We have developed two distinct real-space
158     interaction models for higher-order multipoles based on two truncated
159     Taylor expansions that are carried out at the cutoff radius. We are
160     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
161     electrostatics. Because of differences in the initial assumptions,
162     the two methods yield related, but different expressions for energies,
163     forces, and torques.
164 gezelter 3906
165 gezelter 3982 In this paper we outline the new methodology and give functional forms
166     for the energies, forces, and torques up to quadrupole-quadrupole
167     order. We also compare the new methods to analytic energy constants
168     for periodic arrays of point multipoles. In the following paper, we
169     provide extensive numerical comparisons to Ewald-based electrostatics
170     in common simulation enviornments.
171    
172 gezelter 3980 \section{Methodology}
173 gezelter 3906
174 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
175     The DSF and Wolf methods operate by neutralizing the total charge
176     contained within the cutoff sphere surrounding each particle. This is
177     accomplished by shifting the potential functions to generate image
178     charges on the surface of the cutoff sphere for each pair interaction
179 gezelter 3982 computed within $R_\textrm{c}$. Damping using a complementary error
180     function is applied to the potential to accelerate convergence. The
181     potential for the DSF method, where $\alpha$ is the adjustable damping
182     parameter, is given by
183 gezelter 3980 \begin{equation*}
184     V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
185     \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
186     - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
187     + \frac{2\alpha}{\pi^{1/2}}
188     \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
189     \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
190     \label{eq:DSFPot}
191     \end{equation*}
192    
193     To insure net charge neutrality within each cutoff sphere, an
194     additional ``self'' term is added to the potential. This term is
195     constant (as long as the charges and cutoff radius do not change), and
196     exists outside the normal pair-loop for molecular simulations. It can
197     be thought of as a contribution from a charge opposite in sign, but
198     equal in magnitude, to the central charge, which has been spread out
199     over the surface of the cutoff sphere. A portion of the self term is
200     identical to the self term in the Ewald summation, and comes from the
201     utilization of the complimentary error function for electrostatic
202     damping.\cite{deLeeuw80,Wolf99}
203    
204 gezelter 3982 There have been recent efforts to extend the Wolf self-neutralization
205     method to zero out the dipole and higher order multipoles contained
206     within the cutoff
207     sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
208    
209     In this work, we will be extending the idea of self-neutralization for
210     the point multipoles in a similar way. In Figure
211     \ref{fig:shiftedMultipoles}, the central dipolar site $\mathbf{D}_i$
212     is interacting with point dipole $\mathbf{D}_j$ and point quadrupole,
213     $\mathbf{Q}_k$. The self-neutralization scheme for point multipoles
214     involves projecting opposing multipoles for sites $j$ and $k$ on the
215     surface of the cutoff sphere.
216    
217 gezelter 3980 \begin{figure}
218 gezelter 3982 \includegraphics[width=3in]{SM}
219 gezelter 3980 \caption{Reversed multipoles are projected onto the surface of the
220     cutoff sphere. The forces, torques, and potential are then smoothly
221     shifted to zero as the sites leave the cutoff region.}
222     \label{fig:shiftedMultipoles}
223     \end{figure}
224    
225 gezelter 3982 As in the point-charge approach, there is a contribution from
226     self-neutralization of site $i$. The self term for multipoles is
227     described in section \ref{sec:selfTerm}.
228 gezelter 3906
229 gezelter 3982 \subsection{The multipole expansion}
230    
231 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
232 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
233     interact via electrostatics only and describe those interactions in
234     terms of a standard multipole expansion. Putting the origin of the
235     coordinate system at the center of mass of $\bf a$, we use vectors
236 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
237     a$. Then the electrostatic potential of object $\bf a$ at
238     $\mathbf{r}$ is given by
239 gezelter 3906 \begin{equation}
240     V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
241     \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
242     \end{equation}
243 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
244     notation. Here Greek indices are used to indicate space coordinates
245     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
246     labelling specific charges in $\bf a$ and $\bf b$ respectively. The
247     Taylor expansion,
248 gezelter 3906 \begin{equation}
249     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
250     \left( 1
251     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
252     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
253     \right)
254 gezelter 3982 \frac{1}{r} ,
255 gezelter 3906 \end{equation}
256 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
257     terms of multipole operators,
258 gezelter 3906 \begin{equation}
259     V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
260     \end{equation}
261     where
262     \begin{equation}
263     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
264     + Q_{{\bf a}\alpha\beta}
265     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
266     \end{equation}
267 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
268     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
269 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
270     which can be expressed as a distribution of charges,
271     \begin{align}
272     C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
273     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
274     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
275     \end{align}
276     Note that the definition of the primitive quadrupole here differs from
277     the standard traceless form, and contains an additional Taylor-series
278     based factor of $1/2$.
279 gezelter 3906
280     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
281     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
282     \begin{equation}
283 gezelter 3982 U_{\bf{ab}}(r)
284     = \frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
285     \end{equation}
286     This can also be expanded as a Taylor series in $r$. Using a notation
287     similar to before to define the multipoles on object {\bf b},
288     \begin{equation}
289 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
290     + Q_{{\bf b}\alpha\beta}
291     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
292     \end{equation}
293 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
294 gezelter 3906 \begin{equation}
295     U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
296     \end{equation}
297 gezelter 3982 This form has the benefit of separating out the energies of
298     interaction into contributions from the charge, dipole, and quadrupole
299     of $\bf a$ interacting with the same multipoles $\bf b$.
300 gezelter 3906
301 gezelter 3982 \subsection{Damped Coulomb interactions}
302     In the standard multipole expansion, one typically uses the bare
303     Coulomb potential, with radial dependence $1/r$, as shown in
304     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
305     interaction, which results from replacing point charges with Gaussian
306     distributions of charge with width $\alpha$. In damped multipole
307     electrostatics, the kernel ($1/r$) of the expansion is replaced with
308     the function:
309 gezelter 3906 \begin{equation}
310     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
311     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
312     \end{equation}
313 gezelter 3982 We develop equations below using the function $f(r)$ to represent
314     either $1/r$ or $B_0(r)$, and all of the techniques can be applied
315     either to bare or damped Coulomb kernels as long as derivatives of
316     these functions are known. Smith's convenient functions $B_l(r)$ are
317     summarized in Appendix A.
318 gezelter 3906
319    
320 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
321     energy as well as forces and torques as $r\rightarrow r_c$. To
322     describe how this goal may be met, we use two examples, charge-charge
323     and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
324     the idea.
325 gezelter 3906
326 gezelter 3984 \subsection{Shifted-force methods}
327 gezelter 3982 In the shifted-force approximation, the interaction energy for two
328     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
329     written:
330 gezelter 3906 \begin{equation}
331     U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
332     \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
333     \right) .
334     \end{equation}
335 gezelter 3982 Two shifting terms appear in this equations, one from the
336 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
337     derivative to vanish at the cutoff radius.
338 gezelter 3982
339     Since one derivative of the interaction energy is needed for the
340     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
341     interaction energy, that is:
342 gezelter 3906 \begin{equation}
343     \frac{d\,}{dr}
344     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
345     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
346     \right) .
347     \end{equation}
348 gezelter 3982 There are a number of ways to generalize this derivative shift for
349 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
350     higher-order Taylor series for $r$ near $r_c$, and the other based on
351     linear shift of the kernel gradients at the cutoff itself.
352 gezelter 3906
353 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
354 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
355     is based on a Taylor expansion containing the same number of
356     derivatives required for each force term to vanish at the cutoff. For
357     example, the quadrupole-quadrupole interaction energy requires four
358     derivatives of the kernel, and the force requires one additional
359     derivative. We therefore require shifted energy expressions that
360     include enough terms so that all energies, forces, and torques are
361     zero as $r \rightarrow r_c$. In each case, we will subtract off a
362     function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$. The
363 gezelter 3984 subscript $n$ indicates the number of derivatives to be taken when
364 gezelter 3982 deriving a given multipole energy. We choose a function with
365     guaranteed smooth derivatives --- a truncated Taylor series of the
366     function $f(r)$, e.g.,
367 gezelter 3906 %
368     \begin{equation}
369 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
370 gezelter 3906 \end{equation}
371     %
372     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
373     Thus, for $f(r)=1/r$, we find
374     %
375     \begin{equation}
376     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
377     \end{equation}
378     %
379 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
380     dipole $\bf b$, we write
381 gezelter 3906 %
382     \begin{equation}
383     U_{C_{\bf a}D_{\bf b}}(r)=
384     \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
385     =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
386     \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
387     \end{equation}
388     %
389 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
390 gezelter 3906 %
391     \begin{equation}
392     F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
393     \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
394     \frac{r_\alpha r_\beta}{r^2}
395     \left( -\frac{1}{r} \frac {\partial} {\partial r}
396     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
397     \end{equation}
398     %
399 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
400 gezelter 3906 %
401     \begin{equation}
402     F_{C_{\bf a}D_{\bf b}\beta} =
403     \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
404     \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
405     +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
406     \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
407     \end{equation}
408     %
409     This expansion shows the expected $1/r^3$ dependence of the force.
410    
411 gezelter 3984 In general, we can write
412 gezelter 3906 %
413     \begin{equation}
414     U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
415     \label{generic}
416     \end{equation}
417     %
418     where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
419     and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
420     An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
421     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
422     $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
423     implied summation combining the space indices.
424    
425 gezelter 3984 In the formulas presented in the tables below, the placeholder
426     function $f(r)$ is used to represent the electrostatic kernel (either
427     damped or undamped). The main functions that go into the force and
428     torque terms, $f_n(r), g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$
429     are successive derivatives of the shifted electrostatic kernel of the
430     same index $n$. The algebra required to evaluate energies, forces and
431     torques is somewhat tedious and are summarized in Appendices A and B.
432 gezelter 3906
433 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
434 gezelter 3984 Note the method used in the previous subsection to smoothly shift the
435     force to zero is a truncated Taylor Series in the radius $r$. The
436     second method maintains only the linear $(r-r_c)$ term and has a
437     similar interaction energy for all multipole orders:
438 gezelter 3906 \begin{equation}
439     U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
440     \end{equation}
441 gezelter 3984 No higher order terms $(r-r_c)^n$ appear. The primary difference
442     between the TSF and GSF methods is the stage at which the Taylor
443     Series is applied; in the Taylor-shifted approach, it is applied to
444     the kernel itself. In the Gradient-shifted approach, it is applied to
445     individual radial interactions terms in the multipole expansion.
446 gezelter 3906 Terms from this method thus have the general form:
447     \begin{equation}
448     U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
449     \label{generic2}
450     \end{equation}
451    
452 gezelter 3984 Results for both methods can be summarized using the form of
453     Eq.~(\ref{generic2}) and are listed in Table I below.
454 gezelter 3906
455     \subsection{\label{sec:level2}Body and space axes}
456    
457 gezelter 3984 So far, all energies and forces have been written in terms of fixed
458     space coordinates $x$, $y$, $z$. Interaction energies are computed
459     from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2})
460     which combine prefactors with radial functions. Because objects $\bf
461     a$ and $\bf b$ both translate and rotate during a molecular dynamics
462     (MD) simulation, it is desirable to contract all $r$-dependent terms
463     with dipole and quadrupole moments expressed in terms of their body
464     axes. To do so, we follow the methodology of Allen and
465     Germano,\cite{Allen:2006fk} which was itself based on an earlier paper
466     by Price {\em et al.}\cite{Price:1984fk}
467 gezelter 3906
468 gezelter 3984 We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
469     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
470     referring to a convenient set of inertial body axes. (N.B., these
471     body axes are generally not the same as those for which the quadrupole
472     moment is diagonal.) Then,
473 gezelter 3906 %
474     \begin{eqnarray}
475     \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
476     \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
477     \end{eqnarray}
478     Allen and Germano define matrices $\hat{\mathbf {a}}$
479     and $\hat{\mathbf {b}}$ using these unit vectors:
480     \begin{eqnarray}
481     \hat{\mathbf {a}} =
482     \begin{pmatrix}
483     \hat{a}_1 \\
484     \hat{a}_2 \\
485     \hat{a}_3
486     \end{pmatrix}
487     =
488     \begin{pmatrix}
489     a_{1x} \quad a_{1y} \quad a_{1z} \\
490     a_{2x} \quad a_{2y} \quad a_{2z} \\
491     a_{3x} \quad a_{3y} \quad a_{3z}
492     \end{pmatrix}\\
493     \hat{\mathbf {b}} =
494     \begin{pmatrix}
495     \hat{b}_1 \\
496     \hat{b}_2 \\
497     \hat{b}_3
498     \end{pmatrix}
499     =
500     \begin{pmatrix}
501     b_{1x}\quad b_{1y} \quad b_{1z} \\
502     b_{2x} \quad b_{2y} \quad b_{2z} \\
503     b_{3x} \quad b_{3y} \quad b_{3z}
504     \end{pmatrix} .
505     \end{eqnarray}
506     %
507     These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
508     All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
509     It proves to be equally convenient to just write any contraction in terms of unit vectors
510     $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
511     We have found it useful to write angular-dependent terms in three different fashions,
512     illustrated by the following
513     three examples from the interaction-energy expressions:
514     %
515     \begin{eqnarray}
516     \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
517     =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
518     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
519     r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
520     r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
521     \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
522     r ( \mathbf{D}_{\mathbf{a}} \cdot
523     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
524     D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
525     =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
526     (\hat{b}_n \cdot \hat{r}) .
527     \end{eqnarray}
528     %
529     [Dan, perhaps there are better examples to show here.]
530    
531     In each line, the first two terms are written using space coordinates. The first form is standard
532     in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
533     form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
534     We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
535     in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
536     be discussed below.
537    
538 gezelter 3980
539 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
540    
541 gezelter 3980 The Wolf summation~\cite{Wolf99} and the later damped shifted force
542     (DSF) extension~\cite{Fennell06} included self-interactions that are
543     handled separately from the pairwise interactions between sites. The
544     self-term is normally calculated via a single loop over all sites in
545     the system, and is relatively cheap to evaluate. The self-interaction
546     has contributions from two sources:
547     \begin{itemize}
548     \item The neutralization procedure within the cutoff radius requires a
549     contribution from a charge opposite in sign, but equal in magnitude,
550     to the central charge, which has been spread out over the surface of
551     the cutoff sphere. For a system of undamped charges, the total
552     self-term is
553     \begin{equation}
554     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
555     \label{eq:selfTerm}
556     \end{equation}
557     Note that in this potential and in all electrostatic quantities that
558     follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
559     clarity.
560     \item Charge damping with the complementary error function is a
561     partial analogy to the Ewald procedure which splits the interaction
562     into real and reciprocal space sums. The real space sum is retained
563     in the Wolf and DSF methods. The reciprocal space sum is first
564     minimized by folding the largest contribution (the self-interaction)
565     into the self-interaction from charge neutralization of the damped
566     potential. The remainder of the reciprocal space portion is then
567     discarded (as this contributes the largest computational cost and
568     complexity to the Ewald sum). For a system containing only damped
569     charges, the complete self-interaction can be written as
570     \begin{equation}
571     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
572     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
573     C_{\bf a}^{2}.
574     \label{eq:dampSelfTerm}
575     \end{equation}
576     \end{itemize}
577    
578     The extension of DSF electrostatics to point multipoles requires
579     treatment of {\it both} the self-neutralization and reciprocal
580     contributions to the self-interaction for higher order multipoles. In
581     this section we give formulae for these interactions up to quadrupolar
582     order.
583    
584     The self-neutralization term is computed by taking the {\it
585     non-shifted} kernel for each interaction, placing a multipole of
586     equal magnitude (but opposite in polarization) on the surface of the
587     cutoff sphere, and averaging over the surface of the cutoff sphere.
588     Because the self term is carried out as a single sum over sites, the
589     reciprocal-space portion is identical to half of the self-term
590     obtained by Smith and Aguado and Madden for the application of the
591     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
592     site which posesses a charge, dipole, and multipole, both types of
593     contribution are given in table \ref{tab:tableSelf}.
594    
595     \begin{table*}
596     \caption{\label{tab:tableSelf} Self-interaction contributions for
597     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
598     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
599     \begin{ruledtabular}
600     \begin{tabular}{lccc}
601     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
602     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
603     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
604     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
605     Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
606     $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
607     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
608     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
609     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
610     \end{tabular}
611     \end{ruledtabular}
612     \end{table*}
613    
614     For sites which simultaneously contain charges and quadrupoles, the
615     self-interaction includes a cross-interaction between these two
616     multipole orders. Symmetry prevents the charge-dipole and
617     dipole-quadrupole interactions from contributing to the
618     self-interaction. The functions that go into the self-neutralization
619     terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
620     derivatives of the electrostatic kernel (either the undamped $1/r$ or
621     the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that are
622     evaluated at the cutoff distance. For undamped interactions, $f(r_c)
623     = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For damped interactions,
624     $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so on. Appendix XX
625     contains recursion relations that allow rapid evaluation of these
626     derivatives.
627    
628 gezelter 3906 \section{Energies, forces, and torques}
629     \subsection{Interaction energies}
630    
631 gezelter 3983 We now list multipole interaction energies using a set of generic
632     radial functions. Table \ref{tab:tableenergy} maps between the
633     generic functions and the radial functions derived for both the
634     Taylor-shifted and Gradient-shifted methods. This set of equations is
635     written in terms of space coordinates:
636 gezelter 3906
637     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
638     %
639     %
640     % u ca cb
641     %
642 gezelter 3983 \begin{align}
643     U_{C_{\bf a}C_{\bf b}}(r)=&
644 gezelter 3906 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
645 gezelter 3983 \\
646 gezelter 3906 %
647     % u ca db
648     %
649 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
650 gezelter 3906 \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
651     \label{uchdip}
652 gezelter 3983 \\
653 gezelter 3906 %
654     % u ca qb
655     %
656 gezelter 3983 U_{C_{\bf a}Q_{\bf b}}(r)=&
657 gezelter 3906 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
658     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
659     \label{uchquad}
660 gezelter 3983 \\
661 gezelter 3906 %
662     % u da cb
663     %
664 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
665     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
666     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
667     %\\
668 gezelter 3906 %
669     % u da db
670     %
671 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
672 gezelter 3906 -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
673     \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
674     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
675     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
676     v_{22}(r) \Bigr]
677     \label{udipdip}
678 gezelter 3983 \\
679 gezelter 3906 %
680     % u da qb
681     %
682     \begin{split}
683     % 1
684 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
685 gezelter 3906 -\frac{1}{4\pi \epsilon_0} \Bigl[
686     \text{Tr}\mathbf{Q}_{\mathbf{b}}
687     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
688     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
689     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
690     % 2
691     &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
692     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
693     \label{udipquad}
694     \end{split}
695 gezelter 3983 \\
696 gezelter 3906 %
697     % u qa cb
698     %
699 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
700     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
701     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
702     %\label{uquadch}
703     %\\
704 gezelter 3906 %
705     % u qa db
706     %
707 gezelter 3983 %\begin{split}
708 gezelter 3906 %1
709 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
710     %\frac{1}{4\pi \epsilon_0} \Bigl[
711     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
712     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
713     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
714     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
715 gezelter 3906 % 2
716 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
717     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
718     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
719     %\label{uquaddip}
720     %\end{split}
721     %\\
722 gezelter 3906 %
723     % u qa qb
724     %
725     \begin{split}
726     %1
727 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
728 gezelter 3906 \frac{1}{4\pi \epsilon_0} \Bigl[
729     \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
730     +2 \text{Tr} \left(
731     \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
732     \\
733     % 2
734     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
735     \left( \hat{r} \cdot
736     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
737     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
738     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
739     \cdot \hat{r} \right) +4 (\hat{r} \cdot
740     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
741     \Bigr] v_{42}(r)
742     \\
743     % 4
744     &+ \frac{1}{4\pi \epsilon_0}
745     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
746     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
747     \label{uquadquad}
748     \end{split}
749 gezelter 3983 \end{align}
750 gezelter 3906
751 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
752     with those on site $\mathbf{a}$ can be obtained by swapping indices
753     along with the sign of the intersite vector, $\hat{r}$.
754 gezelter 3906
755     %
756     %
757     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
758     %
759    
760     \begin{table*}
761     \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
762     used in this table are defined in Appendices B and C.}
763     \begin{ruledtabular}
764 gezelter 3983 \begin{tabular}{|l|c|l|l}
765     Generic&Coulomb&Taylor-Shifted&Gradient-Shifted
766 gezelter 3906 \\ \hline
767     %
768     %
769     %
770     %Ch-Ch&
771     $v_{01}(r)$ &
772     $\frac{1}{r}$ &
773     $f_0(r)$ &
774     $f(r)-f(r_c)-(r-r_c)g(r_c)$
775     \\
776     %
777     %
778     %
779     %Ch-Di&
780     $v_{11}(r)$ &
781     $-\frac{1}{r^2}$ &
782     $g_1(r)$ &
783     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
784     %
785     %
786     %
787     %Ch-Qu/Di-Di&
788     $v_{21}(r)$ &
789     $-\frac{1}{r^3} $ &
790     $\frac{g_2(r)}{r} $ &
791     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
792     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
793     $v_{22}(r)$ &
794     $\frac{3}{r^3} $ &
795     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
796     $\left(-\frac{g(r)}{r}+h(r) \right)
797     -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
798     &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
799     \\
800     %
801     %
802     %
803     %Di-Qu &
804     $v_{31}(r)$ &
805     $\frac{3}{r^4} $ &
806     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
807     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
808     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
809     &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
810     \\
811     %
812     $v_{32}(r)$ &
813     $-\frac{15}{r^4} $ &
814     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
815     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
816     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
817     &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
818     \\
819     %
820     %
821     %
822     %Qu-Qu&
823     $v_{41}(r)$ &
824     $\frac{3}{r^5} $ &
825     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
826     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
827     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
828     &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
829     \\
830     % 2
831     $v_{42}(r)$ &
832     $- \frac{15}{r^5} $ &
833     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
834     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
835     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
836     &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
837     -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
838     \\
839     % 3
840     $v_{43}(r)$ &
841     $ \frac{105}{r^5} $ &
842     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
843     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
844     &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
845     &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
846     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
847     \end{tabular}
848     \end{ruledtabular}
849     \end{table*}
850     %
851     %
852     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
853     %
854    
855     \begin{table}
856     \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
857     \begin{ruledtabular}
858     \begin{tabular}{cc}
859     Generic&Method 1 or Method 2
860     \\ \hline
861     %
862     %
863     %
864     $w_a(r)$&
865     $\frac{d v_{01}}{dr}$ \\
866     %
867     %
868     $w_b(r)$ &
869     $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
870     %
871     $w_c(r)$ &
872     $\frac{v_{11}(r)}{r}$ \\
873     %
874     %
875     $w_d(r)$&
876     $\frac{d v_{21}}{dr}$ \\
877     %
878     $w_e(r)$ &
879     $\frac{v_{22}(r)}{r}$ \\
880     %
881     %
882     $w_f(r)$&
883     $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
884     %
885     $w_g(r)$&
886     $\frac{v_{31}(r)}{r}$\\
887     %
888     $w_h(r)$ &
889     $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
890     % 2
891     $w_i(r)$ &
892     $\frac{v_{32}(r)}{r}$ \\
893     %
894     $w_j(r)$ &
895     $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
896     %
897     $w_k(r)$ &
898     $\frac{d v_{41}}{dr} $ \\
899     %
900     $w_l(r)$ &
901     $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
902     %
903     $w_m(r)$ &
904     $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
905     %
906     $w_n(r)$ &
907     $\frac{v_{42}(r)}{r}$ \\
908     %
909     $w_o(r)$ &
910     $\frac{v_{43}(r)}{r}$ \\
911     %
912    
913     \end{tabular}
914     \end{ruledtabular}
915     \end{table}
916     %
917     %
918     %
919    
920     \subsection{Forces}
921    
922     The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
923     the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
924     interaction, these forces will point along the $\pm \hat{r}$ directions, where
925     $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
926     %
927     \begin{equation}
928     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
929     \quad \text{and} \quad F_{\bf b \alpha}
930     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
931     \end{equation}
932     %
933     The concept of obtaining a force from an energy by taking a gradient is the same for
934     higher-order multipole interactions, the trick is to make sure that all
935     $r$-dependent derivatives are considered.
936 gezelter 3984 As is pointed out by Allen and Germano,\cite{Allen:2006fk} this is straightforward if the
937 gezelter 3906 interaction energies are written recognizing explicit
938     $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
939     %
940     \begin{equation}
941     U(r,\{\hat{a}_m \cdot \hat{r} \},
942     \{\hat{b}_n\cdot \hat{r} \}
943     \{\hat{a}_m \cdot \hat{b}_n \}) .
944     \label{ugeneral}
945     \end{equation}
946     %
947     Then,
948     %
949     \begin{equation}
950     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
951     = \frac{\partial U}{\partial r} \hat{r}
952     + \sum_m \left[
953     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
954     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
955     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
956     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
957     \right] \label{forceequation}.
958     \end{equation}
959     %
960     Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
961 gezelter 3984 that of Allen and Germano.\cite{Allen:2006fk} In simplifying the algebra, we also use:
962 gezelter 3906 %
963     \begin{eqnarray}
964     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
965     = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
966     \right) \\
967     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
968     = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
969     \right) .
970     \end{eqnarray}
971     %
972     We list below the force equations written in terms of space coordinates. The
973     radial functions used in the two methods are listed in Table II.
974     %
975     %SPACE COORDINATES FORCE EQUTIONS
976     %
977     % **************************************************************************
978     % f ca cb
979     %
980     \begin{equation}
981     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
982     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
983     \end{equation}
984     %
985     %
986     %
987     \begin{equation}
988     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
989     \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
990     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
991     w_b(r) \hat{r}
992     + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
993     \end{equation}
994     %
995     %
996     %
997     \begin{equation}
998     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
999     \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
1000     \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1001     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1002     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1003     \end{equation}
1004     %
1005     %
1006     %
1007     \begin{equation}
1008     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1009     -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
1010     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1011     + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1012     \end{equation}
1013     %
1014     %
1015     %
1016     \begin{equation}
1017     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
1018     \frac{1}{4\pi \epsilon_0} \Bigl[
1019     - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1020     + \left( \mathbf{D}_{\mathbf {a}}
1021     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1022     + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
1023     % 2
1024     - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1025     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
1026     \end{equation}
1027     %
1028     %
1029     %
1030     \begin{equation}
1031     \begin{split}
1032     \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1033     & - \frac{1}{4\pi \epsilon_0} \Bigl[
1034     \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1035     +2 \mathbf{D}_{\mathbf{a}} \cdot
1036     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1037     - \frac{1}{4\pi \epsilon_0} \Bigl[
1038     \text{Tr}\mathbf{Q}_{\mathbf{b}}
1039     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1040     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1041     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1042     % 3
1043     & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1044     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1045     w_i(r)
1046     % 4
1047     -\frac{1}{4\pi \epsilon_0}
1048     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1049     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
1050     \end{split}
1051     \end{equation}
1052     %
1053     %
1054     \begin{equation}
1055     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1056     \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1057     \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1058     + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1059     + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1060     \end{equation}
1061     %
1062     \begin{equation}
1063     \begin{split}
1064     \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1065     &\frac{1}{4\pi \epsilon_0} \Bigl[
1066     \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1067     +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1068     % 2
1069     + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1070     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1071     +2 (\mathbf{D}_{\mathbf{b}} \cdot
1072     \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1073     % 3
1074     &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1075     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1076     +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1077     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1078     % 4
1079     +\frac{1}{4\pi \epsilon_0}
1080     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1081     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1082     \end{split}
1083     \end{equation}
1084     %
1085     %
1086     %
1087     \begin{equation}
1088     \begin{split}
1089     \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1090     +\frac{1}{4\pi \epsilon_0} \Bigl[
1091     \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1092     + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1093     % 2
1094     +\frac{1}{4\pi \epsilon_0} \Bigl[
1095     2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1096     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1097     % 3
1098     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1099     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1100     % 4
1101     + \frac{1}{4\pi \epsilon_0} \Bigl[
1102     \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1103     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1104     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1105     % 5
1106     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1107     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1108     %
1109     + \frac{1}{4\pi \epsilon_0} \Bigl[
1110     + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1111     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1112     %6
1113     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1114     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1115     % 7
1116     + \frac{1}{4\pi \epsilon_0}
1117     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1118     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1119     \end{split}
1120     \end{equation}
1121     %
1122     %
1123     % TORQUES SECTION -----------------------------------------------------------------------------------------
1124     %
1125     \subsection{Torques}
1126    
1127 gezelter 3984 Following again Allen and Germano,\cite{Allen:2006fk} when energies are written in the form
1128 gezelter 3906 of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1129     %
1130     \begin{eqnarray}
1131     \mathbf{\tau}_{\bf a} =
1132     \sum_m
1133     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1134     ( \hat{r} \times \hat{a}_m )
1135     -\sum_{mn}
1136     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1137     (\hat{a}_m \times \hat{b}_n) \\
1138     %
1139     \mathbf{\tau}_{\bf b} =
1140     \sum_m
1141     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1142     ( \hat{r} \times \hat{b}_m)
1143     +\sum_{mn}
1144     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1145     (\hat{a}_m \times \hat{b}_n) .
1146     \end{eqnarray}
1147     %
1148     %
1149     Here we list the torque equations written in terms of space coordinates.
1150     %
1151     %
1152     %
1153     \begin{equation}
1154     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1155     \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
1156     \end{equation}
1157     %
1158     %
1159     %
1160     \begin{equation}
1161     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1162     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1163     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
1164     \end{equation}
1165     %
1166     %
1167     %
1168     \begin{equation}
1169     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1170     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1171     (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1172     \end{equation}
1173     %
1174     %
1175     %
1176     \begin{equation}
1177     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
1178     \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1179     % 2
1180     -\frac{1}{4\pi \epsilon_0}
1181     (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1182     (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1183     \end{equation}
1184     %
1185     %
1186     %
1187     \begin{equation}
1188     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1189     -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1190     % 2
1191     +\frac{1}{4\pi \epsilon_0}
1192     (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1193     (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1194     \end{equation}
1195     %
1196     %
1197     %
1198     \begin{equation}
1199     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1200     \frac{1}{4\pi \epsilon_0} \Bigl[
1201     -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1202     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1203     +2 \mathbf{D}_{\mathbf{a}} \times
1204     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1205     \Bigr] v_{31}(r)
1206     % 3
1207     -\frac{1}{4\pi \epsilon_0}
1208     \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1209     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
1210     \end{equation}
1211     %
1212     %
1213     %
1214     \begin{equation}
1215     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
1216     \frac{1}{4\pi \epsilon_0} \Bigl[
1217     +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1218     \hat{r}
1219     -2 \mathbf{D}_{\mathbf{a}} \times
1220     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1221     \Bigr] v_{31}(r)
1222     % 2
1223     +\frac{2}{4\pi \epsilon_0}
1224     (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1225     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1226     \end{equation}
1227     %
1228     %
1229     %
1230     \begin{equation}
1231     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1232     \frac{1}{4\pi \epsilon_0} \Bigl[
1233     -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1234     +2 \mathbf{D}_{\mathbf{b}} \times
1235     (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1236     \Bigr] v_{31}(r)
1237     % 3
1238     - \frac{2}{4\pi \epsilon_0}
1239     (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1240     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1241     \end{equation}
1242     %
1243     %
1244     %
1245     \begin{equation}
1246     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1247     \frac{1}{4\pi \epsilon_0} \Bigl[
1248     \text{Tr}\mathbf{Q}_{\mathbf{a}}
1249     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1250     +2 \mathbf{D}_{\mathbf{b}} \times
1251     ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1252     % 2
1253     +\frac{1}{4\pi \epsilon_0}
1254     (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1255     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1256     \end{equation}
1257     %
1258     %
1259     %
1260     \begin{equation}
1261     \begin{split}
1262     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1263     &-\frac{4}{4\pi \epsilon_0}
1264     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1265     v_{41}(r) \\
1266     % 2
1267     &+ \frac{1}{4\pi \epsilon_0}
1268     \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1269     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1270     +4 \hat{r} \times
1271     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1272     % 3
1273     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1274     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1275     % 4
1276     &+ \frac{2}{4\pi \epsilon_0}
1277     \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1278     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1279     \end{split}
1280     \end{equation}
1281     %
1282     %
1283     %
1284     \begin{equation}
1285     \begin{split}
1286     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1287     &\frac{4}{4\pi \epsilon_0}
1288     \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1289     % 2
1290     &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1291     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1292     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1293     \mathbf{Q}_{{\mathbf b}} ) \times
1294     \hat{r}
1295     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1296     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1297     \Bigr] v_{42}(r) \\
1298     % 4
1299     &+ \frac{2}{4\pi \epsilon_0}
1300     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1301     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1302     \end{split}
1303     \end{equation}
1304     %
1305 gezelter 3980
1306     \section{Comparison to known multipolar energies}
1307    
1308     To understand how these new real-space multipole methods behave in
1309     computer simulations, it is vital to test against established methods
1310     for computing electrostatic interactions in periodic systems, and to
1311     evaluate the size and sources of any errors that arise from the
1312     real-space cutoffs. In this paper we test Taylor-shifted and
1313     Gradient-shifted electrostatics against analytical methods for
1314     computing the energies of ordered multipolar arrays. In the following
1315     paper, we test the new methods against the multipolar Ewald sum for
1316     computing the energies, forces and torques for a wide range of typical
1317     condensed-phase (disordered) systems.
1318    
1319     Because long-range electrostatic effects can be significant in
1320     crystalline materials, ordered multipolar arrays present one of the
1321     biggest challenges for real-space cutoff methods. The dipolar
1322     analogues to the Madelung constants were first worked out by Sauer,
1323     who computed the energies of ordered dipole arrays of zero
1324     magnetization and obtained a number of these constants.\cite{Sauer}
1325     This theory was developed more completely by Luttinger and
1326     Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1327     other periodic structures. We have repeated the Luttinger \& Tisza
1328     series summations to much higher order and obtained the following
1329     energy constants (converged to one part in $10^9$):
1330     \begin{table*}
1331     \centering{
1332     \caption{Luttinger \& Tisza arrays and their associated
1333     energy constants. Type "A" arrays have nearest neighbor strings of
1334     antiparallel dipoles. Type "B" arrays have nearest neighbor
1335     strings of antiparallel dipoles if the dipoles are contained in a
1336     plane perpendicular to the dipole direction that passes through
1337     the dipole.}
1338     }
1339     \label{tab:LT}
1340     \begin{ruledtabular}
1341     \begin{tabular}{cccc}
1342     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1343     A & SC & 001 & -2.676788684 \\
1344     A & BCC & 001 & 0 \\
1345     A & BCC & 111 & -1.770078733 \\
1346     A & FCC & 001 & 2.166932835 \\
1347     A & FCC & 011 & -1.083466417 \\
1348    
1349     * & BCC & minimum & -1.985920929 \\
1350    
1351     B & SC & 001 & -2.676788684 \\
1352     B & BCC & 001 & -1.338394342 \\
1353     B & BCC & 111 & -1.770078733 \\
1354     B & FCC & 001 & -1.083466417 \\
1355     B & FCC & 011 & -1.807573634
1356     \end{tabular}
1357     \end{ruledtabular}
1358     \end{table*}
1359    
1360     In addition to the A and B arrays, there is an additional minimum
1361     energy structure for the BCC lattice that was found by Luttinger \&
1362     Tisza. The total electrostatic energy for an array is given by:
1363     \begin{equation}
1364     E = C N^2 \mu^2
1365     \end{equation}
1366     where $C$ is the energy constant given above, $N$ is the number of
1367     dipoles per unit volume, and $\mu$ is the strength of the dipole.
1368    
1369     {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1370     computed the energies of selected quadrupole arrays based on
1371     extensions to the Luttinger and Tisza
1372     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1373     energy constants for the lowest energy configurations for linear
1374     quadrupoles shown in table \ref{tab:NNQ}
1375    
1376     \begin{table*}
1377     \centering{
1378     \caption{Nagai and Nakamura Quadurpolar arrays}}
1379     \label{tab:NNQ}
1380     \begin{ruledtabular}
1381     \begin{tabular}{ccc}
1382     Lattice & Quadrupole Direction & Energy constants \\ \hline
1383     SC & 111 & -8.3 \\
1384     BCC & 011 & -21.7 \\
1385     FCC & 111 & -80.5
1386     \end{tabular}
1387     \end{ruledtabular}
1388     \end{table*}
1389    
1390     In analogy to the dipolar arrays, the total electrostatic energy for
1391     the quadrupolar arrays is:
1392     \begin{equation}
1393     E = C \frac{3}{4} N^2 Q^2
1394     \end{equation}
1395     where $Q$ is the quadrupole moment.
1396    
1397    
1398    
1399    
1400    
1401    
1402    
1403    
1404 gezelter 3906 \begin{acknowledgments}
1405 gezelter 3980 Support for this project was provided by the National Science
1406     Foundation under grant CHE-0848243. Computational time was provided by
1407     the Center for Research Computing (CRC) at the University of Notre
1408     Dame.
1409 gezelter 3906 \end{acknowledgments}
1410    
1411 gezelter 3984 \newpage
1412 gezelter 3906 \appendix
1413    
1414 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1415 gezelter 3906
1416 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1417     formulas given in his appendix.\cite{Smith98} The first function
1418     $B_0(r)$ is defined by
1419 gezelter 3906 %
1420     \begin{equation}
1421     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1422     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1423     \end{equation}
1424     %
1425     The first derivative of this function is
1426     %
1427     \begin{equation}
1428     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1429     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1430     \end{equation}
1431     %
1432 gezelter 3984 which can be used to define a function $B_1(r)$:
1433 gezelter 3906 %
1434     \begin{equation}
1435     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1436     \end{equation}
1437     %
1438 gezelter 3984 In general, the recurrence relation,
1439 gezelter 3906 \begin{equation}
1440     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1441     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1442     \text{e}^{-{\alpha}^2r^2}
1443 gezelter 3984 \right] ,
1444 gezelter 3906 \end{equation}
1445 gezelter 3984 is very useful for building up higher derivatives. Using these
1446     formulas, we find:
1447 gezelter 3906 %
1448 gezelter 3984 \begin{align}
1449     \frac{dB_0}{dr}=&-rB_1(r) \\
1450     \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1451     \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1452     \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1453     \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1454     \end{align}
1455 gezelter 3906 %
1456 gezelter 3984 As noted by Smith, it is possible to approximate the $B_l(r)$
1457     functions,
1458 gezelter 3906 %
1459     \begin{equation}
1460     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1461     +\text{O}(r) .
1462     \end{equation}
1463 gezelter 3984 \newpage
1464     \section{The $r$-dependent factors for TSF electrostatics}
1465 gezelter 3906
1466     Using the shifted damped functions $f_n(r)$ defined by:
1467     %
1468     \begin{equation}
1469 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1470 gezelter 3906 \end{equation}
1471     %
1472 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1473     this Appendix, we provide formulas for successive derivatives of this
1474     function. (If there is no damping, then $B_0(r)$ is replaced by
1475     $1/r$.) First, we find:
1476 gezelter 3906 %
1477     \begin{equation}
1478     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1479     \end{equation}
1480     %
1481 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1482     function, and we define higher-order derivatives as follows:
1483 gezelter 3906 %
1484 gezelter 3984 \begin{align}
1485     g_n(r)=& \frac{d f_n}{d r} =
1486     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1487     h_n(r)=& \frac{d^2f_n}{d r^2} =
1488     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1489     s_n(r)=& \frac{d^3f_n}{d r^3} =
1490     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1491     t_n(r)=& \frac{d^4f_n}{d r^4} =
1492     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1493     u_n(r)=& \frac{d^5f_n}{d r^5} =
1494     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1495     \end{align}
1496 gezelter 3906 %
1497 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1498 gezelter 3906 %
1499     \begin{equation}
1500 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1501 gezelter 3906 \end{equation}
1502    
1503 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1504     stored on a grid for values of $r$ from $0$ to $r_c$. The functions
1505     needed are listed schematically below:
1506 gezelter 3906 %
1507     \begin{eqnarray}
1508     f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1509     g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1510     h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1511     s_2 \quad s_3 \quad &s_4 \nonumber \\
1512     t_3 \quad &t_4 \nonumber \\
1513     &u_4 \nonumber .
1514     \end{eqnarray}
1515    
1516     Using these functions, we find
1517     %
1518 gezelter 3984 \begin{align}
1519     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1520     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1521     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1522     \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1523 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1524     \delta_{ \beta \gamma} r_\alpha \right)
1525     \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1526     + r_\alpha r_\beta r_\gamma
1527 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1528     \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1529 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1530     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1531     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1532     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1533 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1534     + \text{5 permutations}
1535 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1536     \right) \nonumber \\
1537 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1538 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1539 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1540 gezelter 3906 \frac{\partial^5 f_n}
1541 gezelter 3984 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1542 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1543 gezelter 3984 + \text{14 permutations} \right)
1544 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1545 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1546     + \text{9 permutations}
1547 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1548     \right) \nonumber \\
1549 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1550 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1551 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1552     \end{align}
1553 gezelter 3906 %
1554     %
1555     %
1556 gezelter 3984 \newpage
1557     \section{The $r$-dependent factors for GSF electrostatics}
1558 gezelter 3906
1559 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1560     rather the individual terms in the multipole interaction energies.
1561     For damped charges , this still brings into the algebra multiple
1562     derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1563     we generalize the notation of the previous appendix. For $f(r)=1/r$
1564     (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1565 gezelter 3906 %
1566 gezelter 3984 \begin{align}
1567     g(r)=& \frac{df}{d r}\\
1568     h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1569     s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1570     t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1571     u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1572     \end{align}
1573 gezelter 3906 %
1574 gezelter 3984 For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1575     under the column ``Bare Coulomb.'' Equations \ref{eq:b9} to
1576     \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1577     $n$ is eliminated.
1578 gezelter 3906
1579     \section{Extra Material}
1580     %
1581     %
1582     %Energy in body coordinate form ---------------------------------------------------------------
1583     %
1584     Here are the interaction energies written in terms of the body coordinates:
1585    
1586     %
1587     % u ca cb
1588     %
1589     \begin{equation}
1590     U_{C_{\bf a}C_{\bf b}}(r)=
1591     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1592     \end{equation}
1593     %
1594     % u ca db
1595     %
1596     \begin{equation}
1597     U_{C_{\bf a}D_{\bf b}}(r)=
1598     \frac{C_{\bf a}}{4\pi \epsilon_0}
1599     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1600     \end{equation}
1601     %
1602     % u ca qb
1603     %
1604     \begin{equation}
1605     U_{C_{\bf a}Q_{\bf b}}(r)=
1606     \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1607     v_{21}(r) \nonumber \\
1608     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1609     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1610     v_{22}(r)
1611     \end{equation}
1612     %
1613     % u da cb
1614     %
1615     \begin{equation}
1616     U_{D_{\bf a}C_{\bf b}}(r)=
1617     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1618     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1619     \end{equation}
1620     %
1621     % u da db
1622     %
1623     \begin{equation}
1624     \begin{split}
1625     % 1
1626     U_{D_{\bf a}D_{\bf b}}(r)&=
1627     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1628     (\hat{a}_m \cdot \hat{b}_n)
1629     D_{\mathbf{b}n} v_{21}(r) \\
1630     % 2
1631     &-\frac{1}{4\pi \epsilon_0}
1632     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1633     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1634     v_{22}(r)
1635     \end{split}
1636     \end{equation}
1637     %
1638     % u da qb
1639     %
1640     \begin{equation}
1641     \begin{split}
1642     % 1
1643     U_{D_{\bf a}Q_{\bf b}}(r)&=
1644     -\frac{1}{4\pi \epsilon_0} \left(
1645     \text{Tr}Q_{\mathbf{b}}
1646     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1647     +2\sum_{lmn}D_{\mathbf{a}l}
1648     (\hat{a}_l \cdot \hat{b}_m)
1649     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1650     \right) v_{31}(r) \\
1651     % 2
1652     &-\frac{1}{4\pi \epsilon_0}
1653     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1654     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1655     Q_{{\mathbf b}mn}
1656     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1657     \end{split}
1658     \end{equation}
1659     %
1660     % u qa cb
1661     %
1662     \begin{equation}
1663     U_{Q_{\bf a}C_{\bf b}}(r)=
1664     \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1665     +\frac{C_{\bf b}}{4\pi \epsilon_0}
1666     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1667     \end{equation}
1668     %
1669     % u qa db
1670     %
1671     \begin{equation}
1672     \begin{split}
1673     %1
1674     U_{Q_{\bf a}D_{\bf b}}(r)&=
1675     \frac{1}{4\pi \epsilon_0} \left(
1676     \text{Tr}Q_{\mathbf{a}}
1677     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1678     +2\sum_{lmn}D_{\mathbf{b}l}
1679     (\hat{b}_l \cdot \hat{a}_m)
1680     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1681     \right) v_{31}(r) \\
1682     % 2
1683     &+\frac{1}{4\pi \epsilon_0}
1684     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1685     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1686     Q_{{\mathbf a}mn}
1687     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1688     \end{split}
1689     \end{equation}
1690     %
1691     % u qa qb
1692     %
1693     \begin{equation}
1694     \begin{split}
1695     %1
1696     U_{Q_{\bf a}Q_{\bf b}}(r)&=
1697     \frac{1}{4\pi \epsilon_0} \Bigl[
1698     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1699     +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1700     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1701     (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1702     v_{41}(r) \\
1703     % 2
1704     &+ \frac{1}{4\pi \epsilon_0}
1705     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1706     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1707     Q_{{\mathbf b}lm}
1708     (\hat{b}_m \cdot \hat{r})
1709     +\text{Tr}Q_{\mathbf{b}}
1710     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1711     Q_{{\mathbf a}lm}
1712     (\hat{a}_m \cdot \hat{r}) \\
1713     % 3
1714     &+4 \sum_{lmnp}
1715     (\hat{r} \cdot \hat{a}_l )
1716     Q_{{\mathbf a}lm}
1717     (\hat{a}_m \cdot \hat{b}_n)
1718     Q_{{\mathbf b}np}
1719     (\hat{b}_p \cdot \hat{r})
1720     \Bigr] v_{42}(r) \\
1721     % 4
1722     &+ \frac{1}{4\pi \epsilon_0}
1723     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1724     Q_{{\mathbf a}lm}
1725     (\hat{a}_m \cdot \hat{r})
1726     \sum_{np} (\hat{r} \cdot \hat{b}_n)
1727     Q_{{\mathbf b}np}
1728     (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1729     \end{split}
1730     \end{equation}
1731     %
1732    
1733    
1734     % BODY coordinates force equations --------------------------------------------
1735     %
1736     %
1737     Here are the force equations written in terms of body coordinates.
1738     %
1739     % f ca cb
1740     %
1741     \begin{equation}
1742     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1743     \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1744     \end{equation}
1745     %
1746     % f ca db
1747     %
1748     \begin{equation}
1749     \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1750     \frac{C_{\bf a}}{4\pi \epsilon_0}
1751     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1752     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1753     \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1754     \end{equation}
1755     %
1756     % f ca qb
1757     %
1758     \begin{equation}
1759     \begin{split}
1760     % 1
1761     \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1762     \frac{1}{4\pi \epsilon_0}
1763     C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1764     + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1765     % 2
1766     +\frac{C_{\bf a}}{4\pi \epsilon_0}
1767     \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1768     \end{split}
1769     \end{equation}
1770     %
1771     % f da cb
1772     %
1773     \begin{equation}
1774     \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1775     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1776     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1777     -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1778     \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1779     \end{equation}
1780     %
1781     % f da db
1782     %
1783     \begin{equation}
1784     \begin{split}
1785     % 1
1786     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1787     -\frac{1}{4\pi \epsilon_0}
1788     \sum_{mn} D_{\mathbf {a}m}
1789     (\hat{a}_m \cdot \hat{b}_n)
1790     D_{\mathbf{b}n} w_d(r) \hat{r}
1791     -\frac{1}{4\pi \epsilon_0}
1792     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1793     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1794     % 2
1795     & \quad + \frac{1}{4\pi \epsilon_0}
1796     \Bigl[ \sum_m D_{\mathbf {a}m}
1797     \hat{a}_m \sum_n D_{\mathbf{b}n}
1798     (\hat{b}_n \cdot \hat{r})
1799     + \sum_m D_{\mathbf {b}m}
1800     \hat{b}_m \sum_n D_{\mathbf{a}n}
1801     (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1802     \end{split}
1803     \end{equation}
1804     %
1805     % f da qb
1806     %
1807     \begin{equation}
1808     \begin{split}
1809     % 1
1810     &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1811     - \frac{1}{4\pi \epsilon_0} \Bigl[
1812     \text{Tr}Q_{\mathbf{b}}
1813     \sum_l D_{\mathbf{a}l} \hat{a}_l
1814     +2\sum_{lmn} D_{\mathbf{a}l}
1815     (\hat{a}_l \cdot \hat{b}_m)
1816     Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1817     % 3
1818     & - \frac{1}{4\pi \epsilon_0} \Bigl[
1819     \text{Tr}Q_{\mathbf{b}}
1820     \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1821     +2\sum_{lmn}D_{\mathbf{a}l}
1822     (\hat{a}_l \cdot \hat{b}_m)
1823     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1824     % 4
1825     &+ \frac{1}{4\pi \epsilon_0}
1826     \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1827     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1828     Q_{{\mathbf b}mn}
1829     (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1830     D_{\mathbf{a}l}
1831     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1832     Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1833     % 6
1834     & -\frac{1}{4\pi \epsilon_0}
1835     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1836     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1837     Q_{{\mathbf b}mn}
1838     (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1839     \end{split}
1840     \end{equation}
1841     %
1842     % force qa cb
1843     %
1844     \begin{equation}
1845     \begin{split}
1846     % 1
1847     \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1848     \frac{1}{4\pi \epsilon_0}
1849     C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1850     + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1851     % 2
1852     & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1853     \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1854     \end{split}
1855     \end{equation}
1856     %
1857     % f qa db
1858     %
1859     \begin{equation}
1860     \begin{split}
1861     % 1
1862     &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1863     \frac{1}{4\pi \epsilon_0} \Bigl[
1864     \text{Tr}Q_{\mathbf{a}}
1865     \sum_l D_{\mathbf{b}l} \hat{b}_l
1866     +2\sum_{lmn} D_{\mathbf{b}l}
1867     (\hat{b}_l \cdot \hat{a}_m)
1868     Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1869     w_g(r)\\
1870     % 3
1871     & + \frac{1}{4\pi \epsilon_0} \Bigl[
1872     \text{Tr}Q_{\mathbf{a}}
1873     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1874     +2\sum_{lmn}D_{\mathbf{b}l}
1875     (\hat{b}_l \cdot \hat{a}_m)
1876     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1877     % 4
1878     & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1879     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1880     Q_{{\mathbf a}mn}
1881     (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1882     D_{\mathbf{b}l}
1883     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1884     Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1885     % 6
1886     & +\frac{1}{4\pi \epsilon_0}
1887     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1888     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1889     Q_{{\mathbf a}mn}
1890     (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1891     \end{split}
1892     \end{equation}
1893     %
1894     % f qa qb
1895     %
1896     \begin{equation}
1897     \begin{split}
1898     &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1899     \frac{1}{4\pi \epsilon_0} \Bigl[
1900     \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1901     + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1902     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1903     (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1904     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1905     2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1906     + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1907     &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1908     + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1909     \Bigr] w_n(r) \\
1910     &+ \frac{1}{4\pi \epsilon_0}
1911     \Bigl[ \text{Tr}Q_{\mathbf{a}}
1912     \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1913     + \text{Tr}Q_{\mathbf{b}}
1914     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1915     &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1916     Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1917     %
1918     &+\frac{1}{4\pi \epsilon_0} \Bigl[
1919     2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1920     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1921     &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1922     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1923     & + \frac{1}{4\pi \epsilon_0}
1924     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1925     \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1926     \end{split}
1927     \end{equation}
1928     %
1929     Here we list the form of the non-zero damped shifted multipole torques showing
1930     explicitly dependences on body axes:
1931     %
1932     % t ca db
1933     %
1934     \begin{equation}
1935     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1936     \frac{C_{\bf a}}{4\pi \epsilon_0}
1937     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1938     \end{equation}
1939     %
1940     % t ca qb
1941     %
1942     \begin{equation}
1943     \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1944     \frac{2C_{\bf a}}{4\pi \epsilon_0}
1945     \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1946     \end{equation}
1947     %
1948     % t da cb
1949     %
1950     \begin{equation}
1951     \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1952     -\frac{C_{\bf b}}{4\pi \epsilon_0}
1953     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1954     \end{equation}%
1955     %
1956     %
1957     % ta da db
1958     %
1959     \begin{equation}
1960     \begin{split}
1961     % 1
1962     \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1963     \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1964     (\hat{a}_m \times \hat{b}_n)
1965     D_{\mathbf{b}n} v_{21}(r) \\
1966     % 2
1967     &-\frac{1}{4\pi \epsilon_0}
1968     \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1969     \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1970     \end{split}
1971     \end{equation}
1972     %
1973     % tb da db
1974     %
1975     \begin{equation}
1976     \begin{split}
1977     % 1
1978     \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1979     -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1980     (\hat{a}_m \times \hat{b}_n)
1981     D_{\mathbf{b}n} v_{21}(r) \\
1982     % 2
1983     &+\frac{1}{4\pi \epsilon_0}
1984     \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1985     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1986     \end{split}
1987     \end{equation}
1988     %
1989     % ta da qb
1990     %
1991     \begin{equation}
1992     \begin{split}
1993     % 1
1994     \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1995     \frac{1}{4\pi \epsilon_0} \left(
1996     -\text{Tr}Q_{\mathbf{b}}
1997     \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1998     +2\sum_{lmn}D_{\mathbf{a}l}
1999     (\hat{a}_l \times \hat{b}_m)
2000     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2001     \right) v_{31}(r)\\
2002     % 2
2003     &-\frac{1}{4\pi \epsilon_0}
2004     \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2005     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2006     Q_{{\mathbf b}mn}
2007     (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2008     \end{split}
2009     \end{equation}
2010     %
2011     % tb da qb
2012     %
2013     \begin{equation}
2014     \begin{split}
2015     % 1
2016     \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2017     \frac{1}{4\pi \epsilon_0} \left(
2018     -2\sum_{lmn}D_{\mathbf{a}l}
2019     (\hat{a}_l \cdot \hat{b}_m)
2020     Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2021     -2\sum_{lmn}D_{\mathbf{a}l}
2022     (\hat{a}_l \times \hat{b}_m)
2023     Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2024     \right) v_{31}(r) \\
2025     % 2
2026     &-\frac{2}{4\pi \epsilon_0}
2027     \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2028     \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2029     Q_{{\mathbf b}mn}
2030     (\hat{r}\times \hat{b}_n) v_{32}(r)
2031     \end{split}
2032     \end{equation}
2033     %
2034     % ta qa cb
2035     %
2036     \begin{equation}
2037     \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2038     \frac{2C_{\bf a}}{4\pi \epsilon_0}
2039     \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2040     \end{equation}
2041     %
2042     % ta qa db
2043     %
2044     \begin{equation}
2045     \begin{split}
2046     % 1
2047     \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2048     \frac{1}{4\pi \epsilon_0} \left(
2049     2\sum_{lmn}D_{\mathbf{b}l}
2050     (\hat{b}_l \cdot \hat{a}_m)
2051     Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2052     +2\sum_{lmn}D_{\mathbf{b}l}
2053     (\hat{a}_l \times \hat{b}_m)
2054     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2055     \right) v_{31}(r) \\
2056     % 2
2057     &+\frac{2}{4\pi \epsilon_0}
2058     \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2059     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2060     Q_{{\mathbf a}mn}
2061     (\hat{r}\times \hat{a}_n) v_{32}(r)
2062     \end{split}
2063     \end{equation}
2064     %
2065     % tb qa db
2066     %
2067     \begin{equation}
2068     \begin{split}
2069     % 1
2070     \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2071     \frac{1}{4\pi \epsilon_0} \left(
2072     \text{Tr}Q_{\mathbf{a}}
2073     \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2074     +2\sum_{lmn}D_{\mathbf{b}l}
2075     (\hat{a}_l \times \hat{b}_m)
2076     Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2077     \right) v_{31}(r)\\
2078     % 2
2079     &\frac{1}{4\pi \epsilon_0}
2080     \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2081     \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2082     Q_{{\mathbf a}mn}
2083     (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2084     \end{split}
2085     \end{equation}
2086     %
2087     % ta qa qb
2088     %
2089     \begin{equation}
2090     \begin{split}
2091     % 1
2092     \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2093     -\frac{4}{4\pi \epsilon_0}
2094     \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2095     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2096     (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2097     % 2
2098     &+ \frac{1}{4\pi \epsilon_0}
2099     \Bigl[
2100     2\text{Tr}Q_{\mathbf{b}}
2101     \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2102     Q_{{\mathbf a}lm}
2103     (\hat{r} \times \hat{a}_m)
2104     +4 \sum_{lmnp}
2105     (\hat{r} \times \hat{a}_l )
2106     Q_{{\mathbf a}lm}
2107     (\hat{a}_m \cdot \hat{b}_n)
2108     Q_{{\mathbf b}np}
2109     (\hat{b}_p \cdot \hat{r}) \\
2110     % 3
2111     &-4 \sum_{lmnp}
2112     (\hat{r} \cdot \hat{a}_l )
2113     Q_{{\mathbf a}lm}
2114     (\hat{a}_m \times \hat{b}_n)
2115     Q_{{\mathbf b}np}
2116     (\hat{b}_p \cdot \hat{r})
2117     \Bigr] v_{42}(r) \\
2118     % 4
2119     &+ \frac{2}{4\pi \epsilon_0}
2120     \sum_{lm} (\hat{r} \times \hat{a}_l)
2121     Q_{{\mathbf a}lm}
2122     (\hat{a}_m \cdot \hat{r})
2123     \sum_{np} (\hat{r} \cdot \hat{b}_n)
2124     Q_{{\mathbf b}np}
2125     (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2126     \end{split}
2127     \end{equation}
2128     %
2129     % tb qa qb
2130     %
2131     \begin{equation}
2132     \begin{split}
2133     % 1
2134     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2135     \frac{4}{4\pi \epsilon_0}
2136     \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2137     Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2138     (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2139     % 2
2140     &+ \frac{1}{4\pi \epsilon_0}
2141     \Bigl[
2142     2\text{Tr}Q_{\mathbf{a}}
2143     \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2144     Q_{{\mathbf b}lm}
2145     (\hat{r} \times \hat{b}_m)
2146     +4 \sum_{lmnp}
2147     (\hat{r} \cdot \hat{a}_l )
2148     Q_{{\mathbf a}lm}
2149     (\hat{a}_m \cdot \hat{b}_n)
2150     Q_{{\mathbf b}np}
2151     (\hat{r} \times \hat{b}_p) \\
2152     % 3
2153     &+4 \sum_{lmnp}
2154     (\hat{r} \cdot \hat{a}_l )
2155     Q_{{\mathbf a}lm}
2156     (\hat{a}_m \times \hat{b}_n)
2157     Q_{{\mathbf b}np}
2158     (\hat{b}_p \cdot \hat{r})
2159     \Bigr] v_{42}(r) \\
2160     % 4
2161     &+ \frac{2}{4\pi \epsilon_0}
2162     \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2163     Q_{{\mathbf a}lm}
2164     (\hat{a}_m \cdot \hat{r})
2165     \sum_{np} (\hat{r} \times \hat{b}_n)
2166     Q_{{\mathbf b}np}
2167     (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2168     \end{split}
2169     \end{equation}
2170     %
2171     \begin{table*}
2172     \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2173     \begin{ruledtabular}
2174 gezelter 3984 \begin{tabular}{|l|l|l|}
2175     Generic&Taylor-shifted Force&Gradient-shifted Force
2176 gezelter 3906 \\ \hline
2177     %
2178     %
2179     %
2180     $w_a(r)$&
2181     $g_0(r)$&
2182     $g(r)-g(r_c)$ \\
2183     %
2184     %
2185     $w_b(r)$ &
2186     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2187     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2188     %
2189     $w_c(r)$ &
2190     $\frac{g_1(r)}{r} $ &
2191     $\frac{v_{11}(r)}{r}$ \\
2192     %
2193     %
2194     $w_d(r)$&
2195     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2196     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2197     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2198     %
2199     $w_e(r)$ &
2200     $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2201     $\frac{v_{22}(r)}{r}$ \\
2202     %
2203     %
2204     $w_f(r)$&
2205     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2206     $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2207     &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2208     %
2209     $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2210     $\frac{v_{31}(r)}{r}$\\
2211     %
2212     $w_h(r)$ &
2213     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2214     $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2215     &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2216     &&$-\frac{v_{31}(r)}{r}$\\
2217     % 2
2218     $w_i(r)$ &
2219     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2220     $\frac{v_{32}(r)}{r}$ \\
2221     %
2222     $w_j(r)$ &
2223     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2224     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2225     &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2226     %
2227     $w_k(r)$ &
2228     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2229     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2230     &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2231     %
2232     $w_l(r)$ &
2233     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2234     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2235     &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2236     -\frac{2v_{42}(r)}{r}$ \\
2237     %
2238     $w_m(r)$ &
2239     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2240     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2241     &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2242     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2243     &&$-\frac{4v_{43}(r)}{r}$ \\
2244     %
2245     $w_n(r)$ &
2246     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2247     $\frac{v_{42}(r)}{r}$ \\
2248     %
2249     $w_o(r)$ &
2250     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2251     $\frac{v_{43}(r)}{r}$ \\
2252     %
2253     \end{tabular}
2254     \end{ruledtabular}
2255     \end{table*}
2256 gezelter 3980
2257     \newpage
2258    
2259     \bibliography{multipole}
2260    
2261 gezelter 3906 \end{document}
2262     %
2263     % ****** End of file multipole.tex ******