ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3985
Committed: Tue Dec 31 01:33:31 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 82583 byte(s)
Log Message:
Edits + data

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 3980
39 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44     \preprint{AIP/123-QED}
45    
46 gezelter 3980 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
47     {Real space alternatives to the Ewald
48     Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
49 gezelter 3906
50     \author{Madan Lamichhane}
51     \affiliation{Department of Physics, University
52     of Notre Dame, Notre Dame, IN 46556}
53    
54     \author{J. Daniel Gezelter}
55     \email{gezelter@nd.edu.}
56     \affiliation{Department of Chemistry and Biochemistry, University
57     of Notre Dame, Notre Dame, IN 46556}
58    
59     \author{Kathie E. Newman}
60     \affiliation{Department of Physics, University
61     of Notre Dame, Notre Dame, IN 46556}
62    
63    
64     \date{\today}% It is always \today, today,
65     % but any date may be explicitly specified
66    
67     \begin{abstract}
68 gezelter 3980 We have extended the original damped-shifted force (DSF)
69     electrostatic kernel and have been able to derive two new
70     electrostatic potentials for higher-order multipoles that are based
71     on truncated Taylor expansions around the cutoff radius. For
72     multipole-multipole interactions, we find that each of the distinct
73     orientational contributions has a separate radial function to ensure
74     that the overall forces and torques vanish at the cutoff radius. In
75     this paper, we present energy, force, and torque expressions for the
76     new models, and compare these real-space interaction models to exact
77     results for ordered arrays of multipoles.
78 gezelter 3906 \end{abstract}
79    
80     \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
81     % Classification Scheme.
82     \keywords{Suggested keywords}%Use showkeys class option if keyword
83     %display desired
84     \maketitle
85    
86     \section{Introduction}
87 gezelter 3982 There has been increasing interest in real-space methods for
88     calculating electrostatic interactions in computer simulations of
89     condensed molecular
90 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
91     The simplest of these techniques was developed by Wolf {\it et al.}
92     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
93 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
94     simple damped shifted force (DSF) modification to Wolf's method could
95     give nearly quantitative agreement with smooth particle mesh Ewald
96     (SPME)\cite{Essmann95} configurational energy differences as well as
97     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
98 gezelter 3906
99 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
100     surprisingly good, particularly for systems with uniform charge
101     density. Additionally, dielectric constants obtained using DSF and
102     similar methods where the force vanishes at $R_\textrm{c}$ are
103     essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
104     related methods have now been widely investigated,\cite{Hansen:2012uq}
105 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
106     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
107     DSF electrostatics provides a compromise between the computational
108     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
109     treatments.
110 gezelter 3906
111 gezelter 3980 One common feature of many coarse-graining approaches, which treat
112     entire molecular subsystems as a single rigid body, is simplification
113     of the electrostatic interactions between these bodies so that fewer
114     site-site interactions are required to compute configurational
115 gezelter 3985 energies. The coarse-graining approaches of Ren \&
116     coworkers,\cite{Golubkov06} and Essex \&
117     coworkers,\cite{ISI:000276097500009,ISI:000298664400012} both utilize
118     point multipoles to model electrostatics for entire molecules or
119     functional groups.
120 gezelter 3906
121 gezelter 3980 Ichiye and coworkers have recently introduced a number of very fast
122     water models based on a ``sticky'' multipole model which are
123     qualitatively better at reproducing the behavior of real water than
124 gezelter 3985 the more common point-charge models (SPC/E,
125     TIPnP).\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The SSDQO
126     model requires the use of an approximate multipole expansion (AME) as
127     the exact multipole expansion is quite expensive (particularly when
128     handled via the Ewald sum).\cite{Ichiye:2006qy}
129    
130 gezelter 3980 Another particularly important use of point multipoles (and multipole
131     polarizability) is in the very high-quality AMOEBA water model and
132     related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
133 gezelter 3906
134 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
135     dynamics. Multipolar interactions are inherently short-ranged, and
136     should not need the relatively expensive Ewald treatment. However,
137     real-space cutoff methods are normally applied in an orientation-blind
138     fashion so multipoles which leave and then re-enter a cutoff sphere in
139     a different orientation can cause energy discontinuities.
140 gezelter 3906
141 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
142 gezelter 3985 kernel to point multipoles. We describe two distinct real-space
143 gezelter 3982 interaction models for higher-order multipoles based on two truncated
144     Taylor expansions that are carried out at the cutoff radius. We are
145     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
146     electrostatics. Because of differences in the initial assumptions,
147     the two methods yield related, but different expressions for energies,
148 gezelter 3985 forces, and torques.
149 gezelter 3906
150 gezelter 3982 In this paper we outline the new methodology and give functional forms
151     for the energies, forces, and torques up to quadrupole-quadrupole
152     order. We also compare the new methods to analytic energy constants
153     for periodic arrays of point multipoles. In the following paper, we
154 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
155     simulation enviornments.
156 gezelter 3982
157 gezelter 3980 \section{Methodology}
158 gezelter 3906
159 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
160     The DSF and Wolf methods operate by neutralizing the total charge
161     contained within the cutoff sphere surrounding each particle. This is
162     accomplished by shifting the potential functions to generate image
163     charges on the surface of the cutoff sphere for each pair interaction
164 gezelter 3982 computed within $R_\textrm{c}$. Damping using a complementary error
165     function is applied to the potential to accelerate convergence. The
166     potential for the DSF method, where $\alpha$ is the adjustable damping
167     parameter, is given by
168 gezelter 3980 \begin{equation*}
169     V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
170     \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
171     - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
172     + \frac{2\alpha}{\pi^{1/2}}
173     \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
174     \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
175     \label{eq:DSFPot}
176     \end{equation*}
177 gezelter 3985 Note that in this potential and in all electrostatic quantities that
178     follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
179     clarity.
180 gezelter 3980
181     To insure net charge neutrality within each cutoff sphere, an
182     additional ``self'' term is added to the potential. This term is
183     constant (as long as the charges and cutoff radius do not change), and
184     exists outside the normal pair-loop for molecular simulations. It can
185     be thought of as a contribution from a charge opposite in sign, but
186     equal in magnitude, to the central charge, which has been spread out
187     over the surface of the cutoff sphere. A portion of the self term is
188     identical to the self term in the Ewald summation, and comes from the
189     utilization of the complimentary error function for electrostatic
190 gezelter 3985 damping.\cite{deLeeuw80,Wolf99}
191 gezelter 3980
192 gezelter 3982 There have been recent efforts to extend the Wolf self-neutralization
193     method to zero out the dipole and higher order multipoles contained
194     within the cutoff
195 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
196 gezelter 3982
197 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
198     multipoles by insuring net charge-neutrality and net-zero moments
199     within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
200     central dipolar site $\mathbf{D}_i$ is interacting with point dipole
201     $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
202     self-neutralization scheme for point multipoles involves projecting
203     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
204     sphere. There are also significant modifications made to make the
205     forces and torques go smoothly to zero at the cutoff distance.
206 gezelter 3982
207 gezelter 3980 \begin{figure}
208 gezelter 3982 \includegraphics[width=3in]{SM}
209 gezelter 3980 \caption{Reversed multipoles are projected onto the surface of the
210     cutoff sphere. The forces, torques, and potential are then smoothly
211     shifted to zero as the sites leave the cutoff region.}
212     \label{fig:shiftedMultipoles}
213     \end{figure}
214    
215 gezelter 3982 As in the point-charge approach, there is a contribution from
216     self-neutralization of site $i$. The self term for multipoles is
217     described in section \ref{sec:selfTerm}.
218 gezelter 3906
219 gezelter 3982 \subsection{The multipole expansion}
220    
221 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
222 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
223     interact via electrostatics only and describe those interactions in
224     terms of a standard multipole expansion. Putting the origin of the
225     coordinate system at the center of mass of $\bf a$, we use vectors
226 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
227     a$. Then the electrostatic potential of object $\bf a$ at
228     $\mathbf{r}$ is given by
229 gezelter 3906 \begin{equation}
230 gezelter 3985 V_a(\mathbf r) =
231 gezelter 3906 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
232     \end{equation}
233 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
234     notation. Here Greek indices are used to indicate space coordinates
235     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
236     labelling specific charges in $\bf a$ and $\bf b$ respectively. The
237     Taylor expansion,
238 gezelter 3906 \begin{equation}
239     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
240     \left( 1
241     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
242     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
243     \right)
244 gezelter 3982 \frac{1}{r} ,
245 gezelter 3906 \end{equation}
246 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
247     terms of multipole operators,
248 gezelter 3906 \begin{equation}
249 gezelter 3985 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
250 gezelter 3906 \end{equation}
251     where
252     \begin{equation}
253     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
254     + Q_{{\bf a}\alpha\beta}
255     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
256     \end{equation}
257 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
258     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
259 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
260     which can be expressed as a distribution of charges,
261     \begin{align}
262     C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
263     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
264     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
265     \end{align}
266     Note that the definition of the primitive quadrupole here differs from
267     the standard traceless form, and contains an additional Taylor-series
268     based factor of $1/2$.
269 gezelter 3906
270     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
271     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
272     \begin{equation}
273 gezelter 3982 U_{\bf{ab}}(r)
274 gezelter 3985 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
275 gezelter 3982 \end{equation}
276     This can also be expanded as a Taylor series in $r$. Using a notation
277     similar to before to define the multipoles on object {\bf b},
278     \begin{equation}
279 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
280     + Q_{{\bf b}\alpha\beta}
281     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
282     \end{equation}
283 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
284 gezelter 3906 \begin{equation}
285 gezelter 3985 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
286 gezelter 3906 \end{equation}
287 gezelter 3982 This form has the benefit of separating out the energies of
288     interaction into contributions from the charge, dipole, and quadrupole
289     of $\bf a$ interacting with the same multipoles $\bf b$.
290 gezelter 3906
291 gezelter 3982 \subsection{Damped Coulomb interactions}
292     In the standard multipole expansion, one typically uses the bare
293     Coulomb potential, with radial dependence $1/r$, as shown in
294     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
295     interaction, which results from replacing point charges with Gaussian
296     distributions of charge with width $\alpha$. In damped multipole
297     electrostatics, the kernel ($1/r$) of the expansion is replaced with
298     the function:
299 gezelter 3906 \begin{equation}
300     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
301     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
302     \end{equation}
303 gezelter 3982 We develop equations below using the function $f(r)$ to represent
304     either $1/r$ or $B_0(r)$, and all of the techniques can be applied
305     either to bare or damped Coulomb kernels as long as derivatives of
306     these functions are known. Smith's convenient functions $B_l(r)$ are
307     summarized in Appendix A.
308 gezelter 3906
309 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
310     energy as well as forces and torques as $r\rightarrow r_c$. To
311     describe how this goal may be met, we use two examples, charge-charge
312     and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
313     the idea.
314 gezelter 3906
315 gezelter 3984 \subsection{Shifted-force methods}
316 gezelter 3982 In the shifted-force approximation, the interaction energy for two
317     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
318     written:
319 gezelter 3906 \begin{equation}
320 gezelter 3985 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
321 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
322     \right) .
323     \end{equation}
324 gezelter 3982 Two shifting terms appear in this equations, one from the
325 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
326     derivative to vanish at the cutoff radius.
327 gezelter 3982
328     Since one derivative of the interaction energy is needed for the
329     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
330     interaction energy, that is:
331 gezelter 3906 \begin{equation}
332     \frac{d\,}{dr}
333     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
334     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
335     \right) .
336     \end{equation}
337 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
338     are a number of ways to generalize this derivative shift for
339 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
340     higher-order Taylor series for $r$ near $r_c$, and the other based on
341     linear shift of the kernel gradients at the cutoff itself.
342 gezelter 3906
343 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
344 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
345     is based on a Taylor expansion containing the same number of
346     derivatives required for each force term to vanish at the cutoff. For
347     example, the quadrupole-quadrupole interaction energy requires four
348     derivatives of the kernel, and the force requires one additional
349     derivative. We therefore require shifted energy expressions that
350     include enough terms so that all energies, forces, and torques are
351     zero as $r \rightarrow r_c$. In each case, we will subtract off a
352     function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$. The
353 gezelter 3984 subscript $n$ indicates the number of derivatives to be taken when
354 gezelter 3982 deriving a given multipole energy. We choose a function with
355     guaranteed smooth derivatives --- a truncated Taylor series of the
356     function $f(r)$, e.g.,
357 gezelter 3906 %
358     \begin{equation}
359 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
360 gezelter 3906 \end{equation}
361     %
362     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
363     Thus, for $f(r)=1/r$, we find
364     %
365     \begin{equation}
366     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
367     \end{equation}
368     %
369 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
370     dipole $\bf b$, we write
371 gezelter 3906 %
372     \begin{equation}
373     U_{C_{\bf a}D_{\bf b}}(r)=
374 gezelter 3985 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
375     = C_{\bf a} D_{{\bf b}\alpha}
376 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
377     \end{equation}
378     %
379 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
380 gezelter 3906 %
381     \begin{equation}
382 gezelter 3985 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
383 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
384     \frac{r_\alpha r_\beta}{r^2}
385     \left( -\frac{1}{r} \frac {\partial} {\partial r}
386     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
387     \end{equation}
388     %
389 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
390 gezelter 3906 %
391     \begin{equation}
392     F_{C_{\bf a}D_{\bf b}\beta} =
393 gezelter 3985 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
394 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
395 gezelter 3985 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
396 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
397     \end{equation}
398     %
399     This expansion shows the expected $1/r^3$ dependence of the force.
400    
401 gezelter 3984 In general, we can write
402 gezelter 3906 %
403     \begin{equation}
404 gezelter 3985 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
405 gezelter 3906 \label{generic}
406     \end{equation}
407     %
408 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
409     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
410     $n=4$ for quadrupole-quadrupole. For example, in
411     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
412     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
413     $\partial^4/\partial r_\alpha \partial r_\beta \partial
414     r_\gamma \partial r_\delta$, with implied summation combining the
415     space indices.
416 gezelter 3906
417 gezelter 3984 In the formulas presented in the tables below, the placeholder
418     function $f(r)$ is used to represent the electrostatic kernel (either
419     damped or undamped). The main functions that go into the force and
420 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
421     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
422     of the same index $n$. The algebra required to evaluate energies,
423     forces and torques is somewhat tedious, so only the final forms are
424     presented in tables XX and YY.
425 gezelter 3906
426 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
427 gezelter 3985 The second, and conceptually simpler approach to force-shifting
428     maintains only the linear $(r-r_c)$ term in the truncated Taylor
429     expansion, and has a similar interaction energy for all multipole
430     orders:
431 gezelter 3906 \begin{equation}
432 gezelter 3985 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
433     \lvert _{r_c} .
434     \label{generic2}
435 gezelter 3906 \end{equation}
436 gezelter 3985 Here the gradient for force shifting is evaluated for an image
437     multipole on the surface of the cutoff sphere (see fig
438     \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
439     appear. The primary difference between the TSF and GSF methods is the
440     stage at which the Taylor Series is applied; in the Taylor-shifted
441     approach, it is applied to the kernel itself. In the Gradient-shifted
442     approach, it is applied to individual radial interactions terms in the
443     multipole expansion. Energies from this method thus have the general
444     form:
445 gezelter 3906 \begin{equation}
446 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
447     \label{generic3}
448 gezelter 3906 \end{equation}
449    
450 gezelter 3985 Functional forms for both methods (TSF and GSF) can be summarized
451     using the form of Eq.~(\ref{generic3}). The basic forms for the
452     energy, force, and torque expressions are tabulated for both shifting
453     approaches below - for each separate orientational contribution, only
454     the radial factors differ between the two methods.
455 gezelter 3906
456     \subsection{\label{sec:level2}Body and space axes}
457    
458 gezelter 3985 [XXX Do we need this section in the main paper? or should it go in the
459     extra materials?]
460    
461 gezelter 3984 So far, all energies and forces have been written in terms of fixed
462 gezelter 3985 space coordinates. Interaction energies are computed from the generic
463     formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which combine
464     orientational prefactors with radial functions. Because objects $\bf
465 gezelter 3984 a$ and $\bf b$ both translate and rotate during a molecular dynamics
466     (MD) simulation, it is desirable to contract all $r$-dependent terms
467     with dipole and quadrupole moments expressed in terms of their body
468 gezelter 3985 axes. To do so, we have followed the methodology of Allen and
469     Germano,\cite{Allen:2006fk} which was itself based on earlier work by
470     Price {\em et al.}\cite{Price:1984fk}
471 gezelter 3906
472 gezelter 3984 We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
473     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
474     referring to a convenient set of inertial body axes. (N.B., these
475     body axes are generally not the same as those for which the quadrupole
476     moment is diagonal.) Then,
477 gezelter 3906 %
478     \begin{eqnarray}
479     \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
480     \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
481     \end{eqnarray}
482 gezelter 3985 Rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
483     expressed using these unit vectors:
484 gezelter 3906 \begin{eqnarray}
485     \hat{\mathbf {a}} =
486     \begin{pmatrix}
487     \hat{a}_1 \\
488     \hat{a}_2 \\
489     \hat{a}_3
490     \end{pmatrix}
491     =
492     \begin{pmatrix}
493     a_{1x} \quad a_{1y} \quad a_{1z} \\
494     a_{2x} \quad a_{2y} \quad a_{2z} \\
495     a_{3x} \quad a_{3y} \quad a_{3z}
496     \end{pmatrix}\\
497     \hat{\mathbf {b}} =
498     \begin{pmatrix}
499     \hat{b}_1 \\
500     \hat{b}_2 \\
501     \hat{b}_3
502     \end{pmatrix}
503     =
504     \begin{pmatrix}
505 gezelter 3985 b_{1x} \quad b_{1y} \quad b_{1z} \\
506 gezelter 3906 b_{2x} \quad b_{2y} \quad b_{2z} \\
507     b_{3x} \quad b_{3y} \quad b_{3z}
508     \end{pmatrix} .
509     \end{eqnarray}
510     %
511 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
512     coordinates. All contractions of prefactors with derivatives of
513     functions can be written in terms of these matrices. It proves to be
514     equally convenient to just write any contraction in terms of unit
515     vectors $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. In the torque
516     expressions, it is useful to have the angular-dependent terms
517     available in three different fashions, e.g. for the dipole-dipole
518     contraction:
519 gezelter 3906 %
520 gezelter 3985 \begin{equation}
521 gezelter 3906 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
522 gezelter 3985 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
523     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
524     \end{equation}
525 gezelter 3906 %
526 gezelter 3985 The first two forms are written using space coordinates. The first
527     form is standard in the chemistry literature, while the second is
528     expressed using implied summation notation. The third form shows
529     explicit sums over body indices and the dot products now indicate
530     contractions using space indices.
531 gezelter 3906
532    
533 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
534    
535 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
536     summation~\cite{Wolf99} and the damped shifted force (DSF)
537     extension~\cite{Fennell:2006zl} also included self-interactions that
538     are handled separately from the pairwise interactions between
539     sites. The self-term is normally calculated via a single loop over all
540     sites in the system, and is relatively cheap to evaluate. The
541     self-interaction has contributions from two sources.
542    
543     First, the neutralization procedure within the cutoff radius requires
544     a contribution from a charge opposite in sign, but equal in magnitude,
545     to the central charge, which has been spread out over the surface of
546     the cutoff sphere. For a system of undamped charges, the total
547     self-term is
548 gezelter 3980 \begin{equation}
549     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
550     \label{eq:selfTerm}
551     \end{equation}
552 gezelter 3985
553     Second, charge damping with the complementary error function is a
554     partial analogy to the Ewald procedure which splits the interaction
555     into real and reciprocal space sums. The real space sum is retained
556     in the Wolf and DSF methods. The reciprocal space sum is first
557     minimized by folding the largest contribution (the self-interaction)
558     into the self-interaction from charge neutralization of the damped
559     potential. The remainder of the reciprocal space portion is then
560     discarded (as this contributes the largest computational cost and
561     complexity to the Ewald sum). For a system containing only damped
562     charges, the complete self-interaction can be written as
563 gezelter 3980 \begin{equation}
564     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
565     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
566     C_{\bf a}^{2}.
567     \label{eq:dampSelfTerm}
568     \end{equation}
569    
570     The extension of DSF electrostatics to point multipoles requires
571     treatment of {\it both} the self-neutralization and reciprocal
572     contributions to the self-interaction for higher order multipoles. In
573     this section we give formulae for these interactions up to quadrupolar
574     order.
575    
576     The self-neutralization term is computed by taking the {\it
577     non-shifted} kernel for each interaction, placing a multipole of
578     equal magnitude (but opposite in polarization) on the surface of the
579     cutoff sphere, and averaging over the surface of the cutoff sphere.
580     Because the self term is carried out as a single sum over sites, the
581     reciprocal-space portion is identical to half of the self-term
582     obtained by Smith and Aguado and Madden for the application of the
583     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
584     site which posesses a charge, dipole, and multipole, both types of
585     contribution are given in table \ref{tab:tableSelf}.
586    
587     \begin{table*}
588     \caption{\label{tab:tableSelf} Self-interaction contributions for
589     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
590     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
591     \begin{ruledtabular}
592     \begin{tabular}{lccc}
593     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
594     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
595     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
596     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
597     Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
598     $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
599     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
600     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
601     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
602     \end{tabular}
603     \end{ruledtabular}
604     \end{table*}
605    
606     For sites which simultaneously contain charges and quadrupoles, the
607     self-interaction includes a cross-interaction between these two
608     multipole orders. Symmetry prevents the charge-dipole and
609     dipole-quadrupole interactions from contributing to the
610     self-interaction. The functions that go into the self-neutralization
611 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
612     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
613     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
614     have been evaluated at the cutoff distance. For undamped
615     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
616     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
617     on. Appendix \ref{SmithFunc} contains recursion relations that allow
618     rapid evaluation of these derivatives.
619 gezelter 3980
620 gezelter 3985 \section{Interaction energies, forces, and torques}
621     The main result of this paper is a set of expressions for the
622     energies, forces and torques (up to quadrupole-quadrupole order) that
623     work for both the Taylor-shifted and Gradient-shifted approximations.
624     These expressions were derived using a set of generic radial
625     functions. Without using the shifting approximations mentioned above,
626     some of these radial functions would be identical, and the expressions
627     coalesce into the familiar forms for unmodified multipole-multipole
628     interactions. Table \ref{tab:tableenergy} maps between the generic
629     functions and the radial functions derived for both the Taylor-shifted
630     and Gradient-shifted methods. The energy equations are written in
631     terms of lab-frame representations of the dipoles, quadrupoles, and
632     the unit vector connecting the two objects,
633 gezelter 3906
634     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
635     %
636     %
637     % u ca cb
638     %
639 gezelter 3983 \begin{align}
640     U_{C_{\bf a}C_{\bf b}}(r)=&
641 gezelter 3985 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
642 gezelter 3983 \\
643 gezelter 3906 %
644     % u ca db
645     %
646 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
647 gezelter 3985 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
648 gezelter 3906 \label{uchdip}
649 gezelter 3983 \\
650 gezelter 3906 %
651     % u ca qb
652     %
653 gezelter 3985 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
654     v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
655     \hat{r} \right) v_{22}(r) \Bigr]
656 gezelter 3906 \label{uchquad}
657 gezelter 3983 \\
658 gezelter 3906 %
659     % u da cb
660     %
661 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
662     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
663     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
664     %\\
665 gezelter 3906 %
666     % u da db
667     %
668 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
669 gezelter 3985 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
670 gezelter 3906 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
671     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
672     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
673     v_{22}(r) \Bigr]
674     \label{udipdip}
675 gezelter 3983 \\
676 gezelter 3906 %
677     % u da qb
678     %
679     \begin{split}
680     % 1
681 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
682 gezelter 3985 -\Bigl[
683 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
684     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
685     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
686     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
687     % 2
688 gezelter 3985 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
689 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
690     \label{udipquad}
691     \end{split}
692 gezelter 3983 \\
693 gezelter 3906 %
694     % u qa cb
695     %
696 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
697     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
698     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
699     %\label{uquadch}
700     %\\
701 gezelter 3906 %
702     % u qa db
703     %
704 gezelter 3983 %\begin{split}
705 gezelter 3906 %1
706 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
707     %\frac{1}{4\pi \epsilon_0} \Bigl[
708     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
709     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
710     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
711     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
712 gezelter 3906 % 2
713 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
714     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
715     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
716     %\label{uquaddip}
717     %\end{split}
718     %\\
719 gezelter 3906 %
720     % u qa qb
721     %
722     \begin{split}
723     %1
724 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
725 gezelter 3985 \Bigl[
726 gezelter 3906 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
727     +2 \text{Tr} \left(
728     \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
729     \\
730     % 2
731 gezelter 3985 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
732 gezelter 3906 \left( \hat{r} \cdot
733     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
734     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
735     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
736     \cdot \hat{r} \right) +4 (\hat{r} \cdot
737     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
738     \Bigr] v_{42}(r)
739     \\
740     % 4
741 gezelter 3985 &+
742 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
743     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
744     \label{uquadquad}
745     \end{split}
746 gezelter 3983 \end{align}
747 gezelter 3985 %
748 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
749     with those on site $\mathbf{a}$ can be obtained by swapping indices
750     along with the sign of the intersite vector, $\hat{r}$.
751 gezelter 3906
752     %
753     %
754     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
755     %
756    
757 gezelter 3985 \begin{sidewaystable}
758     \caption{\label{tab:tableenergy}Radial functions used in the energy
759     and torque equations. The $f, g, h, s, t, \mathrm{and} u$
760     functions used in this table are defined in Appendices B and C.}
761     \begin{tabular}{|c|c|l|l|} \hline
762     Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
763 gezelter 3906 \\ \hline
764     %
765     %
766     %
767     %Ch-Ch&
768     $v_{01}(r)$ &
769     $\frac{1}{r}$ &
770     $f_0(r)$ &
771     $f(r)-f(r_c)-(r-r_c)g(r_c)$
772     \\
773     %
774     %
775     %
776     %Ch-Di&
777     $v_{11}(r)$ &
778     $-\frac{1}{r^2}$ &
779     $g_1(r)$ &
780     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
781     %
782     %
783     %
784     %Ch-Qu/Di-Di&
785     $v_{21}(r)$ &
786     $-\frac{1}{r^3} $ &
787     $\frac{g_2(r)}{r} $ &
788     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
789     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
790     $v_{22}(r)$ &
791     $\frac{3}{r^3} $ &
792     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
793     $\left(-\frac{g(r)}{r}+h(r) \right)
794 gezelter 3985 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
795     &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
796 gezelter 3906 \\
797     %
798     %
799     %
800     %Di-Qu &
801     $v_{31}(r)$ &
802     $\frac{3}{r^4} $ &
803     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
804     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
805     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
806 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
807 gezelter 3906 \\
808     %
809     $v_{32}(r)$ &
810     $-\frac{15}{r^4} $ &
811     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
812     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
813     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
814 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
815 gezelter 3906 \\
816     %
817     %
818     %
819     %Qu-Qu&
820     $v_{41}(r)$ &
821     $\frac{3}{r^5} $ &
822     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
823     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
824     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
825 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
826 gezelter 3906 \\
827     % 2
828     $v_{42}(r)$ &
829     $- \frac{15}{r^5} $ &
830     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
831     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
832     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
833 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
834 gezelter 3906 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
835     \\
836     % 3
837     $v_{43}(r)$ &
838     $ \frac{105}{r^5} $ &
839     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
840     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
841 gezelter 3985 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
842     &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
843     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
844 gezelter 3906 \end{tabular}
845 gezelter 3985 \end{sidewaystable}
846 gezelter 3906 %
847     %
848     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
849     %
850    
851 gezelter 3985 \begin{sidewaystable}
852 gezelter 3906 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
853 gezelter 3985 \begin{tabular}{|c|c|l|l|} \hline
854     Function&Definition&Taylor-Shifted&Gradient-Shifted
855 gezelter 3906 \\ \hline
856     %
857     %
858     %
859     $w_a(r)$&
860 gezelter 3985 $\frac{d v_{01}}{dr}$&
861     $g_0(r)$&
862     $g(r)-g(r_c)$ \\
863 gezelter 3906 %
864     %
865     $w_b(r)$ &
866 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
867     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
868     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
869 gezelter 3906 %
870     $w_c(r)$ &
871 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
872     $\frac{g_1(r)}{r} $ &
873     $\frac{v_{11}(r)}{r}$\\
874 gezelter 3906 %
875     %
876     $w_d(r)$&
877 gezelter 3985 $\frac{d v_{21}}{dr}$&
878     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
879     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
880     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
881 gezelter 3906 %
882     $w_e(r)$ &
883 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
884     $\frac{v_{22}(r)}{r}$ &
885 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
886     %
887     %
888     $w_f(r)$&
889 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
890     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
891     $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
892     &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
893     \right)-\frac{2v_{22}(r)}{r}$\\
894 gezelter 3906 %
895     $w_g(r)$&
896 gezelter 3985 $\frac{v_{31}(r)}{r}$&
897     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
898 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
899     %
900     $w_h(r)$ &
901 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
902     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
903     $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
904     &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
905 gezelter 3906 % 2
906     $w_i(r)$ &
907 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
908     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
909     $\frac{v_{32}(r)}{r}$\\
910 gezelter 3906 %
911     $w_j(r)$ &
912 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
913     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
914     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
915     &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
916     -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
917 gezelter 3906 %
918     $w_k(r)$ &
919 gezelter 3985 $\frac{d v_{41}}{dr} $ &
920     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
921     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
922     -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
923 gezelter 3906 %
924     $w_l(r)$ &
925 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
926     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
927     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
928     &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
929     -\frac{2v_{42}(r)}{r}$\\
930 gezelter 3906 %
931     $w_m(r)$ &
932 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
933     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
934     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
935     &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
936     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
937     &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
938 gezelter 3906 %
939     $w_n(r)$ &
940 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
941     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
942     $\frac{v_{42}(r)}{r}$\\
943 gezelter 3906 %
944     $w_o(r)$ &
945 gezelter 3985 $\frac{v_{43}(r)}{r}$&
946     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
947     $\frac{v_{43}(r)}{r}$ \\ \hline
948 gezelter 3906 %
949    
950     \end{tabular}
951 gezelter 3985 \end{sidewaystable}
952 gezelter 3906 %
953     %
954     %
955    
956     \subsection{Forces}
957 gezelter 3985 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
958     $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
959     a simple charge-charge interaction, these forces will point along the
960     $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
961     \mathbf{r}_a $. Thus
962 gezelter 3906 %
963     \begin{equation}
964     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
965     \quad \text{and} \quad F_{\bf b \alpha}
966     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
967     \end{equation}
968     %
969 gezelter 3985 Obtaining the force from the interaction energy expressions is the
970     same for higher-order multipole interactions -- the trick is to make
971     sure that all $r$-dependent derivatives are considered. This is
972     straighforward if the interaction energies are written explicitly in
973     terms of $\hat{r}$ and the body axes ($\hat{a}_m$,
974     $\hat{b}_n$) :
975 gezelter 3906 %
976     \begin{equation}
977     U(r,\{\hat{a}_m \cdot \hat{r} \},
978 gezelter 3985 \{\hat{b}_n\cdot \hat{r} \},
979 gezelter 3906 \{\hat{a}_m \cdot \hat{b}_n \}) .
980     \label{ugeneral}
981     \end{equation}
982     %
983 gezelter 3985 Allen and Germano,\cite{Allen:2006fk} showed that if the energy is
984     written in this form, the forces come out relatively cleanly,
985 gezelter 3906 %
986     \begin{equation}
987     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
988     = \frac{\partial U}{\partial r} \hat{r}
989     + \sum_m \left[
990     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
991     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
992     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
993     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
994     \right] \label{forceequation}.
995     \end{equation}
996     %
997 gezelter 3985 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
998     is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
999     In simplifying the algebra, we have also used:
1000 gezelter 3906 %
1001 gezelter 3985 \begin{align}
1002 gezelter 3906 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1003 gezelter 3985 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1004 gezelter 3906 \right) \\
1005     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1006 gezelter 3985 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1007 gezelter 3906 \right) .
1008 gezelter 3985 \end{align}
1009 gezelter 3906 %
1010 gezelter 3985 We list below the force equations written in terms of lab-frame
1011     coordinates. The radial functions used in the two methods are listed
1012     in Table \ref{tab:tableFORCE}
1013 gezelter 3906 %
1014 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1015 gezelter 3906 %
1016     % **************************************************************************
1017     % f ca cb
1018     %
1019 gezelter 3985 \begin{align}
1020     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1021     C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1022 gezelter 3906 %
1023     %
1024     %
1025 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1026     C_{\bf a} \Bigl[
1027 gezelter 3906 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1028     w_b(r) \hat{r}
1029 gezelter 3985 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1030 gezelter 3906 %
1031     %
1032     %
1033 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1034     C_{\bf a } \Bigr[
1035 gezelter 3906 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1036     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1037 gezelter 3985 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1038     \right) w_f(r) \hat{r} \Bigr] \\
1039 gezelter 3906 %
1040     %
1041     %
1042 gezelter 3985 % \begin{equation}
1043     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1044     % -C_{\bf{b}} \Bigl[
1045     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1046     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1047     % \end{equation}
1048 gezelter 3906 %
1049     %
1050     %
1051 gezelter 3985 \begin{split}
1052     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1053 gezelter 3906 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1054     + \left( \mathbf{D}_{\mathbf {a}}
1055     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1056 gezelter 3985 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1057 gezelter 3906 % 2
1058 gezelter 3985 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1059     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1060     \end{split}\\
1061 gezelter 3906 %
1062     %
1063     %
1064     \begin{split}
1065 gezelter 3985 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1066 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1067     +2 \mathbf{D}_{\mathbf{a}} \cdot
1068     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1069 gezelter 3985 - \Bigl[
1070 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1071     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1072     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1073     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1074     % 3
1075 gezelter 3985 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1076 gezelter 3906 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1077     w_i(r)
1078     % 4
1079 gezelter 3985 -
1080 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1081 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1082 gezelter 3906 %
1083     %
1084 gezelter 3985 % \begin{equation}
1085     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1086     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1087     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1088     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1089     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1090     % \end{equation}
1091     % %
1092     % \begin{equation}
1093     % \begin{split}
1094     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1095     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1096     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1097     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1098     % % 2
1099     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1100     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1101     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1102     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1103     % % 3
1104     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1105     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1106     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1107     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1108     % % 4
1109     % +\frac{1}{4\pi \epsilon_0}
1110     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1111     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1112     % \end{split}
1113     % \end{equation}
1114 gezelter 3906 %
1115     %
1116     %
1117     \begin{split}
1118 gezelter 3985 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1119     \Bigl[
1120 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1121     + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1122     % 2
1123 gezelter 3985 &+ \Bigl[
1124 gezelter 3906 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1125     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1126     % 3
1127     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1128     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1129     % 4
1130 gezelter 3985 &+ \Bigl[
1131 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1132     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1133     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1134     % 5
1135     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1136     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1137     %
1138 gezelter 3985 &+ \Bigl[
1139 gezelter 3906 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1140     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1141     %6
1142     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1143     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1144     % 7
1145 gezelter 3985 &+
1146 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1147 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1148     \end{align}
1149     Note that the forces for higher multipoles on site $\mathbf{a}$
1150     interacting with those of lower order on site $\mathbf{b}$ can be
1151     obtained by swapping indices in the expressions above.
1152    
1153 gezelter 3906 %
1154 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1155 gezelter 3906 %
1156     \subsection{Torques}
1157 gezelter 3985 When energies are written in the form of Eq.~({\ref{ugeneral}), then
1158     torques can be found in a relatively straightforward
1159     manner,\cite{Allen:2006fk}
1160 gezelter 3906 %
1161     \begin{eqnarray}
1162     \mathbf{\tau}_{\bf a} =
1163     \sum_m
1164     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1165     ( \hat{r} \times \hat{a}_m )
1166     -\sum_{mn}
1167     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1168     (\hat{a}_m \times \hat{b}_n) \\
1169     %
1170     \mathbf{\tau}_{\bf b} =
1171     \sum_m
1172     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1173     ( \hat{r} \times \hat{b}_m)
1174     +\sum_{mn}
1175     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1176     (\hat{a}_m \times \hat{b}_n) .
1177     \end{eqnarray}
1178     %
1179     %
1180 gezelter 3985 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1181     methods are given in space-frame coordinates:
1182 gezelter 3906 %
1183     %
1184 gezelter 3985 \begin{align}
1185     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1186     C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1187 gezelter 3906 %
1188     %
1189     %
1190 gezelter 3985 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1191     2C_{\bf a}
1192     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1193 gezelter 3906 %
1194     %
1195     %
1196 gezelter 3985 % \begin{equation}
1197     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1198     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1199     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1200     % \end{equation}
1201 gezelter 3906 %
1202     %
1203     %
1204 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1205     \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1206 gezelter 3906 % 2
1207 gezelter 3985 -
1208 gezelter 3906 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1209 gezelter 3985 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1210 gezelter 3906 %
1211     %
1212     %
1213 gezelter 3985 % \begin{equation}
1214     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1215     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1216     % % 2
1217     % +\frac{1}{4\pi \epsilon_0}
1218     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1219     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1220     % \end{equation}
1221 gezelter 3906 %
1222     %
1223     %
1224 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1225     \Bigl[
1226 gezelter 3906 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1227     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1228     +2 \mathbf{D}_{\mathbf{a}} \times
1229     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1230     \Bigr] v_{31}(r)
1231     % 3
1232 gezelter 3985 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1233     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1234 gezelter 3906 %
1235     %
1236     %
1237 gezelter 3985 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1238     \Bigl[
1239 gezelter 3906 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1240     \hat{r}
1241     -2 \mathbf{D}_{\mathbf{a}} \times
1242     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1243     \Bigr] v_{31}(r)
1244     % 2
1245 gezelter 3985 +
1246 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1247 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1248 gezelter 3906 %
1249     %
1250     %
1251 gezelter 3985 % \begin{equation}
1252     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1253     % \frac{1}{4\pi \epsilon_0} \Bigl[
1254     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1255     % +2 \mathbf{D}_{\mathbf{b}} \times
1256     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1257     % \Bigr] v_{31}(r)
1258     % % 3
1259     % - \frac{2}{4\pi \epsilon_0}
1260     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1261     % (\hat{r} \cdot \mathbf
1262     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1263     % \end{equation}
1264 gezelter 3906 %
1265     %
1266     %
1267 gezelter 3985 % \begin{equation}
1268     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1269     % \frac{1}{4\pi \epsilon_0} \Bigl[
1270     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1271     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1272     % +2 \mathbf{D}_{\mathbf{b}} \times
1273     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1274     % % 2
1275     % +\frac{1}{4\pi \epsilon_0}
1276     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1277     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1278     % \end{equation}
1279 gezelter 3906 %
1280     %
1281     %
1282     \begin{split}
1283 gezelter 3985 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1284     -4
1285 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1286     v_{41}(r) \\
1287     % 2
1288 gezelter 3985 &+
1289 gezelter 3906 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1290     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1291     +4 \hat{r} \times
1292     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1293     % 3
1294     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1295     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1296     % 4
1297 gezelter 3985 &+ 2
1298 gezelter 3906 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1299 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1300 gezelter 3906 %
1301     %
1302     %
1303     \begin{split}
1304     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1305 gezelter 3985 &4
1306 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1307     % 2
1308 gezelter 3985 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1309 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1310     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1311     \mathbf{Q}_{{\mathbf b}} ) \times
1312     \hat{r}
1313     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1314     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1315     \Bigr] v_{42}(r) \\
1316     % 4
1317 gezelter 3985 &+2
1318 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1319 gezelter 3985 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1320     \end{align}
1321     %
1322     Here, we have defined the matrix cross product in an identical form
1323     as in Ref. \onlinecite{Smith98}:
1324     \begin{equation}
1325     \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1326     \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1327     -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1328     \right]
1329 gezelter 3906 \end{equation}
1330 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1331     permuations of the matrix indices.
1332 gezelter 3980
1333 gezelter 3985 All of the radial functions required for torques are identical with
1334     the radial functions previously computed for the interaction energies.
1335     These are tabulated for both shifted force methods in table
1336     \ref{tab:tableenergy}. The torques for higher multipoles on site
1337     $\mathbf{a}$ interacting with those of lower order on site
1338     $\mathbf{b}$ can be obtained by swapping indices in the expressions
1339     above.
1340    
1341 gezelter 3980 \section{Comparison to known multipolar energies}
1342    
1343     To understand how these new real-space multipole methods behave in
1344     computer simulations, it is vital to test against established methods
1345     for computing electrostatic interactions in periodic systems, and to
1346     evaluate the size and sources of any errors that arise from the
1347     real-space cutoffs. In this paper we test Taylor-shifted and
1348     Gradient-shifted electrostatics against analytical methods for
1349     computing the energies of ordered multipolar arrays. In the following
1350     paper, we test the new methods against the multipolar Ewald sum for
1351     computing the energies, forces and torques for a wide range of typical
1352     condensed-phase (disordered) systems.
1353    
1354     Because long-range electrostatic effects can be significant in
1355     crystalline materials, ordered multipolar arrays present one of the
1356     biggest challenges for real-space cutoff methods. The dipolar
1357     analogues to the Madelung constants were first worked out by Sauer,
1358     who computed the energies of ordered dipole arrays of zero
1359     magnetization and obtained a number of these constants.\cite{Sauer}
1360     This theory was developed more completely by Luttinger and
1361     Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1362     other periodic structures. We have repeated the Luttinger \& Tisza
1363     series summations to much higher order and obtained the following
1364     energy constants (converged to one part in $10^9$):
1365     \begin{table*}
1366     \centering{
1367     \caption{Luttinger \& Tisza arrays and their associated
1368     energy constants. Type "A" arrays have nearest neighbor strings of
1369     antiparallel dipoles. Type "B" arrays have nearest neighbor
1370     strings of antiparallel dipoles if the dipoles are contained in a
1371     plane perpendicular to the dipole direction that passes through
1372     the dipole.}
1373     }
1374     \label{tab:LT}
1375     \begin{ruledtabular}
1376     \begin{tabular}{cccc}
1377     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1378     A & SC & 001 & -2.676788684 \\
1379     A & BCC & 001 & 0 \\
1380     A & BCC & 111 & -1.770078733 \\
1381     A & FCC & 001 & 2.166932835 \\
1382     A & FCC & 011 & -1.083466417 \\
1383    
1384     * & BCC & minimum & -1.985920929 \\
1385    
1386     B & SC & 001 & -2.676788684 \\
1387     B & BCC & 001 & -1.338394342 \\
1388     B & BCC & 111 & -1.770078733 \\
1389     B & FCC & 001 & -1.083466417 \\
1390     B & FCC & 011 & -1.807573634
1391     \end{tabular}
1392     \end{ruledtabular}
1393     \end{table*}
1394    
1395     In addition to the A and B arrays, there is an additional minimum
1396     energy structure for the BCC lattice that was found by Luttinger \&
1397     Tisza. The total electrostatic energy for an array is given by:
1398     \begin{equation}
1399     E = C N^2 \mu^2
1400     \end{equation}
1401     where $C$ is the energy constant given above, $N$ is the number of
1402     dipoles per unit volume, and $\mu$ is the strength of the dipole.
1403    
1404     {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1405     computed the energies of selected quadrupole arrays based on
1406     extensions to the Luttinger and Tisza
1407     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1408     energy constants for the lowest energy configurations for linear
1409     quadrupoles shown in table \ref{tab:NNQ}
1410    
1411     \begin{table*}
1412     \centering{
1413     \caption{Nagai and Nakamura Quadurpolar arrays}}
1414     \label{tab:NNQ}
1415     \begin{ruledtabular}
1416     \begin{tabular}{ccc}
1417     Lattice & Quadrupole Direction & Energy constants \\ \hline
1418     SC & 111 & -8.3 \\
1419     BCC & 011 & -21.7 \\
1420     FCC & 111 & -80.5
1421     \end{tabular}
1422     \end{ruledtabular}
1423     \end{table*}
1424    
1425     In analogy to the dipolar arrays, the total electrostatic energy for
1426     the quadrupolar arrays is:
1427     \begin{equation}
1428     E = C \frac{3}{4} N^2 Q^2
1429     \end{equation}
1430     where $Q$ is the quadrupole moment.
1431    
1432 gezelter 3985 \section{Conclusion}
1433     We have presented two efficient real-space methods for computing the
1434     interactions between point multipoles. These methods have the benefit
1435     of smoothly truncating the energies, forces, and torques at the cutoff
1436     radius, making them attractive for both molecular dynamics (MD) and
1437     Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1438     (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1439     correct lattice energies for ordered dipolar and quadrupolar arrays,
1440     while the Taylor-Shifted Force (TSF) is too severe an approximation to
1441     provide accurate convergence to lattice energies.
1442 gezelter 3980
1443 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1444     lattice energy constants with reasonably small cutoff radii. The only
1445     exception we have observed is for crystals which exhibit a bulk
1446     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1447     In this particular case, the multipole neutralization scheme can
1448     interfere with the correct computation of the energies. We note that
1449     the energies for these arrangements are typically much larger than for
1450     crystals with net-zero moments, so this is not expected to be an issue
1451     in most simulations.
1452 gezelter 3980
1453 gezelter 3985 In large systems, these new methods can be made to scale approximately
1454     linearly with system size, and detailed comparisons with the Ewald sum
1455     for a wide range of chemical environments follows in the second paper.
1456 gezelter 3980
1457 gezelter 3906 \begin{acknowledgments}
1458 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1459     Fennell. Support for this project was provided by the National
1460     Science Foundation under grant CHE-0848243. Computational time was
1461     provided by the Center for Research Computing (CRC) at the
1462     University of Notre Dame.
1463 gezelter 3906 \end{acknowledgments}
1464    
1465 gezelter 3984 \newpage
1466 gezelter 3906 \appendix
1467    
1468 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1469 gezelter 3985 \label{SmithFunc}
1470 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1471     formulas given in his appendix.\cite{Smith98} The first function
1472     $B_0(r)$ is defined by
1473 gezelter 3906 %
1474     \begin{equation}
1475     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1476     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1477     \end{equation}
1478     %
1479     The first derivative of this function is
1480     %
1481     \begin{equation}
1482     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1483     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1484     \end{equation}
1485     %
1486 gezelter 3984 which can be used to define a function $B_1(r)$:
1487 gezelter 3906 %
1488     \begin{equation}
1489     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1490     \end{equation}
1491     %
1492 gezelter 3984 In general, the recurrence relation,
1493 gezelter 3906 \begin{equation}
1494     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1495     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1496     \text{e}^{-{\alpha}^2r^2}
1497 gezelter 3984 \right] ,
1498 gezelter 3906 \end{equation}
1499 gezelter 3984 is very useful for building up higher derivatives. Using these
1500     formulas, we find:
1501 gezelter 3906 %
1502 gezelter 3984 \begin{align}
1503     \frac{dB_0}{dr}=&-rB_1(r) \\
1504     \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1505     \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1506     \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1507     \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1508     \end{align}
1509 gezelter 3906 %
1510 gezelter 3984 As noted by Smith, it is possible to approximate the $B_l(r)$
1511     functions,
1512 gezelter 3906 %
1513     \begin{equation}
1514     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1515     +\text{O}(r) .
1516     \end{equation}
1517 gezelter 3984 \newpage
1518     \section{The $r$-dependent factors for TSF electrostatics}
1519 gezelter 3906
1520     Using the shifted damped functions $f_n(r)$ defined by:
1521     %
1522     \begin{equation}
1523 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1524 gezelter 3906 \end{equation}
1525     %
1526 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1527     this Appendix, we provide formulas for successive derivatives of this
1528     function. (If there is no damping, then $B_0(r)$ is replaced by
1529     $1/r$.) First, we find:
1530 gezelter 3906 %
1531     \begin{equation}
1532     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1533     \end{equation}
1534     %
1535 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1536     function, and we define higher-order derivatives as follows:
1537 gezelter 3906 %
1538 gezelter 3984 \begin{align}
1539     g_n(r)=& \frac{d f_n}{d r} =
1540     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1541     h_n(r)=& \frac{d^2f_n}{d r^2} =
1542     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1543     s_n(r)=& \frac{d^3f_n}{d r^3} =
1544     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1545     t_n(r)=& \frac{d^4f_n}{d r^4} =
1546     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1547     u_n(r)=& \frac{d^5f_n}{d r^5} =
1548     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1549     \end{align}
1550 gezelter 3906 %
1551 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1552 gezelter 3906 %
1553     \begin{equation}
1554 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1555 gezelter 3906 \end{equation}
1556    
1557 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1558     stored on a grid for values of $r$ from $0$ to $r_c$. The functions
1559     needed are listed schematically below:
1560 gezelter 3906 %
1561     \begin{eqnarray}
1562     f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1563     g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1564     h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1565     s_2 \quad s_3 \quad &s_4 \nonumber \\
1566     t_3 \quad &t_4 \nonumber \\
1567     &u_4 \nonumber .
1568     \end{eqnarray}
1569    
1570     Using these functions, we find
1571     %
1572 gezelter 3984 \begin{align}
1573     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1574     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1575     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1576     \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1577 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1578     \delta_{ \beta \gamma} r_\alpha \right)
1579     \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1580     + r_\alpha r_\beta r_\gamma
1581 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1582     \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1583 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1584     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1585     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1586     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1587 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1588     + \text{5 permutations}
1589 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1590     \right) \nonumber \\
1591 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1592 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1593 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1594 gezelter 3906 \frac{\partial^5 f_n}
1595 gezelter 3984 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1596 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1597 gezelter 3984 + \text{14 permutations} \right)
1598 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1599 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1600     + \text{9 permutations}
1601 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1602     \right) \nonumber \\
1603 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1604 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1605 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1606     \end{align}
1607 gezelter 3906 %
1608     %
1609     %
1610 gezelter 3984 \newpage
1611     \section{The $r$-dependent factors for GSF electrostatics}
1612 gezelter 3906
1613 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1614     rather the individual terms in the multipole interaction energies.
1615     For damped charges , this still brings into the algebra multiple
1616     derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1617     we generalize the notation of the previous appendix. For $f(r)=1/r$
1618     (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1619 gezelter 3906 %
1620 gezelter 3984 \begin{align}
1621     g(r)=& \frac{df}{d r}\\
1622     h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1623     s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1624     t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1625     u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1626     \end{align}
1627 gezelter 3906 %
1628 gezelter 3984 For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1629     under the column ``Bare Coulomb.'' Equations \ref{eq:b9} to
1630     \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1631     $n$ is eliminated.
1632 gezelter 3906
1633 gezelter 3985 % \section{Extra Material}
1634     % %
1635     % %
1636     % %Energy in body coordinate form ---------------------------------------------------------------
1637     % %
1638     % Here are the interaction energies written in terms of the body coordinates:
1639 gezelter 3906
1640 gezelter 3985 % %
1641     % % u ca cb
1642     % %
1643     % \begin{equation}
1644     % U_{C_{\bf a}C_{\bf b}}(r)=
1645     % \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1646     % \end{equation}
1647     % %
1648     % % u ca db
1649     % %
1650     % \begin{equation}
1651     % U_{C_{\bf a}D_{\bf b}}(r)=
1652     % \frac{C_{\bf a}}{4\pi \epsilon_0}
1653     % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1654     % \end{equation}
1655     % %
1656     % % u ca qb
1657     % %
1658     % \begin{equation}
1659     % U_{C_{\bf a}Q_{\bf b}}(r)=
1660     % \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1661     % v_{21}(r) \nonumber \\
1662     % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1663     % \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1664     % v_{22}(r)
1665     % \end{equation}
1666     % %
1667     % % u da cb
1668     % %
1669     % \begin{equation}
1670     % U_{D_{\bf a}C_{\bf b}}(r)=
1671     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1672     % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1673     % \end{equation}
1674     % %
1675     % % u da db
1676     % %
1677     % \begin{equation}
1678     % \begin{split}
1679     % % 1
1680     % U_{D_{\bf a}D_{\bf b}}(r)&=
1681     % -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1682     % (\hat{a}_m \cdot \hat{b}_n)
1683     % D_{\mathbf{b}n} v_{21}(r) \\
1684     % % 2
1685     % &-\frac{1}{4\pi \epsilon_0}
1686     % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1687     % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1688     % v_{22}(r)
1689     % \end{split}
1690     % \end{equation}
1691     % %
1692     % % u da qb
1693     % %
1694     % \begin{equation}
1695     % \begin{split}
1696     % % 1
1697     % U_{D_{\bf a}Q_{\bf b}}(r)&=
1698     % -\frac{1}{4\pi \epsilon_0} \left(
1699     % \text{Tr}Q_{\mathbf{b}}
1700     % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1701     % +2\sum_{lmn}D_{\mathbf{a}l}
1702     % (\hat{a}_l \cdot \hat{b}_m)
1703     % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1704     % \right) v_{31}(r) \\
1705     % % 2
1706     % &-\frac{1}{4\pi \epsilon_0}
1707     % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1708     % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1709     % Q_{{\mathbf b}mn}
1710     % (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1711     % \end{split}
1712     % \end{equation}
1713     % %
1714     % % u qa cb
1715     % %
1716     % \begin{equation}
1717     % U_{Q_{\bf a}C_{\bf b}}(r)=
1718     % \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1719     % +\frac{C_{\bf b}}{4\pi \epsilon_0}
1720     % \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1721     % \end{equation}
1722     % %
1723     % % u qa db
1724     % %
1725     % \begin{equation}
1726     % \begin{split}
1727     % %1
1728     % U_{Q_{\bf a}D_{\bf b}}(r)&=
1729     % \frac{1}{4\pi \epsilon_0} \left(
1730     % \text{Tr}Q_{\mathbf{a}}
1731     % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1732     % +2\sum_{lmn}D_{\mathbf{b}l}
1733     % (\hat{b}_l \cdot \hat{a}_m)
1734     % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1735     % \right) v_{31}(r) \\
1736     % % 2
1737     % &+\frac{1}{4\pi \epsilon_0}
1738     % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1739     % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1740     % Q_{{\mathbf a}mn}
1741     % (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1742     % \end{split}
1743     % \end{equation}
1744     % %
1745     % % u qa qb
1746     % %
1747     % \begin{equation}
1748     % \begin{split}
1749     % %1
1750     % U_{Q_{\bf a}Q_{\bf b}}(r)&=
1751     % \frac{1}{4\pi \epsilon_0} \Bigl[
1752     % \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1753     % +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1754     % Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1755     % (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1756     % v_{41}(r) \\
1757     % % 2
1758     % &+ \frac{1}{4\pi \epsilon_0}
1759     % \Bigl[ \text{Tr}Q_{\mathbf{a}}
1760     % \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1761     % Q_{{\mathbf b}lm}
1762     % (\hat{b}_m \cdot \hat{r})
1763     % +\text{Tr}Q_{\mathbf{b}}
1764     % \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1765     % Q_{{\mathbf a}lm}
1766     % (\hat{a}_m \cdot \hat{r}) \\
1767     % % 3
1768     % &+4 \sum_{lmnp}
1769     % (\hat{r} \cdot \hat{a}_l )
1770     % Q_{{\mathbf a}lm}
1771     % (\hat{a}_m \cdot \hat{b}_n)
1772     % Q_{{\mathbf b}np}
1773     % (\hat{b}_p \cdot \hat{r})
1774     % \Bigr] v_{42}(r) \\
1775     % % 4
1776     % &+ \frac{1}{4\pi \epsilon_0}
1777     % \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1778     % Q_{{\mathbf a}lm}
1779     % (\hat{a}_m \cdot \hat{r})
1780     % \sum_{np} (\hat{r} \cdot \hat{b}_n)
1781     % Q_{{\mathbf b}np}
1782     % (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1783     % \end{split}
1784     % \end{equation}
1785     % %
1786 gezelter 3906
1787    
1788 gezelter 3985 % % BODY coordinates force equations --------------------------------------------
1789     % %
1790     % %
1791     % Here are the force equations written in terms of body coordinates.
1792     % %
1793     % % f ca cb
1794     % %
1795     % \begin{equation}
1796     % \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1797     % \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1798     % \end{equation}
1799     % %
1800     % % f ca db
1801     % %
1802     % \begin{equation}
1803     % \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1804     % \frac{C_{\bf a}}{4\pi \epsilon_0}
1805     % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1806     % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1807     % \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1808     % \end{equation}
1809     % %
1810     % % f ca qb
1811     % %
1812     % \begin{equation}
1813     % \begin{split}
1814     % % 1
1815     % \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1816     % \frac{1}{4\pi \epsilon_0}
1817     % C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1818     % + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1819     % % 2
1820     % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1821     % \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1822     % \end{split}
1823     % \end{equation}
1824     % %
1825     % % f da cb
1826     % %
1827     % \begin{equation}
1828     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1829     % -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1830     % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1831     % -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1832     % \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1833     % \end{equation}
1834     % %
1835     % % f da db
1836     % %
1837     % \begin{equation}
1838     % \begin{split}
1839     % % 1
1840     % \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1841     % -\frac{1}{4\pi \epsilon_0}
1842     % \sum_{mn} D_{\mathbf {a}m}
1843     % (\hat{a}_m \cdot \hat{b}_n)
1844     % D_{\mathbf{b}n} w_d(r) \hat{r}
1845     % -\frac{1}{4\pi \epsilon_0}
1846     % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1847     % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1848     % % 2
1849     % & \quad + \frac{1}{4\pi \epsilon_0}
1850     % \Bigl[ \sum_m D_{\mathbf {a}m}
1851     % \hat{a}_m \sum_n D_{\mathbf{b}n}
1852     % (\hat{b}_n \cdot \hat{r})
1853     % + \sum_m D_{\mathbf {b}m}
1854     % \hat{b}_m \sum_n D_{\mathbf{a}n}
1855     % (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1856     % \end{split}
1857     % \end{equation}
1858     % %
1859     % % f da qb
1860     % %
1861     % \begin{equation}
1862     % \begin{split}
1863     % % 1
1864     % &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1865     % - \frac{1}{4\pi \epsilon_0} \Bigl[
1866     % \text{Tr}Q_{\mathbf{b}}
1867     % \sum_l D_{\mathbf{a}l} \hat{a}_l
1868     % +2\sum_{lmn} D_{\mathbf{a}l}
1869     % (\hat{a}_l \cdot \hat{b}_m)
1870     % Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1871     % % 3
1872     % & - \frac{1}{4\pi \epsilon_0} \Bigl[
1873     % \text{Tr}Q_{\mathbf{b}}
1874     % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1875     % +2\sum_{lmn}D_{\mathbf{a}l}
1876     % (\hat{a}_l \cdot \hat{b}_m)
1877     % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1878     % % 4
1879     % &+ \frac{1}{4\pi \epsilon_0}
1880     % \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1881     % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1882     % Q_{{\mathbf b}mn}
1883     % (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1884     % D_{\mathbf{a}l}
1885     % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1886     % Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1887     % % 6
1888     % & -\frac{1}{4\pi \epsilon_0}
1889     % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1890     % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1891     % Q_{{\mathbf b}mn}
1892     % (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1893     % \end{split}
1894     % \end{equation}
1895     % %
1896     % % force qa cb
1897     % %
1898     % \begin{equation}
1899     % \begin{split}
1900     % % 1
1901     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1902     % \frac{1}{4\pi \epsilon_0}
1903     % C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1904     % + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1905     % % 2
1906     % & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1907     % \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1908     % \end{split}
1909     % \end{equation}
1910     % %
1911     % % f qa db
1912     % %
1913     % \begin{equation}
1914     % \begin{split}
1915     % % 1
1916     % &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1917     % \frac{1}{4\pi \epsilon_0} \Bigl[
1918     % \text{Tr}Q_{\mathbf{a}}
1919     % \sum_l D_{\mathbf{b}l} \hat{b}_l
1920     % +2\sum_{lmn} D_{\mathbf{b}l}
1921     % (\hat{b}_l \cdot \hat{a}_m)
1922     % Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1923     % w_g(r)\\
1924     % % 3
1925     % & + \frac{1}{4\pi \epsilon_0} \Bigl[
1926     % \text{Tr}Q_{\mathbf{a}}
1927     % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1928     % +2\sum_{lmn}D_{\mathbf{b}l}
1929     % (\hat{b}_l \cdot \hat{a}_m)
1930     % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1931     % % 4
1932     % & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1933     % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1934     % Q_{{\mathbf a}mn}
1935     % (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1936     % D_{\mathbf{b}l}
1937     % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1938     % Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1939     % % 6
1940     % & +\frac{1}{4\pi \epsilon_0}
1941     % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1942     % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1943     % Q_{{\mathbf a}mn}
1944     % (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1945     % \end{split}
1946     % \end{equation}
1947     % %
1948     % % f qa qb
1949     % %
1950     % \begin{equation}
1951     % \begin{split}
1952     % &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1953     % \frac{1}{4\pi \epsilon_0} \Bigl[
1954     % \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1955     % + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1956     % Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1957     % (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1958     % &+\frac{1}{4\pi \epsilon_0} \Bigl[
1959     % 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1960     % + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1961     % &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1962     % + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1963     % \Bigr] w_n(r) \\
1964     % &+ \frac{1}{4\pi \epsilon_0}
1965     % \Bigl[ \text{Tr}Q_{\mathbf{a}}
1966     % \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1967     % + \text{Tr}Q_{\mathbf{b}}
1968     % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1969     % &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1970     % Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1971     % %
1972     % &+\frac{1}{4\pi \epsilon_0} \Bigl[
1973     % 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1974     % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1975     % &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1976     % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1977     % & + \frac{1}{4\pi \epsilon_0}
1978     % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1979     % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1980     % \end{split}
1981     % \end{equation}
1982     % %
1983     % Here we list the form of the non-zero damped shifted multipole torques showing
1984     % explicitly dependences on body axes:
1985     % %
1986     % % t ca db
1987     % %
1988     % \begin{equation}
1989     % \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1990     % \frac{C_{\bf a}}{4\pi \epsilon_0}
1991     % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1992     % \end{equation}
1993     % %
1994     % % t ca qb
1995     % %
1996     % \begin{equation}
1997     % \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1998     % \frac{2C_{\bf a}}{4\pi \epsilon_0}
1999     % \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
2000     % \end{equation}
2001     % %
2002     % % t da cb
2003     % %
2004     % \begin{equation}
2005     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
2006     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
2007     % \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
2008     % \end{equation}%
2009     % %
2010     % %
2011     % % ta da db
2012     % %
2013     % \begin{equation}
2014     % \begin{split}
2015     % % 1
2016     % \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
2017     % \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
2018     % (\hat{a}_m \times \hat{b}_n)
2019     % D_{\mathbf{b}n} v_{21}(r) \\
2020     % % 2
2021     % &-\frac{1}{4\pi \epsilon_0}
2022     % \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
2023     % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
2024     % \end{split}
2025     % \end{equation}
2026     % %
2027     % % tb da db
2028     % %
2029     % \begin{equation}
2030     % \begin{split}
2031     % % 1
2032     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
2033     % -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
2034     % (\hat{a}_m \times \hat{b}_n)
2035     % D_{\mathbf{b}n} v_{21}(r) \\
2036     % % 2
2037     % &+\frac{1}{4\pi \epsilon_0}
2038     % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
2039     % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
2040     % \end{split}
2041     % \end{equation}
2042     % %
2043     % % ta da qb
2044     % %
2045     % \begin{equation}
2046     % \begin{split}
2047     % % 1
2048     % \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
2049     % \frac{1}{4\pi \epsilon_0} \left(
2050     % -\text{Tr}Q_{\mathbf{b}}
2051     % \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
2052     % +2\sum_{lmn}D_{\mathbf{a}l}
2053     % (\hat{a}_l \times \hat{b}_m)
2054     % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2055     % \right) v_{31}(r)\\
2056     % % 2
2057     % &-\frac{1}{4\pi \epsilon_0}
2058     % \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2059     % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2060     % Q_{{\mathbf b}mn}
2061     % (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2062     % \end{split}
2063     % \end{equation}
2064     % %
2065     % % tb da qb
2066     % %
2067     % \begin{equation}
2068     % \begin{split}
2069     % % 1
2070     % \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2071     % \frac{1}{4\pi \epsilon_0} \left(
2072     % -2\sum_{lmn}D_{\mathbf{a}l}
2073     % (\hat{a}_l \cdot \hat{b}_m)
2074     % Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2075     % -2\sum_{lmn}D_{\mathbf{a}l}
2076     % (\hat{a}_l \times \hat{b}_m)
2077     % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2078     % \right) v_{31}(r) \\
2079     % % 2
2080     % &-\frac{2}{4\pi \epsilon_0}
2081     % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2082     % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2083     % Q_{{\mathbf b}mn}
2084     % (\hat{r}\times \hat{b}_n) v_{32}(r)
2085     % \end{split}
2086     % \end{equation}
2087     % %
2088     % % ta qa cb
2089     % %
2090     % \begin{equation}
2091     % \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2092     % \frac{2C_{\bf a}}{4\pi \epsilon_0}
2093     % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2094     % \end{equation}
2095     % %
2096     % % ta qa db
2097     % %
2098     % \begin{equation}
2099     % \begin{split}
2100     % % 1
2101     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2102     % \frac{1}{4\pi \epsilon_0} \left(
2103     % 2\sum_{lmn}D_{\mathbf{b}l}
2104     % (\hat{b}_l \cdot \hat{a}_m)
2105     % Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2106     % +2\sum_{lmn}D_{\mathbf{b}l}
2107     % (\hat{a}_l \times \hat{b}_m)
2108     % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2109     % \right) v_{31}(r) \\
2110     % % 2
2111     % &+\frac{2}{4\pi \epsilon_0}
2112     % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2113     % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2114     % Q_{{\mathbf a}mn}
2115     % (\hat{r}\times \hat{a}_n) v_{32}(r)
2116     % \end{split}
2117     % \end{equation}
2118     % %
2119     % % tb qa db
2120     % %
2121     % \begin{equation}
2122     % \begin{split}
2123     % % 1
2124     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2125     % \frac{1}{4\pi \epsilon_0} \left(
2126     % \text{Tr}Q_{\mathbf{a}}
2127     % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2128     % +2\sum_{lmn}D_{\mathbf{b}l}
2129     % (\hat{a}_l \times \hat{b}_m)
2130     % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2131     % \right) v_{31}(r)\\
2132     % % 2
2133     % &\frac{1}{4\pi \epsilon_0}
2134     % \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2135     % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2136     % Q_{{\mathbf a}mn}
2137     % (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2138     % \end{split}
2139     % \end{equation}
2140     % %
2141     % % ta qa qb
2142     % %
2143     % \begin{equation}
2144     % \begin{split}
2145     % % 1
2146     % \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2147     % -\frac{4}{4\pi \epsilon_0}
2148     % \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2149     % Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2150     % (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2151     % % 2
2152     % &+ \frac{1}{4\pi \epsilon_0}
2153     % \Bigl[
2154     % 2\text{Tr}Q_{\mathbf{b}}
2155     % \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2156     % Q_{{\mathbf a}lm}
2157     % (\hat{r} \times \hat{a}_m)
2158     % +4 \sum_{lmnp}
2159     % (\hat{r} \times \hat{a}_l )
2160     % Q_{{\mathbf a}lm}
2161     % (\hat{a}_m \cdot \hat{b}_n)
2162     % Q_{{\mathbf b}np}
2163     % (\hat{b}_p \cdot \hat{r}) \\
2164     % % 3
2165     % &-4 \sum_{lmnp}
2166     % (\hat{r} \cdot \hat{a}_l )
2167     % Q_{{\mathbf a}lm}
2168     % (\hat{a}_m \times \hat{b}_n)
2169     % Q_{{\mathbf b}np}
2170     % (\hat{b}_p \cdot \hat{r})
2171     % \Bigr] v_{42}(r) \\
2172     % % 4
2173     % &+ \frac{2}{4\pi \epsilon_0}
2174     % \sum_{lm} (\hat{r} \times \hat{a}_l)
2175     % Q_{{\mathbf a}lm}
2176     % (\hat{a}_m \cdot \hat{r})
2177     % \sum_{np} (\hat{r} \cdot \hat{b}_n)
2178     % Q_{{\mathbf b}np}
2179     % (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2180     % \end{split}
2181     % \end{equation}
2182     % %
2183     % % tb qa qb
2184     % %
2185     % \begin{equation}
2186     % \begin{split}
2187     % % 1
2188     % \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2189     % \frac{4}{4\pi \epsilon_0}
2190     % \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2191     % Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2192     % (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2193     % % 2
2194     % &+ \frac{1}{4\pi \epsilon_0}
2195     % \Bigl[
2196     % 2\text{Tr}Q_{\mathbf{a}}
2197     % \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2198     % Q_{{\mathbf b}lm}
2199     % (\hat{r} \times \hat{b}_m)
2200     % +4 \sum_{lmnp}
2201     % (\hat{r} \cdot \hat{a}_l )
2202     % Q_{{\mathbf a}lm}
2203     % (\hat{a}_m \cdot \hat{b}_n)
2204     % Q_{{\mathbf b}np}
2205     % (\hat{r} \times \hat{b}_p) \\
2206     % % 3
2207     % &+4 \sum_{lmnp}
2208     % (\hat{r} \cdot \hat{a}_l )
2209     % Q_{{\mathbf a}lm}
2210     % (\hat{a}_m \times \hat{b}_n)
2211     % Q_{{\mathbf b}np}
2212     % (\hat{b}_p \cdot \hat{r})
2213     % \Bigr] v_{42}(r) \\
2214     % % 4
2215     % &+ \frac{2}{4\pi \epsilon_0}
2216     % \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2217     % Q_{{\mathbf a}lm}
2218     % (\hat{a}_m \cdot \hat{r})
2219     % \sum_{np} (\hat{r} \times \hat{b}_n)
2220     % Q_{{\mathbf b}np}
2221     % (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2222     % \end{split}
2223     % \end{equation}
2224 gezelter 3906 %
2225 gezelter 3985 % \begin{table*}
2226     % \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2227     % \begin{ruledtabular}
2228     % \begin{tabular}{|l|l|l|}
2229     % Generic&Taylor-shifted Force&Gradient-shifted Force
2230     % \\ \hline
2231     % %
2232     % %
2233     % %
2234     % $w_a(r)$&
2235     % $g_0(r)$&
2236     % $g(r)-g(r_c)$ \\
2237     % %
2238     % %
2239     % $w_b(r)$ &
2240     % $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2241     % $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2242     % %
2243     % $w_c(r)$ &
2244     % $\frac{g_1(r)}{r} $ &
2245     % $\frac{v_{11}(r)}{r}$ \\
2246     % %
2247     % %
2248     % $w_d(r)$&
2249     % $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2250     % $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2251     % -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2252     % %
2253     % $w_e(r)$ &
2254     % $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2255     % $\frac{v_{22}(r)}{r}$ \\
2256     % %
2257     % %
2258     % $w_f(r)$&
2259     % $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2260     % $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2261     % &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2262     % %
2263     % $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2264     % $\frac{v_{31}(r)}{r}$\\
2265     % %
2266     % $w_h(r)$ &
2267     % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2268     % $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2269     % &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2270     % &&$-\frac{v_{31}(r)}{r}$\\
2271     % % 2
2272     % $w_i(r)$ &
2273     % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2274     % $\frac{v_{32}(r)}{r}$ \\
2275     % %
2276     % $w_j(r)$ &
2277     % $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2278     % $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2279     % &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2280     % %
2281     % $w_k(r)$ &
2282     % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2283     % $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2284     % &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2285     % %
2286     % $w_l(r)$ &
2287     % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2288     % $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2289     % &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2290     % -\frac{2v_{42}(r)}{r}$ \\
2291     % %
2292     % $w_m(r)$ &
2293     % $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2294     % $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2295     % &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2296     % +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2297     % &&$-\frac{4v_{43}(r)}{r}$ \\
2298     % %
2299     % $w_n(r)$ &
2300     % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2301     % $\frac{v_{42}(r)}{r}$ \\
2302     % %
2303     % $w_o(r)$ &
2304     % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2305     % $\frac{v_{43}(r)}{r}$ \\
2306     % %
2307     % \end{tabular}
2308     % \end{ruledtabular}
2309     % \end{table*}
2310 gezelter 3980
2311     \newpage
2312    
2313     \bibliography{multipole}
2314    
2315 gezelter 3906 \end{document}
2316     %
2317     % ****** End of file multipole.tex ******