ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3986
Committed: Tue Dec 31 17:28:43 2013 UTC (10 years, 5 months ago) by gezelter
Content type: application/x-tex
File size: 64549 byte(s)
Log Message:
Migrated much to Supplemental, nearing completion on manuscript 1.

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 3980
39 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44     \preprint{AIP/123-QED}
45    
46 gezelter 3980 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
47     {Real space alternatives to the Ewald
48     Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
49 gezelter 3906
50     \author{Madan Lamichhane}
51     \affiliation{Department of Physics, University
52     of Notre Dame, Notre Dame, IN 46556}
53    
54     \author{J. Daniel Gezelter}
55     \email{gezelter@nd.edu.}
56     \affiliation{Department of Chemistry and Biochemistry, University
57     of Notre Dame, Notre Dame, IN 46556}
58    
59     \author{Kathie E. Newman}
60     \affiliation{Department of Physics, University
61     of Notre Dame, Notre Dame, IN 46556}
62    
63    
64     \date{\today}% It is always \today, today,
65     % but any date may be explicitly specified
66    
67     \begin{abstract}
68 gezelter 3980 We have extended the original damped-shifted force (DSF)
69     electrostatic kernel and have been able to derive two new
70     electrostatic potentials for higher-order multipoles that are based
71     on truncated Taylor expansions around the cutoff radius. For
72     multipole-multipole interactions, we find that each of the distinct
73     orientational contributions has a separate radial function to ensure
74     that the overall forces and torques vanish at the cutoff radius. In
75     this paper, we present energy, force, and torque expressions for the
76     new models, and compare these real-space interaction models to exact
77     results for ordered arrays of multipoles.
78 gezelter 3906 \end{abstract}
79    
80     \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
81     % Classification Scheme.
82     \keywords{Suggested keywords}%Use showkeys class option if keyword
83     %display desired
84     \maketitle
85    
86     \section{Introduction}
87 gezelter 3982 There has been increasing interest in real-space methods for
88     calculating electrostatic interactions in computer simulations of
89     condensed molecular
90 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
91     The simplest of these techniques was developed by Wolf {\it et al.}
92     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
93 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
94     simple damped shifted force (DSF) modification to Wolf's method could
95     give nearly quantitative agreement with smooth particle mesh Ewald
96     (SPME)\cite{Essmann95} configurational energy differences as well as
97     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
98 gezelter 3906
99 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
100     surprisingly good, particularly for systems with uniform charge
101     density. Additionally, dielectric constants obtained using DSF and
102 gezelter 3986 similar methods where the force vanishes at $r_{c}$ are
103 gezelter 3980 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
104     related methods have now been widely investigated,\cite{Hansen:2012uq}
105 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
106     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
107     DSF electrostatics provides a compromise between the computational
108     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
109     treatments.
110 gezelter 3906
111 gezelter 3980 One common feature of many coarse-graining approaches, which treat
112     entire molecular subsystems as a single rigid body, is simplification
113     of the electrostatic interactions between these bodies so that fewer
114     site-site interactions are required to compute configurational
115 gezelter 3986 energies. To do this, the interactions between coarse-grained sites
116     are typically taken to be point
117     multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
118 gezelter 3906
119 gezelter 3986 Water, in particular, has been modeled recently with point multipoles
120     up to octupolar
121     order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
122     maximum efficiency, these models require the use of an approximate
123     multipole expansion as the exact multipole expansion can become quite
124     expensive (particularly when handled via the Ewald
125     sum).\cite{Ichiye:2006qy} Point multipoles and multipole
126     polarizability have also been utilized in the AMOEBA water model and
127 gezelter 3980 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
128 gezelter 3906
129 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
130     dynamics. Multipolar interactions are inherently short-ranged, and
131     should not need the relatively expensive Ewald treatment. However,
132     real-space cutoff methods are normally applied in an orientation-blind
133     fashion so multipoles which leave and then re-enter a cutoff sphere in
134     a different orientation can cause energy discontinuities.
135 gezelter 3906
136 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
137 gezelter 3985 kernel to point multipoles. We describe two distinct real-space
138 gezelter 3982 interaction models for higher-order multipoles based on two truncated
139     Taylor expansions that are carried out at the cutoff radius. We are
140     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
141     electrostatics. Because of differences in the initial assumptions,
142 gezelter 3986 the two methods yield related, but somewhat different expressions for
143     energies, forces, and torques.
144 gezelter 3906
145 gezelter 3982 In this paper we outline the new methodology and give functional forms
146     for the energies, forces, and torques up to quadrupole-quadrupole
147     order. We also compare the new methods to analytic energy constants
148 gezelter 3986 for periodic arrays of point multipoles. In the following paper, we
149 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
150     simulation enviornments.
151 gezelter 3982
152 gezelter 3980 \section{Methodology}
153 gezelter 3986 An efficient real-space electrostatic method involves the use of a
154     pair-wise functional form,
155     \begin{equation}
156     V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
157     \sum_i V_i^\mathrm{correction}
158     \end{equation}
159     that is short-ranged and easily truncated at a cutoff radius,
160     \begin{equation}
161     V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) = \left\{
162     \begin{array}{ll}
163     V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
164     0 & \quad r > r_c ,
165     \end{array}
166     \right.
167     \end{equation}
168     along with an easily computed correction term ($\sum_i
169     V_i^\mathrm{correction}$) which has linear-scaling with the number of
170     particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
171     coordinates of the two sites. The computational efficiency, energy
172     conservation, and even some physical properties of a simulation can
173     depend dramatically on how the $V_\mathrm{approx}$ function behaves at
174     the cutoff radius. The goal of any approximation method should be to
175     mimic the real behavior of the electrostatic interactions as closely
176     as possible without sacrificing the near-linear scaling of a cutoff
177     method.
178 gezelter 3906
179 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
180     The DSF and Wolf methods operate by neutralizing the total charge
181     contained within the cutoff sphere surrounding each particle. This is
182     accomplished by shifting the potential functions to generate image
183     charges on the surface of the cutoff sphere for each pair interaction
184 gezelter 3986 computed within $r_c$. Damping using a complementary error
185 gezelter 3982 function is applied to the potential to accelerate convergence. The
186     potential for the DSF method, where $\alpha$ is the adjustable damping
187     parameter, is given by
188 gezelter 3980 \begin{equation*}
189 gezelter 3986 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
190 gezelter 3980 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
191 gezelter 3986 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
192 gezelter 3980 + \frac{2\alpha}{\pi^{1/2}}
193 gezelter 3986 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
194     \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
195 gezelter 3980 \label{eq:DSFPot}
196     \end{equation*}
197 gezelter 3985 Note that in this potential and in all electrostatic quantities that
198 gezelter 3986 follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
199 gezelter 3985 clarity.
200 gezelter 3980
201     To insure net charge neutrality within each cutoff sphere, an
202     additional ``self'' term is added to the potential. This term is
203     constant (as long as the charges and cutoff radius do not change), and
204     exists outside the normal pair-loop for molecular simulations. It can
205     be thought of as a contribution from a charge opposite in sign, but
206     equal in magnitude, to the central charge, which has been spread out
207     over the surface of the cutoff sphere. A portion of the self term is
208     identical to the self term in the Ewald summation, and comes from the
209     utilization of the complimentary error function for electrostatic
210 gezelter 3986 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
211     extend the Wolf self-neutralization method to zero out the dipole and
212     higher order multipoles contained within the cutoff
213 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
214 gezelter 3982
215 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
216     multipoles by insuring net charge-neutrality and net-zero moments
217     within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
218     central dipolar site $\mathbf{D}_i$ is interacting with point dipole
219     $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
220     self-neutralization scheme for point multipoles involves projecting
221     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
222     sphere. There are also significant modifications made to make the
223     forces and torques go smoothly to zero at the cutoff distance.
224 gezelter 3982
225 gezelter 3980 \begin{figure}
226 gezelter 3982 \includegraphics[width=3in]{SM}
227 gezelter 3980 \caption{Reversed multipoles are projected onto the surface of the
228     cutoff sphere. The forces, torques, and potential are then smoothly
229     shifted to zero as the sites leave the cutoff region.}
230     \label{fig:shiftedMultipoles}
231     \end{figure}
232    
233 gezelter 3986 As in the point-charge approach, there is an additional contribution
234     from self-neutralization of site $i$. The self term for multipoles is
235 gezelter 3982 described in section \ref{sec:selfTerm}.
236 gezelter 3906
237 gezelter 3982 \subsection{The multipole expansion}
238    
239 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
240 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
241     interact via electrostatics only and describe those interactions in
242     terms of a standard multipole expansion. Putting the origin of the
243     coordinate system at the center of mass of $\bf a$, we use vectors
244 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
245     a$. Then the electrostatic potential of object $\bf a$ at
246     $\mathbf{r}$ is given by
247 gezelter 3906 \begin{equation}
248 gezelter 3985 V_a(\mathbf r) =
249 gezelter 3906 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
250     \end{equation}
251 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
252     notation. Here Greek indices are used to indicate space coordinates
253     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
254     labelling specific charges in $\bf a$ and $\bf b$ respectively. The
255     Taylor expansion,
256 gezelter 3906 \begin{equation}
257     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
258     \left( 1
259     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
260     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
261     \right)
262 gezelter 3982 \frac{1}{r} ,
263 gezelter 3906 \end{equation}
264 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
265     terms of multipole operators,
266 gezelter 3906 \begin{equation}
267 gezelter 3985 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
268 gezelter 3906 \end{equation}
269     where
270     \begin{equation}
271     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
272     + Q_{{\bf a}\alpha\beta}
273     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
274     \end{equation}
275 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
276     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
277 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
278     which can be expressed as a distribution of charges,
279     \begin{align}
280     C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
281     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
282     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
283     \end{align}
284     Note that the definition of the primitive quadrupole here differs from
285     the standard traceless form, and contains an additional Taylor-series
286     based factor of $1/2$.
287 gezelter 3906
288     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
289     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
290     \begin{equation}
291 gezelter 3982 U_{\bf{ab}}(r)
292 gezelter 3985 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
293 gezelter 3982 \end{equation}
294     This can also be expanded as a Taylor series in $r$. Using a notation
295     similar to before to define the multipoles on object {\bf b},
296     \begin{equation}
297 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
298     + Q_{{\bf b}\alpha\beta}
299     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
300     \end{equation}
301 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
302 gezelter 3906 \begin{equation}
303 gezelter 3985 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
304 gezelter 3906 \end{equation}
305 gezelter 3982 This form has the benefit of separating out the energies of
306     interaction into contributions from the charge, dipole, and quadrupole
307 gezelter 3986 of $\bf a$ interacting with the same multipoles on $\bf b$.
308 gezelter 3906
309 gezelter 3982 \subsection{Damped Coulomb interactions}
310     In the standard multipole expansion, one typically uses the bare
311     Coulomb potential, with radial dependence $1/r$, as shown in
312     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
313     interaction, which results from replacing point charges with Gaussian
314     distributions of charge with width $\alpha$. In damped multipole
315     electrostatics, the kernel ($1/r$) of the expansion is replaced with
316     the function:
317 gezelter 3906 \begin{equation}
318     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
319     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
320     \end{equation}
321 gezelter 3982 We develop equations below using the function $f(r)$ to represent
322 gezelter 3986 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
323     bare or damped Coulomb kernels (or any other function) as long as
324     derivatives of these functions are known. Smith's convenient
325     functions $B_l(r)$ are summarized in Appendix A.
326 gezelter 3906
327 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
328     energy as well as forces and torques as $r\rightarrow r_c$. To
329     describe how this goal may be met, we use two examples, charge-charge
330 gezelter 3986 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
331     explain the idea.
332 gezelter 3906
333 gezelter 3984 \subsection{Shifted-force methods}
334 gezelter 3982 In the shifted-force approximation, the interaction energy for two
335     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
336     written:
337 gezelter 3906 \begin{equation}
338 gezelter 3985 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
339 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
340     \right) .
341     \end{equation}
342 gezelter 3982 Two shifting terms appear in this equations, one from the
343 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
344     derivative to vanish at the cutoff radius.
345 gezelter 3982
346     Since one derivative of the interaction energy is needed for the
347     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
348     interaction energy, that is:
349 gezelter 3906 \begin{equation}
350     \frac{d\,}{dr}
351     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
352     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
353     \right) .
354     \end{equation}
355 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
356     are a number of ways to generalize this derivative shift for
357 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
358     higher-order Taylor series for $r$ near $r_c$, and the other based on
359     linear shift of the kernel gradients at the cutoff itself.
360 gezelter 3906
361 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
362 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
363     is based on a Taylor expansion containing the same number of
364     derivatives required for each force term to vanish at the cutoff. For
365     example, the quadrupole-quadrupole interaction energy requires four
366     derivatives of the kernel, and the force requires one additional
367 gezelter 3986 derivative. For quadrupole-quadrupole interactions, we therefore
368     require shifted energy expressions that include up to $(r-r_c)^5$ so
369     that all energies, forces, and torques are zero as $r \rightarrow
370     r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
371     from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
372     derivatives to be taken when deriving a given multipole energy. We
373     choose a function with guaranteed smooth derivatives -- a truncated
374     Taylor series of the function $f(r)$, e.g.,
375 gezelter 3906 %
376     \begin{equation}
377 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
378 gezelter 3906 \end{equation}
379     %
380     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
381     Thus, for $f(r)=1/r$, we find
382     %
383     \begin{equation}
384     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
385     \end{equation}
386     %
387 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
388     dipole $\bf b$, we write
389 gezelter 3906 %
390     \begin{equation}
391     U_{C_{\bf a}D_{\bf b}}(r)=
392 gezelter 3985 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
393     = C_{\bf a} D_{{\bf b}\alpha}
394 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
395     \end{equation}
396     %
397 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
398 gezelter 3906 %
399     \begin{equation}
400 gezelter 3985 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
401 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
402     \frac{r_\alpha r_\beta}{r^2}
403     \left( -\frac{1}{r} \frac {\partial} {\partial r}
404     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
405     \end{equation}
406     %
407 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
408 gezelter 3906 %
409     \begin{equation}
410     F_{C_{\bf a}D_{\bf b}\beta} =
411 gezelter 3985 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
412 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
413 gezelter 3985 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
414 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
415     \end{equation}
416     %
417     This expansion shows the expected $1/r^3$ dependence of the force.
418    
419 gezelter 3984 In general, we can write
420 gezelter 3906 %
421     \begin{equation}
422 gezelter 3985 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
423 gezelter 3906 \label{generic}
424     \end{equation}
425     %
426 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
427     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
428     $n=4$ for quadrupole-quadrupole. For example, in
429     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
430     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
431     $\partial^4/\partial r_\alpha \partial r_\beta \partial
432     r_\gamma \partial r_\delta$, with implied summation combining the
433     space indices.
434 gezelter 3906
435 gezelter 3984 In the formulas presented in the tables below, the placeholder
436     function $f(r)$ is used to represent the electrostatic kernel (either
437     damped or undamped). The main functions that go into the force and
438 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
439     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
440     of the same index $n$. The algebra required to evaluate energies,
441     forces and torques is somewhat tedious, so only the final forms are
442 gezelter 3986 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
443 gezelter 3906
444 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
445 gezelter 3985 The second, and conceptually simpler approach to force-shifting
446     maintains only the linear $(r-r_c)$ term in the truncated Taylor
447     expansion, and has a similar interaction energy for all multipole
448     orders:
449 gezelter 3906 \begin{equation}
450 gezelter 3985 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
451     \lvert _{r_c} .
452     \label{generic2}
453 gezelter 3906 \end{equation}
454 gezelter 3985 Here the gradient for force shifting is evaluated for an image
455 gezelter 3986 multipole projected onto the surface of the cutoff sphere (see fig
456 gezelter 3985 \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
457     appear. The primary difference between the TSF and GSF methods is the
458     stage at which the Taylor Series is applied; in the Taylor-shifted
459     approach, it is applied to the kernel itself. In the Gradient-shifted
460     approach, it is applied to individual radial interactions terms in the
461     multipole expansion. Energies from this method thus have the general
462     form:
463 gezelter 3906 \begin{equation}
464 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
465     \label{generic3}
466 gezelter 3906 \end{equation}
467    
468 gezelter 3986 Functional forms for both methods (TSF and GSF) can both be summarized
469 gezelter 3985 using the form of Eq.~(\ref{generic3}). The basic forms for the
470     energy, force, and torque expressions are tabulated for both shifting
471 gezelter 3986 approaches below -- for each separate orientational contribution, only
472 gezelter 3985 the radial factors differ between the two methods.
473 gezelter 3906
474     \subsection{\label{sec:level2}Body and space axes}
475    
476 gezelter 3985 [XXX Do we need this section in the main paper? or should it go in the
477     extra materials?]
478    
479 gezelter 3984 So far, all energies and forces have been written in terms of fixed
480 gezelter 3985 space coordinates. Interaction energies are computed from the generic
481     formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which combine
482     orientational prefactors with radial functions. Because objects $\bf
483 gezelter 3984 a$ and $\bf b$ both translate and rotate during a molecular dynamics
484     (MD) simulation, it is desirable to contract all $r$-dependent terms
485     with dipole and quadrupole moments expressed in terms of their body
486 gezelter 3985 axes. To do so, we have followed the methodology of Allen and
487     Germano,\cite{Allen:2006fk} which was itself based on earlier work by
488     Price {\em et al.}\cite{Price:1984fk}
489 gezelter 3906
490 gezelter 3984 We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
491     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
492     referring to a convenient set of inertial body axes. (N.B., these
493     body axes are generally not the same as those for which the quadrupole
494     moment is diagonal.) Then,
495 gezelter 3906 %
496     \begin{eqnarray}
497     \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
498     \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
499     \end{eqnarray}
500 gezelter 3985 Rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
501     expressed using these unit vectors:
502 gezelter 3906 \begin{eqnarray}
503     \hat{\mathbf {a}} =
504     \begin{pmatrix}
505     \hat{a}_1 \\
506     \hat{a}_2 \\
507     \hat{a}_3
508     \end{pmatrix}
509     =
510     \begin{pmatrix}
511     a_{1x} \quad a_{1y} \quad a_{1z} \\
512     a_{2x} \quad a_{2y} \quad a_{2z} \\
513     a_{3x} \quad a_{3y} \quad a_{3z}
514     \end{pmatrix}\\
515     \hat{\mathbf {b}} =
516     \begin{pmatrix}
517     \hat{b}_1 \\
518     \hat{b}_2 \\
519     \hat{b}_3
520     \end{pmatrix}
521     =
522     \begin{pmatrix}
523 gezelter 3985 b_{1x} \quad b_{1y} \quad b_{1z} \\
524 gezelter 3906 b_{2x} \quad b_{2y} \quad b_{2z} \\
525     b_{3x} \quad b_{3y} \quad b_{3z}
526     \end{pmatrix} .
527     \end{eqnarray}
528     %
529 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
530     coordinates. All contractions of prefactors with derivatives of
531     functions can be written in terms of these matrices. It proves to be
532     equally convenient to just write any contraction in terms of unit
533     vectors $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. In the torque
534     expressions, it is useful to have the angular-dependent terms
535     available in three different fashions, e.g. for the dipole-dipole
536     contraction:
537 gezelter 3906 %
538 gezelter 3985 \begin{equation}
539 gezelter 3906 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
540 gezelter 3985 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
541     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
542     \end{equation}
543 gezelter 3906 %
544 gezelter 3985 The first two forms are written using space coordinates. The first
545     form is standard in the chemistry literature, while the second is
546     expressed using implied summation notation. The third form shows
547     explicit sums over body indices and the dot products now indicate
548     contractions using space indices.
549 gezelter 3906
550    
551 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
552    
553 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
554     summation~\cite{Wolf99} and the damped shifted force (DSF)
555     extension~\cite{Fennell:2006zl} also included self-interactions that
556     are handled separately from the pairwise interactions between
557     sites. The self-term is normally calculated via a single loop over all
558     sites in the system, and is relatively cheap to evaluate. The
559     self-interaction has contributions from two sources.
560    
561     First, the neutralization procedure within the cutoff radius requires
562     a contribution from a charge opposite in sign, but equal in magnitude,
563     to the central charge, which has been spread out over the surface of
564     the cutoff sphere. For a system of undamped charges, the total
565     self-term is
566 gezelter 3980 \begin{equation}
567     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
568     \label{eq:selfTerm}
569     \end{equation}
570 gezelter 3985
571     Second, charge damping with the complementary error function is a
572     partial analogy to the Ewald procedure which splits the interaction
573     into real and reciprocal space sums. The real space sum is retained
574     in the Wolf and DSF methods. The reciprocal space sum is first
575     minimized by folding the largest contribution (the self-interaction)
576     into the self-interaction from charge neutralization of the damped
577     potential. The remainder of the reciprocal space portion is then
578     discarded (as this contributes the largest computational cost and
579     complexity to the Ewald sum). For a system containing only damped
580     charges, the complete self-interaction can be written as
581 gezelter 3980 \begin{equation}
582     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
583     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
584     C_{\bf a}^{2}.
585     \label{eq:dampSelfTerm}
586     \end{equation}
587    
588     The extension of DSF electrostatics to point multipoles requires
589     treatment of {\it both} the self-neutralization and reciprocal
590     contributions to the self-interaction for higher order multipoles. In
591     this section we give formulae for these interactions up to quadrupolar
592     order.
593    
594     The self-neutralization term is computed by taking the {\it
595     non-shifted} kernel for each interaction, placing a multipole of
596     equal magnitude (but opposite in polarization) on the surface of the
597     cutoff sphere, and averaging over the surface of the cutoff sphere.
598     Because the self term is carried out as a single sum over sites, the
599     reciprocal-space portion is identical to half of the self-term
600     obtained by Smith and Aguado and Madden for the application of the
601     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
602     site which posesses a charge, dipole, and multipole, both types of
603     contribution are given in table \ref{tab:tableSelf}.
604    
605     \begin{table*}
606     \caption{\label{tab:tableSelf} Self-interaction contributions for
607     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
608     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
609     \begin{ruledtabular}
610     \begin{tabular}{lccc}
611     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
612     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
613     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
614     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
615     Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
616     $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
617     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
618     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
619     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
620     \end{tabular}
621     \end{ruledtabular}
622     \end{table*}
623    
624     For sites which simultaneously contain charges and quadrupoles, the
625     self-interaction includes a cross-interaction between these two
626     multipole orders. Symmetry prevents the charge-dipole and
627     dipole-quadrupole interactions from contributing to the
628     self-interaction. The functions that go into the self-neutralization
629 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
630     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
631     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
632     have been evaluated at the cutoff distance. For undamped
633     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
634     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
635     on. Appendix \ref{SmithFunc} contains recursion relations that allow
636     rapid evaluation of these derivatives.
637 gezelter 3980
638 gezelter 3985 \section{Interaction energies, forces, and torques}
639     The main result of this paper is a set of expressions for the
640     energies, forces and torques (up to quadrupole-quadrupole order) that
641     work for both the Taylor-shifted and Gradient-shifted approximations.
642     These expressions were derived using a set of generic radial
643     functions. Without using the shifting approximations mentioned above,
644     some of these radial functions would be identical, and the expressions
645     coalesce into the familiar forms for unmodified multipole-multipole
646     interactions. Table \ref{tab:tableenergy} maps between the generic
647     functions and the radial functions derived for both the Taylor-shifted
648     and Gradient-shifted methods. The energy equations are written in
649     terms of lab-frame representations of the dipoles, quadrupoles, and
650     the unit vector connecting the two objects,
651 gezelter 3906
652     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
653     %
654     %
655     % u ca cb
656     %
657 gezelter 3983 \begin{align}
658     U_{C_{\bf a}C_{\bf b}}(r)=&
659 gezelter 3985 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
660 gezelter 3983 \\
661 gezelter 3906 %
662     % u ca db
663     %
664 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
665 gezelter 3985 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
666 gezelter 3906 \label{uchdip}
667 gezelter 3983 \\
668 gezelter 3906 %
669     % u ca qb
670     %
671 gezelter 3985 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
672     v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
673     \hat{r} \right) v_{22}(r) \Bigr]
674 gezelter 3906 \label{uchquad}
675 gezelter 3983 \\
676 gezelter 3906 %
677     % u da cb
678     %
679 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
680     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
681     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
682     %\\
683 gezelter 3906 %
684     % u da db
685     %
686 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
687 gezelter 3985 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
688 gezelter 3906 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
689     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
690     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
691     v_{22}(r) \Bigr]
692     \label{udipdip}
693 gezelter 3983 \\
694 gezelter 3906 %
695     % u da qb
696     %
697     \begin{split}
698     % 1
699 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
700 gezelter 3985 -\Bigl[
701 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
702     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
703     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
704     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
705     % 2
706 gezelter 3985 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
707 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
708     \label{udipquad}
709     \end{split}
710 gezelter 3983 \\
711 gezelter 3906 %
712     % u qa cb
713     %
714 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
715     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
716     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
717     %\label{uquadch}
718     %\\
719 gezelter 3906 %
720     % u qa db
721     %
722 gezelter 3983 %\begin{split}
723 gezelter 3906 %1
724 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
725     %\frac{1}{4\pi \epsilon_0} \Bigl[
726     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
727     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
728     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
729     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
730 gezelter 3906 % 2
731 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
732     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
733     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
734     %\label{uquaddip}
735     %\end{split}
736     %\\
737 gezelter 3906 %
738     % u qa qb
739     %
740     \begin{split}
741     %1
742 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
743 gezelter 3985 \Bigl[
744 gezelter 3906 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
745     +2 \text{Tr} \left(
746     \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
747     \\
748     % 2
749 gezelter 3985 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
750 gezelter 3906 \left( \hat{r} \cdot
751     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
752     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
753     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
754     \cdot \hat{r} \right) +4 (\hat{r} \cdot
755     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
756     \Bigr] v_{42}(r)
757     \\
758     % 4
759 gezelter 3985 &+
760 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
761     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
762     \label{uquadquad}
763     \end{split}
764 gezelter 3983 \end{align}
765 gezelter 3985 %
766 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
767     with those on site $\mathbf{a}$ can be obtained by swapping indices
768     along with the sign of the intersite vector, $\hat{r}$.
769 gezelter 3906
770     %
771     %
772     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
773     %
774    
775 gezelter 3985 \begin{sidewaystable}
776     \caption{\label{tab:tableenergy}Radial functions used in the energy
777     and torque equations. The $f, g, h, s, t, \mathrm{and} u$
778     functions used in this table are defined in Appendices B and C.}
779     \begin{tabular}{|c|c|l|l|} \hline
780     Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
781 gezelter 3906 \\ \hline
782     %
783     %
784     %
785     %Ch-Ch&
786     $v_{01}(r)$ &
787     $\frac{1}{r}$ &
788     $f_0(r)$ &
789     $f(r)-f(r_c)-(r-r_c)g(r_c)$
790     \\
791     %
792     %
793     %
794     %Ch-Di&
795     $v_{11}(r)$ &
796     $-\frac{1}{r^2}$ &
797     $g_1(r)$ &
798     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
799     %
800     %
801     %
802     %Ch-Qu/Di-Di&
803     $v_{21}(r)$ &
804     $-\frac{1}{r^3} $ &
805     $\frac{g_2(r)}{r} $ &
806     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
807     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
808     $v_{22}(r)$ &
809     $\frac{3}{r^3} $ &
810     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
811     $\left(-\frac{g(r)}{r}+h(r) \right)
812 gezelter 3985 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
813     &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
814 gezelter 3906 \\
815     %
816     %
817     %
818     %Di-Qu &
819     $v_{31}(r)$ &
820     $\frac{3}{r^4} $ &
821     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
822     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
823     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
824 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
825 gezelter 3906 \\
826     %
827     $v_{32}(r)$ &
828     $-\frac{15}{r^4} $ &
829     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
830     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
831     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
832 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
833 gezelter 3906 \\
834     %
835     %
836     %
837     %Qu-Qu&
838     $v_{41}(r)$ &
839     $\frac{3}{r^5} $ &
840     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
841     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
842     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
843 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
844 gezelter 3906 \\
845     % 2
846     $v_{42}(r)$ &
847     $- \frac{15}{r^5} $ &
848     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
849     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
850     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
851 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
852 gezelter 3906 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
853     \\
854     % 3
855     $v_{43}(r)$ &
856     $ \frac{105}{r^5} $ &
857     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
858     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
859 gezelter 3985 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
860     &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
861     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
862 gezelter 3906 \end{tabular}
863 gezelter 3985 \end{sidewaystable}
864 gezelter 3906 %
865     %
866     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
867     %
868    
869 gezelter 3985 \begin{sidewaystable}
870 gezelter 3906 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
871 gezelter 3985 \begin{tabular}{|c|c|l|l|} \hline
872     Function&Definition&Taylor-Shifted&Gradient-Shifted
873 gezelter 3906 \\ \hline
874     %
875     %
876     %
877     $w_a(r)$&
878 gezelter 3985 $\frac{d v_{01}}{dr}$&
879     $g_0(r)$&
880     $g(r)-g(r_c)$ \\
881 gezelter 3906 %
882     %
883     $w_b(r)$ &
884 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
885     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
886     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
887 gezelter 3906 %
888     $w_c(r)$ &
889 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
890     $\frac{g_1(r)}{r} $ &
891     $\frac{v_{11}(r)}{r}$\\
892 gezelter 3906 %
893     %
894     $w_d(r)$&
895 gezelter 3985 $\frac{d v_{21}}{dr}$&
896     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
897     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
898     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
899 gezelter 3906 %
900     $w_e(r)$ &
901 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
902     $\frac{v_{22}(r)}{r}$ &
903 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
904     %
905     %
906     $w_f(r)$&
907 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
908     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
909     $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
910     &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
911     \right)-\frac{2v_{22}(r)}{r}$\\
912 gezelter 3906 %
913     $w_g(r)$&
914 gezelter 3985 $\frac{v_{31}(r)}{r}$&
915     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
916 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
917     %
918     $w_h(r)$ &
919 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
920     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
921     $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
922     &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
923 gezelter 3906 % 2
924     $w_i(r)$ &
925 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
926     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
927     $\frac{v_{32}(r)}{r}$\\
928 gezelter 3906 %
929     $w_j(r)$ &
930 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
931     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
932     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
933     &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
934     -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
935 gezelter 3906 %
936     $w_k(r)$ &
937 gezelter 3985 $\frac{d v_{41}}{dr} $ &
938     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
939     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
940     -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
941 gezelter 3906 %
942     $w_l(r)$ &
943 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
944     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
945     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
946     &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
947     -\frac{2v_{42}(r)}{r}$\\
948 gezelter 3906 %
949     $w_m(r)$ &
950 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
951     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
952     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
953     &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
954     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
955     &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
956 gezelter 3906 %
957     $w_n(r)$ &
958 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
959     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
960     $\frac{v_{42}(r)}{r}$\\
961 gezelter 3906 %
962     $w_o(r)$ &
963 gezelter 3985 $\frac{v_{43}(r)}{r}$&
964     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
965     $\frac{v_{43}(r)}{r}$ \\ \hline
966 gezelter 3906 %
967    
968     \end{tabular}
969 gezelter 3985 \end{sidewaystable}
970 gezelter 3906 %
971     %
972     %
973    
974     \subsection{Forces}
975 gezelter 3985 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
976     $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
977     a simple charge-charge interaction, these forces will point along the
978     $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
979     \mathbf{r}_a $. Thus
980 gezelter 3906 %
981     \begin{equation}
982     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
983     \quad \text{and} \quad F_{\bf b \alpha}
984     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
985     \end{equation}
986     %
987 gezelter 3985 Obtaining the force from the interaction energy expressions is the
988     same for higher-order multipole interactions -- the trick is to make
989     sure that all $r$-dependent derivatives are considered. This is
990     straighforward if the interaction energies are written explicitly in
991     terms of $\hat{r}$ and the body axes ($\hat{a}_m$,
992     $\hat{b}_n$) :
993 gezelter 3906 %
994     \begin{equation}
995     U(r,\{\hat{a}_m \cdot \hat{r} \},
996 gezelter 3985 \{\hat{b}_n\cdot \hat{r} \},
997 gezelter 3906 \{\hat{a}_m \cdot \hat{b}_n \}) .
998     \label{ugeneral}
999     \end{equation}
1000     %
1001 gezelter 3985 Allen and Germano,\cite{Allen:2006fk} showed that if the energy is
1002     written in this form, the forces come out relatively cleanly,
1003 gezelter 3906 %
1004     \begin{equation}
1005     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
1006     = \frac{\partial U}{\partial r} \hat{r}
1007     + \sum_m \left[
1008     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1009     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1010     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1011     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1012     \right] \label{forceequation}.
1013     \end{equation}
1014     %
1015 gezelter 3985 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
1016     is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
1017     In simplifying the algebra, we have also used:
1018 gezelter 3906 %
1019 gezelter 3985 \begin{align}
1020 gezelter 3906 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1021 gezelter 3985 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1022 gezelter 3906 \right) \\
1023     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1024 gezelter 3985 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1025 gezelter 3906 \right) .
1026 gezelter 3985 \end{align}
1027 gezelter 3906 %
1028 gezelter 3985 We list below the force equations written in terms of lab-frame
1029     coordinates. The radial functions used in the two methods are listed
1030     in Table \ref{tab:tableFORCE}
1031 gezelter 3906 %
1032 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1033 gezelter 3906 %
1034     % **************************************************************************
1035     % f ca cb
1036     %
1037 gezelter 3985 \begin{align}
1038     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1039     C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1040 gezelter 3906 %
1041     %
1042     %
1043 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1044     C_{\bf a} \Bigl[
1045 gezelter 3906 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1046     w_b(r) \hat{r}
1047 gezelter 3985 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1048 gezelter 3906 %
1049     %
1050     %
1051 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1052     C_{\bf a } \Bigr[
1053 gezelter 3906 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1054     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1055 gezelter 3985 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1056     \right) w_f(r) \hat{r} \Bigr] \\
1057 gezelter 3906 %
1058     %
1059     %
1060 gezelter 3985 % \begin{equation}
1061     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1062     % -C_{\bf{b}} \Bigl[
1063     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1064     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1065     % \end{equation}
1066 gezelter 3906 %
1067     %
1068     %
1069 gezelter 3985 \begin{split}
1070     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1071 gezelter 3906 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1072     + \left( \mathbf{D}_{\mathbf {a}}
1073     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1074 gezelter 3985 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1075 gezelter 3906 % 2
1076 gezelter 3985 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1077     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1078     \end{split}\\
1079 gezelter 3906 %
1080     %
1081     %
1082     \begin{split}
1083 gezelter 3985 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1084 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1085     +2 \mathbf{D}_{\mathbf{a}} \cdot
1086     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1087 gezelter 3985 - \Bigl[
1088 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1089     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1090     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1091     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1092     % 3
1093 gezelter 3985 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1094 gezelter 3906 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1095     w_i(r)
1096     % 4
1097 gezelter 3985 -
1098 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1099 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1100 gezelter 3906 %
1101     %
1102 gezelter 3985 % \begin{equation}
1103     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1104     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1105     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1106     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1107     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1108     % \end{equation}
1109     % %
1110     % \begin{equation}
1111     % \begin{split}
1112     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1113     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1114     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1115     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1116     % % 2
1117     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1118     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1119     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1120     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1121     % % 3
1122     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1123     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1124     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1125     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1126     % % 4
1127     % +\frac{1}{4\pi \epsilon_0}
1128     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1129     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1130     % \end{split}
1131     % \end{equation}
1132 gezelter 3906 %
1133     %
1134     %
1135     \begin{split}
1136 gezelter 3985 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1137     \Bigl[
1138 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1139     + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1140     % 2
1141 gezelter 3985 &+ \Bigl[
1142 gezelter 3906 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1143     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1144     % 3
1145     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1146     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1147     % 4
1148 gezelter 3985 &+ \Bigl[
1149 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1150     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1151     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1152     % 5
1153     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1154     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1155     %
1156 gezelter 3985 &+ \Bigl[
1157 gezelter 3906 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1158     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1159     %6
1160     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1161     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1162     % 7
1163 gezelter 3985 &+
1164 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1165 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1166     \end{align}
1167     Note that the forces for higher multipoles on site $\mathbf{a}$
1168     interacting with those of lower order on site $\mathbf{b}$ can be
1169     obtained by swapping indices in the expressions above.
1170    
1171 gezelter 3906 %
1172 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1173 gezelter 3906 %
1174     \subsection{Torques}
1175 gezelter 3985 When energies are written in the form of Eq.~({\ref{ugeneral}), then
1176     torques can be found in a relatively straightforward
1177     manner,\cite{Allen:2006fk}
1178 gezelter 3906 %
1179     \begin{eqnarray}
1180     \mathbf{\tau}_{\bf a} =
1181     \sum_m
1182     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1183     ( \hat{r} \times \hat{a}_m )
1184     -\sum_{mn}
1185     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1186     (\hat{a}_m \times \hat{b}_n) \\
1187     %
1188     \mathbf{\tau}_{\bf b} =
1189     \sum_m
1190     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1191     ( \hat{r} \times \hat{b}_m)
1192     +\sum_{mn}
1193     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1194     (\hat{a}_m \times \hat{b}_n) .
1195     \end{eqnarray}
1196     %
1197     %
1198 gezelter 3985 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1199     methods are given in space-frame coordinates:
1200 gezelter 3906 %
1201     %
1202 gezelter 3985 \begin{align}
1203     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1204     C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1205 gezelter 3906 %
1206     %
1207     %
1208 gezelter 3985 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1209     2C_{\bf a}
1210     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1211 gezelter 3906 %
1212     %
1213     %
1214 gezelter 3985 % \begin{equation}
1215     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1216     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1217     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1218     % \end{equation}
1219 gezelter 3906 %
1220     %
1221     %
1222 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1223     \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1224 gezelter 3906 % 2
1225 gezelter 3985 -
1226 gezelter 3906 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1227 gezelter 3985 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1228 gezelter 3906 %
1229     %
1230     %
1231 gezelter 3985 % \begin{equation}
1232     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1233     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1234     % % 2
1235     % +\frac{1}{4\pi \epsilon_0}
1236     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1237     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1238     % \end{equation}
1239 gezelter 3906 %
1240     %
1241     %
1242 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1243     \Bigl[
1244 gezelter 3906 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1245     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1246     +2 \mathbf{D}_{\mathbf{a}} \times
1247     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1248     \Bigr] v_{31}(r)
1249     % 3
1250 gezelter 3985 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1251     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1252 gezelter 3906 %
1253     %
1254     %
1255 gezelter 3985 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1256     \Bigl[
1257 gezelter 3906 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1258     \hat{r}
1259     -2 \mathbf{D}_{\mathbf{a}} \times
1260     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1261     \Bigr] v_{31}(r)
1262     % 2
1263 gezelter 3985 +
1264 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1265 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1266 gezelter 3906 %
1267     %
1268     %
1269 gezelter 3985 % \begin{equation}
1270     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1271     % \frac{1}{4\pi \epsilon_0} \Bigl[
1272     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1273     % +2 \mathbf{D}_{\mathbf{b}} \times
1274     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1275     % \Bigr] v_{31}(r)
1276     % % 3
1277     % - \frac{2}{4\pi \epsilon_0}
1278     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1279     % (\hat{r} \cdot \mathbf
1280     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1281     % \end{equation}
1282 gezelter 3906 %
1283     %
1284     %
1285 gezelter 3985 % \begin{equation}
1286     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1287     % \frac{1}{4\pi \epsilon_0} \Bigl[
1288     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1289     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1290     % +2 \mathbf{D}_{\mathbf{b}} \times
1291     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1292     % % 2
1293     % +\frac{1}{4\pi \epsilon_0}
1294     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1295     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1296     % \end{equation}
1297 gezelter 3906 %
1298     %
1299     %
1300     \begin{split}
1301 gezelter 3985 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1302     -4
1303 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1304     v_{41}(r) \\
1305     % 2
1306 gezelter 3985 &+
1307 gezelter 3906 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1308     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1309     +4 \hat{r} \times
1310     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1311     % 3
1312     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1313     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1314     % 4
1315 gezelter 3985 &+ 2
1316 gezelter 3906 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1317 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1318 gezelter 3906 %
1319     %
1320     %
1321     \begin{split}
1322     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1323 gezelter 3985 &4
1324 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1325     % 2
1326 gezelter 3985 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1327 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1328     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1329     \mathbf{Q}_{{\mathbf b}} ) \times
1330     \hat{r}
1331     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1332     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1333     \Bigr] v_{42}(r) \\
1334     % 4
1335 gezelter 3985 &+2
1336 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1337 gezelter 3985 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1338     \end{align}
1339     %
1340     Here, we have defined the matrix cross product in an identical form
1341     as in Ref. \onlinecite{Smith98}:
1342     \begin{equation}
1343     \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1344     \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1345     -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1346     \right]
1347 gezelter 3906 \end{equation}
1348 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1349     permuations of the matrix indices.
1350 gezelter 3980
1351 gezelter 3985 All of the radial functions required for torques are identical with
1352     the radial functions previously computed for the interaction energies.
1353     These are tabulated for both shifted force methods in table
1354     \ref{tab:tableenergy}. The torques for higher multipoles on site
1355     $\mathbf{a}$ interacting with those of lower order on site
1356     $\mathbf{b}$ can be obtained by swapping indices in the expressions
1357     above.
1358    
1359 gezelter 3980 \section{Comparison to known multipolar energies}
1360    
1361     To understand how these new real-space multipole methods behave in
1362     computer simulations, it is vital to test against established methods
1363     for computing electrostatic interactions in periodic systems, and to
1364     evaluate the size and sources of any errors that arise from the
1365     real-space cutoffs. In this paper we test Taylor-shifted and
1366     Gradient-shifted electrostatics against analytical methods for
1367     computing the energies of ordered multipolar arrays. In the following
1368     paper, we test the new methods against the multipolar Ewald sum for
1369     computing the energies, forces and torques for a wide range of typical
1370     condensed-phase (disordered) systems.
1371    
1372     Because long-range electrostatic effects can be significant in
1373     crystalline materials, ordered multipolar arrays present one of the
1374     biggest challenges for real-space cutoff methods. The dipolar
1375     analogues to the Madelung constants were first worked out by Sauer,
1376     who computed the energies of ordered dipole arrays of zero
1377     magnetization and obtained a number of these constants.\cite{Sauer}
1378     This theory was developed more completely by Luttinger and
1379 gezelter 3986 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1380     and other periodic structures. We have repeated the Luttinger \&
1381     Tisza series summations to much higher order and obtained the energy
1382     constants (converged to one part in $10^9$) in table \ref{tab:LT}.
1383    
1384     \begin{table*}[h]
1385 gezelter 3980 \centering{
1386     \caption{Luttinger \& Tisza arrays and their associated
1387     energy constants. Type "A" arrays have nearest neighbor strings of
1388     antiparallel dipoles. Type "B" arrays have nearest neighbor
1389     strings of antiparallel dipoles if the dipoles are contained in a
1390     plane perpendicular to the dipole direction that passes through
1391     the dipole.}
1392     }
1393     \label{tab:LT}
1394     \begin{ruledtabular}
1395     \begin{tabular}{cccc}
1396     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1397     A & SC & 001 & -2.676788684 \\
1398     A & BCC & 001 & 0 \\
1399     A & BCC & 111 & -1.770078733 \\
1400     A & FCC & 001 & 2.166932835 \\
1401     A & FCC & 011 & -1.083466417 \\
1402 gezelter 3986 B & SC & 001 & -2.676788684 \\
1403     B & BCC & 001 & -1.338394342 \\
1404     B & BCC & 111 & -1.770078733 \\
1405     B & FCC & 001 & -1.083466417 \\
1406     B & FCC & 011 & -1.807573634 \\
1407     -- & BCC & minimum & -1.985920929 \\
1408 gezelter 3980 \end{tabular}
1409     \end{ruledtabular}
1410     \end{table*}
1411    
1412     In addition to the A and B arrays, there is an additional minimum
1413     energy structure for the BCC lattice that was found by Luttinger \&
1414 gezelter 3986 Tisza. The total electrostatic energy for any of the arrays is given
1415     by:
1416 gezelter 3980 \begin{equation}
1417     E = C N^2 \mu^2
1418     \end{equation}
1419 gezelter 3986 where $C$ is the energy constant given in table \ref{tab:LT}, $N$ is
1420     the number of dipoles per unit volume, and $\mu$ is the strength of
1421     the dipole.
1422 gezelter 3980
1423 gezelter 3986 To test the new electrostatic methods, we have constructed very large
1424     ($N = 8,000, 16,000, 32,000$) arrays of dipoles in the orientations
1425     described in \ref{tab:LT}. For the purposes of this paper, the primary
1426     quantity of interest is the analytic energy constant for the perfect
1427     arrays. Convergence to these constants are shown as a function of both
1428     the cutoff radius, $r_c$, and the damping parameter, $\alpha$ in Fig.
1429     XXX. We have simultaneously tested a hard cutoff (where the kernel is
1430     simply truncated at the cutoff radius), as well as a shifted potential
1431     (SP) form which includes a potential-shifting and self-interaction
1432     term, but does not shift the forces and torques smoothly at the cutoff
1433     radius.
1434    
1435     {\it Quadrupolar} analogues to the Madelung constants were first
1436     worked out by Nagai and Nakamura who computed the energies of selected
1437     quadrupole arrays based on extensions to the Luttinger and Tisza
1438     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1439 gezelter 3980 energy constants for the lowest energy configurations for linear
1440     quadrupoles shown in table \ref{tab:NNQ}
1441    
1442     \begin{table*}
1443     \centering{
1444     \caption{Nagai and Nakamura Quadurpolar arrays}}
1445     \label{tab:NNQ}
1446     \begin{ruledtabular}
1447     \begin{tabular}{ccc}
1448     Lattice & Quadrupole Direction & Energy constants \\ \hline
1449     SC & 111 & -8.3 \\
1450     BCC & 011 & -21.7 \\
1451     FCC & 111 & -80.5
1452     \end{tabular}
1453     \end{ruledtabular}
1454     \end{table*}
1455    
1456     In analogy to the dipolar arrays, the total electrostatic energy for
1457     the quadrupolar arrays is:
1458     \begin{equation}
1459     E = C \frac{3}{4} N^2 Q^2
1460     \end{equation}
1461     where $Q$ is the quadrupole moment.
1462    
1463 gezelter 3985 \section{Conclusion}
1464     We have presented two efficient real-space methods for computing the
1465     interactions between point multipoles. These methods have the benefit
1466     of smoothly truncating the energies, forces, and torques at the cutoff
1467     radius, making them attractive for both molecular dynamics (MD) and
1468     Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1469     (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1470     correct lattice energies for ordered dipolar and quadrupolar arrays,
1471     while the Taylor-Shifted Force (TSF) is too severe an approximation to
1472     provide accurate convergence to lattice energies.
1473 gezelter 3980
1474 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1475     lattice energy constants with reasonably small cutoff radii. The only
1476     exception we have observed is for crystals which exhibit a bulk
1477     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1478     In this particular case, the multipole neutralization scheme can
1479     interfere with the correct computation of the energies. We note that
1480     the energies for these arrangements are typically much larger than for
1481     crystals with net-zero moments, so this is not expected to be an issue
1482     in most simulations.
1483 gezelter 3980
1484 gezelter 3985 In large systems, these new methods can be made to scale approximately
1485     linearly with system size, and detailed comparisons with the Ewald sum
1486     for a wide range of chemical environments follows in the second paper.
1487 gezelter 3980
1488 gezelter 3906 \begin{acknowledgments}
1489 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1490     Fennell. Support for this project was provided by the National
1491     Science Foundation under grant CHE-0848243. Computational time was
1492     provided by the Center for Research Computing (CRC) at the
1493     University of Notre Dame.
1494 gezelter 3906 \end{acknowledgments}
1495    
1496 gezelter 3984 \newpage
1497 gezelter 3906 \appendix
1498    
1499 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1500 gezelter 3985 \label{SmithFunc}
1501 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1502     formulas given in his appendix.\cite{Smith98} The first function
1503     $B_0(r)$ is defined by
1504 gezelter 3906 %
1505     \begin{equation}
1506     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1507     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1508     \end{equation}
1509     %
1510     The first derivative of this function is
1511     %
1512     \begin{equation}
1513     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1514     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1515     \end{equation}
1516     %
1517 gezelter 3984 which can be used to define a function $B_1(r)$:
1518 gezelter 3906 %
1519     \begin{equation}
1520     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1521     \end{equation}
1522     %
1523 gezelter 3984 In general, the recurrence relation,
1524 gezelter 3906 \begin{equation}
1525     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1526     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1527     \text{e}^{-{\alpha}^2r^2}
1528 gezelter 3984 \right] ,
1529 gezelter 3906 \end{equation}
1530 gezelter 3984 is very useful for building up higher derivatives. Using these
1531     formulas, we find:
1532 gezelter 3906 %
1533 gezelter 3984 \begin{align}
1534     \frac{dB_0}{dr}=&-rB_1(r) \\
1535     \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1536     \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1537     \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1538     \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1539     \end{align}
1540 gezelter 3906 %
1541 gezelter 3984 As noted by Smith, it is possible to approximate the $B_l(r)$
1542     functions,
1543 gezelter 3906 %
1544     \begin{equation}
1545     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1546     +\text{O}(r) .
1547     \end{equation}
1548 gezelter 3984 \newpage
1549     \section{The $r$-dependent factors for TSF electrostatics}
1550 gezelter 3906
1551     Using the shifted damped functions $f_n(r)$ defined by:
1552     %
1553     \begin{equation}
1554 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1555 gezelter 3906 \end{equation}
1556     %
1557 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1558     this Appendix, we provide formulas for successive derivatives of this
1559     function. (If there is no damping, then $B_0(r)$ is replaced by
1560     $1/r$.) First, we find:
1561 gezelter 3906 %
1562     \begin{equation}
1563     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1564     \end{equation}
1565     %
1566 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1567     function, and we define higher-order derivatives as follows:
1568 gezelter 3906 %
1569 gezelter 3984 \begin{align}
1570     g_n(r)=& \frac{d f_n}{d r} =
1571     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1572     h_n(r)=& \frac{d^2f_n}{d r^2} =
1573     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1574     s_n(r)=& \frac{d^3f_n}{d r^3} =
1575     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1576     t_n(r)=& \frac{d^4f_n}{d r^4} =
1577     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1578     u_n(r)=& \frac{d^5f_n}{d r^5} =
1579     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1580     \end{align}
1581 gezelter 3906 %
1582 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1583 gezelter 3906 %
1584     \begin{equation}
1585 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1586 gezelter 3906 \end{equation}
1587    
1588 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1589     stored on a grid for values of $r$ from $0$ to $r_c$. The functions
1590     needed are listed schematically below:
1591 gezelter 3906 %
1592     \begin{eqnarray}
1593     f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1594     g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1595     h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1596     s_2 \quad s_3 \quad &s_4 \nonumber \\
1597     t_3 \quad &t_4 \nonumber \\
1598     &u_4 \nonumber .
1599     \end{eqnarray}
1600    
1601     Using these functions, we find
1602     %
1603 gezelter 3984 \begin{align}
1604     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1605     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1606     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1607     \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1608 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1609     \delta_{ \beta \gamma} r_\alpha \right)
1610     \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1611     + r_\alpha r_\beta r_\gamma
1612 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1613     \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1614 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1615     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1616     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1617     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1618 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1619     + \text{5 permutations}
1620 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1621     \right) \nonumber \\
1622 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1623 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1624 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1625 gezelter 3906 \frac{\partial^5 f_n}
1626 gezelter 3984 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1627 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1628 gezelter 3984 + \text{14 permutations} \right)
1629 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1630 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1631     + \text{9 permutations}
1632 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1633     \right) \nonumber \\
1634 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1635 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1636 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1637     \end{align}
1638 gezelter 3906 %
1639     %
1640     %
1641 gezelter 3984 \newpage
1642     \section{The $r$-dependent factors for GSF electrostatics}
1643 gezelter 3906
1644 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1645     rather the individual terms in the multipole interaction energies.
1646     For damped charges , this still brings into the algebra multiple
1647     derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1648     we generalize the notation of the previous appendix. For $f(r)=1/r$
1649     (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1650 gezelter 3906 %
1651 gezelter 3984 \begin{align}
1652     g(r)=& \frac{df}{d r}\\
1653     h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1654     s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1655     t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1656     u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1657     \end{align}
1658 gezelter 3906 %
1659 gezelter 3984 For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1660     under the column ``Bare Coulomb.'' Equations \ref{eq:b9} to
1661     \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1662     $n$ is eliminated.
1663 gezelter 3906
1664 gezelter 3980 \newpage
1665    
1666     \bibliography{multipole}
1667    
1668 gezelter 3906 \end{document}
1669     %
1670     % ****** End of file multipole.tex ******