ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3988
Committed: Thu Jan 2 15:46:58 2014 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 65871 byte(s)
Log Message:
Modified a figure and inserted it.

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 3980
39 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44 gezelter 3988 %\preprint{AIP/123-QED}
45 gezelter 3906
46 gezelter 3988 \title{Real space alternatives to the Ewald
47 gezelter 3980 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48 gezelter 3906
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52    
53     \author{J. Daniel Gezelter}
54     \email{gezelter@nd.edu.}
55     \affiliation{Department of Chemistry and Biochemistry, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58     \author{Kathie E. Newman}
59     \affiliation{Department of Physics, University
60     of Notre Dame, Notre Dame, IN 46556}
61    
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \begin{abstract}
67 gezelter 3980 We have extended the original damped-shifted force (DSF)
68     electrostatic kernel and have been able to derive two new
69     electrostatic potentials for higher-order multipoles that are based
70     on truncated Taylor expansions around the cutoff radius. For
71     multipole-multipole interactions, we find that each of the distinct
72     orientational contributions has a separate radial function to ensure
73     that the overall forces and torques vanish at the cutoff radius. In
74     this paper, we present energy, force, and torque expressions for the
75     new models, and compare these real-space interaction models to exact
76     results for ordered arrays of multipoles.
77 gezelter 3906 \end{abstract}
78    
79 gezelter 3988 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80 gezelter 3906 % Classification Scheme.
81 gezelter 3988 %\keywords{Suggested keywords}%Use showkeys class option if keyword
82 gezelter 3906 %display desired
83     \maketitle
84    
85     \section{Introduction}
86 gezelter 3982 There has been increasing interest in real-space methods for
87     calculating electrostatic interactions in computer simulations of
88     condensed molecular
89 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90     The simplest of these techniques was developed by Wolf {\it et al.}
91     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
93     simple damped shifted force (DSF) modification to Wolf's method could
94     give nearly quantitative agreement with smooth particle mesh Ewald
95     (SPME)\cite{Essmann95} configurational energy differences as well as
96     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97 gezelter 3906
98 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
99     surprisingly good, particularly for systems with uniform charge
100     density. Additionally, dielectric constants obtained using DSF and
101 gezelter 3986 similar methods where the force vanishes at $r_{c}$ are
102 gezelter 3980 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103     related methods have now been widely investigated,\cite{Hansen:2012uq}
104 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
105     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
106     DSF electrostatics provides a compromise between the computational
107     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
108     treatments.
109 gezelter 3906
110 gezelter 3980 One common feature of many coarse-graining approaches, which treat
111     entire molecular subsystems as a single rigid body, is simplification
112     of the electrostatic interactions between these bodies so that fewer
113     site-site interactions are required to compute configurational
114 gezelter 3986 energies. To do this, the interactions between coarse-grained sites
115     are typically taken to be point
116     multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
117 gezelter 3906
118 gezelter 3986 Water, in particular, has been modeled recently with point multipoles
119     up to octupolar
120     order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
121     maximum efficiency, these models require the use of an approximate
122     multipole expansion as the exact multipole expansion can become quite
123     expensive (particularly when handled via the Ewald
124     sum).\cite{Ichiye:2006qy} Point multipoles and multipole
125     polarizability have also been utilized in the AMOEBA water model and
126 gezelter 3980 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
127 gezelter 3906
128 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
129     dynamics. Multipolar interactions are inherently short-ranged, and
130     should not need the relatively expensive Ewald treatment. However,
131     real-space cutoff methods are normally applied in an orientation-blind
132     fashion so multipoles which leave and then re-enter a cutoff sphere in
133     a different orientation can cause energy discontinuities.
134 gezelter 3906
135 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
136 gezelter 3985 kernel to point multipoles. We describe two distinct real-space
137 gezelter 3982 interaction models for higher-order multipoles based on two truncated
138     Taylor expansions that are carried out at the cutoff radius. We are
139     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
140     electrostatics. Because of differences in the initial assumptions,
141 gezelter 3986 the two methods yield related, but somewhat different expressions for
142     energies, forces, and torques.
143 gezelter 3906
144 gezelter 3982 In this paper we outline the new methodology and give functional forms
145     for the energies, forces, and torques up to quadrupole-quadrupole
146     order. We also compare the new methods to analytic energy constants
147 gezelter 3986 for periodic arrays of point multipoles. In the following paper, we
148 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
149     simulation enviornments.
150 gezelter 3982
151 gezelter 3980 \section{Methodology}
152 gezelter 3986 An efficient real-space electrostatic method involves the use of a
153     pair-wise functional form,
154     \begin{equation}
155     V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
156     \sum_i V_i^\mathrm{correction}
157     \end{equation}
158     that is short-ranged and easily truncated at a cutoff radius,
159     \begin{equation}
160     V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) = \left\{
161     \begin{array}{ll}
162     V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
163     0 & \quad r > r_c ,
164     \end{array}
165     \right.
166     \end{equation}
167     along with an easily computed correction term ($\sum_i
168     V_i^\mathrm{correction}$) which has linear-scaling with the number of
169     particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
170     coordinates of the two sites. The computational efficiency, energy
171     conservation, and even some physical properties of a simulation can
172     depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173     the cutoff radius. The goal of any approximation method should be to
174     mimic the real behavior of the electrostatic interactions as closely
175     as possible without sacrificing the near-linear scaling of a cutoff
176     method.
177 gezelter 3906
178 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
179     The DSF and Wolf methods operate by neutralizing the total charge
180     contained within the cutoff sphere surrounding each particle. This is
181     accomplished by shifting the potential functions to generate image
182     charges on the surface of the cutoff sphere for each pair interaction
183 gezelter 3986 computed within $r_c$. Damping using a complementary error
184 gezelter 3982 function is applied to the potential to accelerate convergence. The
185     potential for the DSF method, where $\alpha$ is the adjustable damping
186     parameter, is given by
187 gezelter 3980 \begin{equation*}
188 gezelter 3986 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
189 gezelter 3980 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
190 gezelter 3986 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
191 gezelter 3980 + \frac{2\alpha}{\pi^{1/2}}
192 gezelter 3986 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
193     \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
194 gezelter 3980 \label{eq:DSFPot}
195     \end{equation*}
196 gezelter 3985 Note that in this potential and in all electrostatic quantities that
197 gezelter 3986 follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
198 gezelter 3985 clarity.
199 gezelter 3980
200     To insure net charge neutrality within each cutoff sphere, an
201     additional ``self'' term is added to the potential. This term is
202     constant (as long as the charges and cutoff radius do not change), and
203     exists outside the normal pair-loop for molecular simulations. It can
204     be thought of as a contribution from a charge opposite in sign, but
205     equal in magnitude, to the central charge, which has been spread out
206     over the surface of the cutoff sphere. A portion of the self term is
207     identical to the self term in the Ewald summation, and comes from the
208     utilization of the complimentary error function for electrostatic
209 gezelter 3986 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
210     extend the Wolf self-neutralization method to zero out the dipole and
211     higher order multipoles contained within the cutoff
212 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
213 gezelter 3982
214 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
215     multipoles by insuring net charge-neutrality and net-zero moments
216     within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
217     central dipolar site $\mathbf{D}_i$ is interacting with point dipole
218     $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
219     self-neutralization scheme for point multipoles involves projecting
220     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
221     sphere. There are also significant modifications made to make the
222     forces and torques go smoothly to zero at the cutoff distance.
223 gezelter 3982
224 gezelter 3980 \begin{figure}
225 gezelter 3982 \includegraphics[width=3in]{SM}
226 gezelter 3980 \caption{Reversed multipoles are projected onto the surface of the
227     cutoff sphere. The forces, torques, and potential are then smoothly
228     shifted to zero as the sites leave the cutoff region.}
229     \label{fig:shiftedMultipoles}
230     \end{figure}
231    
232 gezelter 3986 As in the point-charge approach, there is an additional contribution
233     from self-neutralization of site $i$. The self term for multipoles is
234 gezelter 3982 described in section \ref{sec:selfTerm}.
235 gezelter 3906
236 gezelter 3982 \subsection{The multipole expansion}
237    
238 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
239 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
240     interact via electrostatics only and describe those interactions in
241     terms of a standard multipole expansion. Putting the origin of the
242     coordinate system at the center of mass of $\bf a$, we use vectors
243 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
244     a$. Then the electrostatic potential of object $\bf a$ at
245     $\mathbf{r}$ is given by
246 gezelter 3906 \begin{equation}
247 gezelter 3985 V_a(\mathbf r) =
248 gezelter 3906 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
249     \end{equation}
250 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
251     notation. Here Greek indices are used to indicate space coordinates
252     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
253     labelling specific charges in $\bf a$ and $\bf b$ respectively. The
254     Taylor expansion,
255 gezelter 3906 \begin{equation}
256     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
257     \left( 1
258     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
259     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
260     \right)
261 gezelter 3982 \frac{1}{r} ,
262 gezelter 3906 \end{equation}
263 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
264     terms of multipole operators,
265 gezelter 3906 \begin{equation}
266 gezelter 3985 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
267 gezelter 3906 \end{equation}
268     where
269     \begin{equation}
270     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
271     + Q_{{\bf a}\alpha\beta}
272     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
273     \end{equation}
274 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
275     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
276 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
277     which can be expressed as a distribution of charges,
278     \begin{align}
279     C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
280     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
281     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
282     \end{align}
283     Note that the definition of the primitive quadrupole here differs from
284     the standard traceless form, and contains an additional Taylor-series
285     based factor of $1/2$.
286 gezelter 3906
287     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
288     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
289     \begin{equation}
290 gezelter 3982 U_{\bf{ab}}(r)
291 gezelter 3985 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
292 gezelter 3982 \end{equation}
293     This can also be expanded as a Taylor series in $r$. Using a notation
294     similar to before to define the multipoles on object {\bf b},
295     \begin{equation}
296 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
297     + Q_{{\bf b}\alpha\beta}
298     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
299     \end{equation}
300 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
301 gezelter 3906 \begin{equation}
302 gezelter 3985 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
303 gezelter 3906 \end{equation}
304 gezelter 3982 This form has the benefit of separating out the energies of
305     interaction into contributions from the charge, dipole, and quadrupole
306 gezelter 3986 of $\bf a$ interacting with the same multipoles on $\bf b$.
307 gezelter 3906
308 gezelter 3982 \subsection{Damped Coulomb interactions}
309     In the standard multipole expansion, one typically uses the bare
310     Coulomb potential, with radial dependence $1/r$, as shown in
311     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
312     interaction, which results from replacing point charges with Gaussian
313     distributions of charge with width $\alpha$. In damped multipole
314     electrostatics, the kernel ($1/r$) of the expansion is replaced with
315     the function:
316 gezelter 3906 \begin{equation}
317     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319     \end{equation}
320 gezelter 3982 We develop equations below using the function $f(r)$ to represent
321 gezelter 3986 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322     bare or damped Coulomb kernels (or any other function) as long as
323     derivatives of these functions are known. Smith's convenient
324     functions $B_l(r)$ are summarized in Appendix A.
325 gezelter 3906
326 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
327     energy as well as forces and torques as $r\rightarrow r_c$. To
328     describe how this goal may be met, we use two examples, charge-charge
329 gezelter 3986 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
330     explain the idea.
331 gezelter 3906
332 gezelter 3984 \subsection{Shifted-force methods}
333 gezelter 3982 In the shifted-force approximation, the interaction energy for two
334     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
335     written:
336 gezelter 3906 \begin{equation}
337 gezelter 3985 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
338 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
339     \right) .
340     \end{equation}
341 gezelter 3982 Two shifting terms appear in this equations, one from the
342 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
343     derivative to vanish at the cutoff radius.
344 gezelter 3982
345     Since one derivative of the interaction energy is needed for the
346     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
347     interaction energy, that is:
348 gezelter 3906 \begin{equation}
349     \frac{d\,}{dr}
350     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
351     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
352     \right) .
353     \end{equation}
354 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
355     are a number of ways to generalize this derivative shift for
356 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
357     higher-order Taylor series for $r$ near $r_c$, and the other based on
358     linear shift of the kernel gradients at the cutoff itself.
359 gezelter 3906
360 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
361 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
362     is based on a Taylor expansion containing the same number of
363     derivatives required for each force term to vanish at the cutoff. For
364     example, the quadrupole-quadrupole interaction energy requires four
365     derivatives of the kernel, and the force requires one additional
366 gezelter 3986 derivative. For quadrupole-quadrupole interactions, we therefore
367     require shifted energy expressions that include up to $(r-r_c)^5$ so
368     that all energies, forces, and torques are zero as $r \rightarrow
369     r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
370     from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
371     derivatives to be taken when deriving a given multipole energy. We
372     choose a function with guaranteed smooth derivatives -- a truncated
373     Taylor series of the function $f(r)$, e.g.,
374 gezelter 3906 %
375     \begin{equation}
376 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
377 gezelter 3906 \end{equation}
378     %
379     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
380     Thus, for $f(r)=1/r$, we find
381     %
382     \begin{equation}
383     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
384     \end{equation}
385     %
386 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
387     dipole $\bf b$, we write
388 gezelter 3906 %
389     \begin{equation}
390     U_{C_{\bf a}D_{\bf b}}(r)=
391 gezelter 3985 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
392     = C_{\bf a} D_{{\bf b}\alpha}
393 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
394     \end{equation}
395     %
396 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
397 gezelter 3906 %
398     \begin{equation}
399 gezelter 3985 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
400 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
401     \frac{r_\alpha r_\beta}{r^2}
402     \left( -\frac{1}{r} \frac {\partial} {\partial r}
403     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
404     \end{equation}
405     %
406 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
407 gezelter 3906 %
408     \begin{equation}
409     F_{C_{\bf a}D_{\bf b}\beta} =
410 gezelter 3985 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
411 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
412 gezelter 3985 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
413 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
414     \end{equation}
415     %
416     This expansion shows the expected $1/r^3$ dependence of the force.
417    
418 gezelter 3984 In general, we can write
419 gezelter 3906 %
420     \begin{equation}
421 gezelter 3985 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
422 gezelter 3906 \label{generic}
423     \end{equation}
424     %
425 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
426     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
427     $n=4$ for quadrupole-quadrupole. For example, in
428     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
429     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
430     $\partial^4/\partial r_\alpha \partial r_\beta \partial
431     r_\gamma \partial r_\delta$, with implied summation combining the
432     space indices.
433 gezelter 3906
434 gezelter 3984 In the formulas presented in the tables below, the placeholder
435     function $f(r)$ is used to represent the electrostatic kernel (either
436     damped or undamped). The main functions that go into the force and
437 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
438     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
439     of the same index $n$. The algebra required to evaluate energies,
440     forces and torques is somewhat tedious, so only the final forms are
441 gezelter 3986 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
442 gezelter 3906
443 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
444 gezelter 3985 The second, and conceptually simpler approach to force-shifting
445     maintains only the linear $(r-r_c)$ term in the truncated Taylor
446     expansion, and has a similar interaction energy for all multipole
447     orders:
448 gezelter 3906 \begin{equation}
449 gezelter 3985 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
450     \lvert _{r_c} .
451     \label{generic2}
452 gezelter 3906 \end{equation}
453 gezelter 3985 Here the gradient for force shifting is evaluated for an image
454 gezelter 3986 multipole projected onto the surface of the cutoff sphere (see fig
455 gezelter 3985 \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
456     appear. The primary difference between the TSF and GSF methods is the
457     stage at which the Taylor Series is applied; in the Taylor-shifted
458     approach, it is applied to the kernel itself. In the Gradient-shifted
459     approach, it is applied to individual radial interactions terms in the
460     multipole expansion. Energies from this method thus have the general
461     form:
462 gezelter 3906 \begin{equation}
463 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
464     \label{generic3}
465 gezelter 3906 \end{equation}
466    
467 gezelter 3986 Functional forms for both methods (TSF and GSF) can both be summarized
468 gezelter 3985 using the form of Eq.~(\ref{generic3}). The basic forms for the
469     energy, force, and torque expressions are tabulated for both shifting
470 gezelter 3986 approaches below -- for each separate orientational contribution, only
471 gezelter 3985 the radial factors differ between the two methods.
472 gezelter 3906
473     \subsection{\label{sec:level2}Body and space axes}
474    
475 gezelter 3985 [XXX Do we need this section in the main paper? or should it go in the
476     extra materials?]
477    
478 gezelter 3984 So far, all energies and forces have been written in terms of fixed
479 gezelter 3985 space coordinates. Interaction energies are computed from the generic
480     formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which combine
481     orientational prefactors with radial functions. Because objects $\bf
482 gezelter 3984 a$ and $\bf b$ both translate and rotate during a molecular dynamics
483     (MD) simulation, it is desirable to contract all $r$-dependent terms
484     with dipole and quadrupole moments expressed in terms of their body
485 gezelter 3985 axes. To do so, we have followed the methodology of Allen and
486     Germano,\cite{Allen:2006fk} which was itself based on earlier work by
487     Price {\em et al.}\cite{Price:1984fk}
488 gezelter 3906
489 gezelter 3984 We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
490     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
491     referring to a convenient set of inertial body axes. (N.B., these
492     body axes are generally not the same as those for which the quadrupole
493     moment is diagonal.) Then,
494 gezelter 3906 %
495     \begin{eqnarray}
496     \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
497     \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
498     \end{eqnarray}
499 gezelter 3985 Rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
500     expressed using these unit vectors:
501 gezelter 3906 \begin{eqnarray}
502     \hat{\mathbf {a}} =
503     \begin{pmatrix}
504     \hat{a}_1 \\
505     \hat{a}_2 \\
506     \hat{a}_3
507     \end{pmatrix}
508     =
509     \begin{pmatrix}
510     a_{1x} \quad a_{1y} \quad a_{1z} \\
511     a_{2x} \quad a_{2y} \quad a_{2z} \\
512     a_{3x} \quad a_{3y} \quad a_{3z}
513     \end{pmatrix}\\
514     \hat{\mathbf {b}} =
515     \begin{pmatrix}
516     \hat{b}_1 \\
517     \hat{b}_2 \\
518     \hat{b}_3
519     \end{pmatrix}
520     =
521     \begin{pmatrix}
522 gezelter 3985 b_{1x} \quad b_{1y} \quad b_{1z} \\
523 gezelter 3906 b_{2x} \quad b_{2y} \quad b_{2z} \\
524     b_{3x} \quad b_{3y} \quad b_{3z}
525     \end{pmatrix} .
526     \end{eqnarray}
527     %
528 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
529     coordinates. All contractions of prefactors with derivatives of
530     functions can be written in terms of these matrices. It proves to be
531     equally convenient to just write any contraction in terms of unit
532     vectors $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. In the torque
533     expressions, it is useful to have the angular-dependent terms
534     available in three different fashions, e.g. for the dipole-dipole
535     contraction:
536 gezelter 3906 %
537 gezelter 3985 \begin{equation}
538 gezelter 3906 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
539 gezelter 3985 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
540     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
541     \end{equation}
542 gezelter 3906 %
543 gezelter 3985 The first two forms are written using space coordinates. The first
544     form is standard in the chemistry literature, while the second is
545     expressed using implied summation notation. The third form shows
546     explicit sums over body indices and the dot products now indicate
547     contractions using space indices.
548 gezelter 3906
549    
550 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
551    
552 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
553     summation~\cite{Wolf99} and the damped shifted force (DSF)
554     extension~\cite{Fennell:2006zl} also included self-interactions that
555     are handled separately from the pairwise interactions between
556     sites. The self-term is normally calculated via a single loop over all
557     sites in the system, and is relatively cheap to evaluate. The
558     self-interaction has contributions from two sources.
559    
560     First, the neutralization procedure within the cutoff radius requires
561     a contribution from a charge opposite in sign, but equal in magnitude,
562     to the central charge, which has been spread out over the surface of
563     the cutoff sphere. For a system of undamped charges, the total
564     self-term is
565 gezelter 3980 \begin{equation}
566     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
567     \label{eq:selfTerm}
568     \end{equation}
569 gezelter 3985
570     Second, charge damping with the complementary error function is a
571     partial analogy to the Ewald procedure which splits the interaction
572     into real and reciprocal space sums. The real space sum is retained
573     in the Wolf and DSF methods. The reciprocal space sum is first
574     minimized by folding the largest contribution (the self-interaction)
575     into the self-interaction from charge neutralization of the damped
576     potential. The remainder of the reciprocal space portion is then
577     discarded (as this contributes the largest computational cost and
578     complexity to the Ewald sum). For a system containing only damped
579     charges, the complete self-interaction can be written as
580 gezelter 3980 \begin{equation}
581     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
582     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
583     C_{\bf a}^{2}.
584     \label{eq:dampSelfTerm}
585     \end{equation}
586    
587     The extension of DSF electrostatics to point multipoles requires
588     treatment of {\it both} the self-neutralization and reciprocal
589     contributions to the self-interaction for higher order multipoles. In
590     this section we give formulae for these interactions up to quadrupolar
591     order.
592    
593     The self-neutralization term is computed by taking the {\it
594     non-shifted} kernel for each interaction, placing a multipole of
595     equal magnitude (but opposite in polarization) on the surface of the
596     cutoff sphere, and averaging over the surface of the cutoff sphere.
597     Because the self term is carried out as a single sum over sites, the
598     reciprocal-space portion is identical to half of the self-term
599     obtained by Smith and Aguado and Madden for the application of the
600     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
601     site which posesses a charge, dipole, and multipole, both types of
602     contribution are given in table \ref{tab:tableSelf}.
603    
604     \begin{table*}
605     \caption{\label{tab:tableSelf} Self-interaction contributions for
606     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
607     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
608     \begin{ruledtabular}
609     \begin{tabular}{lccc}
610     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
611     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
612     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
613     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
614     Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
615     $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
616     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
617     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
618     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
619     \end{tabular}
620     \end{ruledtabular}
621     \end{table*}
622    
623     For sites which simultaneously contain charges and quadrupoles, the
624     self-interaction includes a cross-interaction between these two
625     multipole orders. Symmetry prevents the charge-dipole and
626     dipole-quadrupole interactions from contributing to the
627     self-interaction. The functions that go into the self-neutralization
628 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
629     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
630     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
631     have been evaluated at the cutoff distance. For undamped
632     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
633     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
634     on. Appendix \ref{SmithFunc} contains recursion relations that allow
635     rapid evaluation of these derivatives.
636 gezelter 3980
637 gezelter 3985 \section{Interaction energies, forces, and torques}
638     The main result of this paper is a set of expressions for the
639     energies, forces and torques (up to quadrupole-quadrupole order) that
640     work for both the Taylor-shifted and Gradient-shifted approximations.
641     These expressions were derived using a set of generic radial
642     functions. Without using the shifting approximations mentioned above,
643     some of these radial functions would be identical, and the expressions
644     coalesce into the familiar forms for unmodified multipole-multipole
645     interactions. Table \ref{tab:tableenergy} maps between the generic
646     functions and the radial functions derived for both the Taylor-shifted
647     and Gradient-shifted methods. The energy equations are written in
648     terms of lab-frame representations of the dipoles, quadrupoles, and
649     the unit vector connecting the two objects,
650 gezelter 3906
651     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
652     %
653     %
654     % u ca cb
655     %
656 gezelter 3983 \begin{align}
657     U_{C_{\bf a}C_{\bf b}}(r)=&
658 gezelter 3985 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
659 gezelter 3983 \\
660 gezelter 3906 %
661     % u ca db
662     %
663 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
664 gezelter 3985 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
665 gezelter 3906 \label{uchdip}
666 gezelter 3983 \\
667 gezelter 3906 %
668     % u ca qb
669     %
670 gezelter 3985 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
671     v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
672     \hat{r} \right) v_{22}(r) \Bigr]
673 gezelter 3906 \label{uchquad}
674 gezelter 3983 \\
675 gezelter 3906 %
676     % u da cb
677     %
678 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
679     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
680     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
681     %\\
682 gezelter 3906 %
683     % u da db
684     %
685 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
686 gezelter 3985 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
687 gezelter 3906 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
688     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
689     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
690     v_{22}(r) \Bigr]
691     \label{udipdip}
692 gezelter 3983 \\
693 gezelter 3906 %
694     % u da qb
695     %
696     \begin{split}
697     % 1
698 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
699 gezelter 3985 -\Bigl[
700 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
701     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
702     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
703     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
704     % 2
705 gezelter 3985 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
706 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
707     \label{udipquad}
708     \end{split}
709 gezelter 3983 \\
710 gezelter 3906 %
711     % u qa cb
712     %
713 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
714     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
715     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
716     %\label{uquadch}
717     %\\
718 gezelter 3906 %
719     % u qa db
720     %
721 gezelter 3983 %\begin{split}
722 gezelter 3906 %1
723 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
724     %\frac{1}{4\pi \epsilon_0} \Bigl[
725     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
726     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
727     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
728     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
729 gezelter 3906 % 2
730 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
731     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
732     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
733     %\label{uquaddip}
734     %\end{split}
735     %\\
736 gezelter 3906 %
737     % u qa qb
738     %
739     \begin{split}
740     %1
741 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
742 gezelter 3985 \Bigl[
743 gezelter 3906 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
744     +2 \text{Tr} \left(
745     \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
746     \\
747     % 2
748 gezelter 3985 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
749 gezelter 3906 \left( \hat{r} \cdot
750     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
751     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
752     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
753     \cdot \hat{r} \right) +4 (\hat{r} \cdot
754     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
755     \Bigr] v_{42}(r)
756     \\
757     % 4
758 gezelter 3985 &+
759 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
760     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
761     \label{uquadquad}
762     \end{split}
763 gezelter 3983 \end{align}
764 gezelter 3985 %
765 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
766     with those on site $\mathbf{a}$ can be obtained by swapping indices
767     along with the sign of the intersite vector, $\hat{r}$.
768 gezelter 3906
769     %
770     %
771     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
772     %
773    
774 gezelter 3985 \begin{sidewaystable}
775     \caption{\label{tab:tableenergy}Radial functions used in the energy
776     and torque equations. The $f, g, h, s, t, \mathrm{and} u$
777     functions used in this table are defined in Appendices B and C.}
778     \begin{tabular}{|c|c|l|l|} \hline
779     Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
780 gezelter 3906 \\ \hline
781     %
782     %
783     %
784     %Ch-Ch&
785     $v_{01}(r)$ &
786     $\frac{1}{r}$ &
787     $f_0(r)$ &
788     $f(r)-f(r_c)-(r-r_c)g(r_c)$
789     \\
790     %
791     %
792     %
793     %Ch-Di&
794     $v_{11}(r)$ &
795     $-\frac{1}{r^2}$ &
796     $g_1(r)$ &
797     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
798     %
799     %
800     %
801     %Ch-Qu/Di-Di&
802     $v_{21}(r)$ &
803     $-\frac{1}{r^3} $ &
804     $\frac{g_2(r)}{r} $ &
805     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
806     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
807     $v_{22}(r)$ &
808     $\frac{3}{r^3} $ &
809     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
810     $\left(-\frac{g(r)}{r}+h(r) \right)
811 gezelter 3985 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
812     &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
813 gezelter 3906 \\
814     %
815     %
816     %
817     %Di-Qu &
818     $v_{31}(r)$ &
819     $\frac{3}{r^4} $ &
820     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
821     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
822     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
823 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
824 gezelter 3906 \\
825     %
826     $v_{32}(r)$ &
827     $-\frac{15}{r^4} $ &
828     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
829     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
830     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
831 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
832 gezelter 3906 \\
833     %
834     %
835     %
836     %Qu-Qu&
837     $v_{41}(r)$ &
838     $\frac{3}{r^5} $ &
839     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
840     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
841     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
842 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
843 gezelter 3906 \\
844     % 2
845     $v_{42}(r)$ &
846     $- \frac{15}{r^5} $ &
847     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
848     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
849     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
850 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
851 gezelter 3906 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
852     \\
853     % 3
854     $v_{43}(r)$ &
855     $ \frac{105}{r^5} $ &
856     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
857     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
858 gezelter 3985 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
859     &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
860     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
861 gezelter 3906 \end{tabular}
862 gezelter 3985 \end{sidewaystable}
863 gezelter 3906 %
864     %
865     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
866     %
867    
868 gezelter 3985 \begin{sidewaystable}
869 gezelter 3906 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
870 gezelter 3985 \begin{tabular}{|c|c|l|l|} \hline
871     Function&Definition&Taylor-Shifted&Gradient-Shifted
872 gezelter 3906 \\ \hline
873     %
874     %
875     %
876     $w_a(r)$&
877 gezelter 3985 $\frac{d v_{01}}{dr}$&
878     $g_0(r)$&
879     $g(r)-g(r_c)$ \\
880 gezelter 3906 %
881     %
882     $w_b(r)$ &
883 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
884     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
885     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
886 gezelter 3906 %
887     $w_c(r)$ &
888 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
889     $\frac{g_1(r)}{r} $ &
890     $\frac{v_{11}(r)}{r}$\\
891 gezelter 3906 %
892     %
893     $w_d(r)$&
894 gezelter 3985 $\frac{d v_{21}}{dr}$&
895     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
896     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
897     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
898 gezelter 3906 %
899     $w_e(r)$ &
900 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
901     $\frac{v_{22}(r)}{r}$ &
902 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
903     %
904     %
905     $w_f(r)$&
906 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
907     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
908     $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
909     &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
910     \right)-\frac{2v_{22}(r)}{r}$\\
911 gezelter 3906 %
912     $w_g(r)$&
913 gezelter 3985 $\frac{v_{31}(r)}{r}$&
914     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
915 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
916     %
917     $w_h(r)$ &
918 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
919     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
920     $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
921     &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
922 gezelter 3906 % 2
923     $w_i(r)$ &
924 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
925     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
926     $\frac{v_{32}(r)}{r}$\\
927 gezelter 3906 %
928     $w_j(r)$ &
929 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
930     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
931     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
932     &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
933     -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
934 gezelter 3906 %
935     $w_k(r)$ &
936 gezelter 3985 $\frac{d v_{41}}{dr} $ &
937     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
938     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
939     -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
940 gezelter 3906 %
941     $w_l(r)$ &
942 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
943     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
944     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
945     &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
946     -\frac{2v_{42}(r)}{r}$\\
947 gezelter 3906 %
948     $w_m(r)$ &
949 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
950     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
951     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
952     &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
953     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
954     &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
955 gezelter 3906 %
956     $w_n(r)$ &
957 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
958     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
959     $\frac{v_{42}(r)}{r}$\\
960 gezelter 3906 %
961     $w_o(r)$ &
962 gezelter 3985 $\frac{v_{43}(r)}{r}$&
963     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
964     $\frac{v_{43}(r)}{r}$ \\ \hline
965 gezelter 3906 %
966    
967     \end{tabular}
968 gezelter 3985 \end{sidewaystable}
969 gezelter 3906 %
970     %
971     %
972    
973     \subsection{Forces}
974 gezelter 3985 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
975     $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
976     a simple charge-charge interaction, these forces will point along the
977     $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
978     \mathbf{r}_a $. Thus
979 gezelter 3906 %
980     \begin{equation}
981     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
982     \quad \text{and} \quad F_{\bf b \alpha}
983     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
984     \end{equation}
985     %
986 gezelter 3985 Obtaining the force from the interaction energy expressions is the
987     same for higher-order multipole interactions -- the trick is to make
988     sure that all $r$-dependent derivatives are considered. This is
989     straighforward if the interaction energies are written explicitly in
990     terms of $\hat{r}$ and the body axes ($\hat{a}_m$,
991     $\hat{b}_n$) :
992 gezelter 3906 %
993     \begin{equation}
994     U(r,\{\hat{a}_m \cdot \hat{r} \},
995 gezelter 3985 \{\hat{b}_n\cdot \hat{r} \},
996 gezelter 3906 \{\hat{a}_m \cdot \hat{b}_n \}) .
997     \label{ugeneral}
998     \end{equation}
999     %
1000 gezelter 3985 Allen and Germano,\cite{Allen:2006fk} showed that if the energy is
1001     written in this form, the forces come out relatively cleanly,
1002 gezelter 3906 %
1003     \begin{equation}
1004     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
1005     = \frac{\partial U}{\partial r} \hat{r}
1006     + \sum_m \left[
1007     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1008     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1009     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1010     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1011     \right] \label{forceequation}.
1012     \end{equation}
1013     %
1014 gezelter 3985 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
1015     is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
1016     In simplifying the algebra, we have also used:
1017 gezelter 3906 %
1018 gezelter 3985 \begin{align}
1019 gezelter 3906 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1020 gezelter 3985 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1021 gezelter 3906 \right) \\
1022     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1023 gezelter 3985 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1024 gezelter 3906 \right) .
1025 gezelter 3985 \end{align}
1026 gezelter 3906 %
1027 gezelter 3985 We list below the force equations written in terms of lab-frame
1028     coordinates. The radial functions used in the two methods are listed
1029     in Table \ref{tab:tableFORCE}
1030 gezelter 3906 %
1031 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1032 gezelter 3906 %
1033     % **************************************************************************
1034     % f ca cb
1035     %
1036 gezelter 3985 \begin{align}
1037     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1038     C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1039 gezelter 3906 %
1040     %
1041     %
1042 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1043     C_{\bf a} \Bigl[
1044 gezelter 3906 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1045     w_b(r) \hat{r}
1046 gezelter 3985 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1047 gezelter 3906 %
1048     %
1049     %
1050 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1051     C_{\bf a } \Bigr[
1052 gezelter 3906 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1053     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1054 gezelter 3985 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1055     \right) w_f(r) \hat{r} \Bigr] \\
1056 gezelter 3906 %
1057     %
1058     %
1059 gezelter 3985 % \begin{equation}
1060     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1061     % -C_{\bf{b}} \Bigl[
1062     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1063     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1064     % \end{equation}
1065 gezelter 3906 %
1066     %
1067     %
1068 gezelter 3985 \begin{split}
1069     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1070 gezelter 3906 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1071     + \left( \mathbf{D}_{\mathbf {a}}
1072     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1073 gezelter 3985 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1074 gezelter 3906 % 2
1075 gezelter 3985 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1076     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1077     \end{split}\\
1078 gezelter 3906 %
1079     %
1080     %
1081     \begin{split}
1082 gezelter 3985 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1083 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1084     +2 \mathbf{D}_{\mathbf{a}} \cdot
1085     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1086 gezelter 3985 - \Bigl[
1087 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1088     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1089     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1090     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1091     % 3
1092 gezelter 3985 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1093 gezelter 3906 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1094     w_i(r)
1095     % 4
1096 gezelter 3985 -
1097 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1098 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1099 gezelter 3906 %
1100     %
1101 gezelter 3985 % \begin{equation}
1102     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1103     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1104     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1105     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1106     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1107     % \end{equation}
1108     % %
1109     % \begin{equation}
1110     % \begin{split}
1111     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1112     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1113     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1114     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1115     % % 2
1116     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1117     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1118     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1119     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1120     % % 3
1121     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1122     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1123     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1124     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1125     % % 4
1126     % +\frac{1}{4\pi \epsilon_0}
1127     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1128     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1129     % \end{split}
1130     % \end{equation}
1131 gezelter 3906 %
1132     %
1133     %
1134     \begin{split}
1135 gezelter 3985 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1136     \Bigl[
1137 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1138     + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1139     % 2
1140 gezelter 3985 &+ \Bigl[
1141 gezelter 3906 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1142     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1143     % 3
1144     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1145     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1146     % 4
1147 gezelter 3985 &+ \Bigl[
1148 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1149     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1150     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1151     % 5
1152     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1153     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1154     %
1155 gezelter 3985 &+ \Bigl[
1156 gezelter 3906 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1157     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1158     %6
1159     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1160     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1161     % 7
1162 gezelter 3985 &+
1163 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1164 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1165     \end{align}
1166     Note that the forces for higher multipoles on site $\mathbf{a}$
1167     interacting with those of lower order on site $\mathbf{b}$ can be
1168     obtained by swapping indices in the expressions above.
1169    
1170 gezelter 3906 %
1171 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1172 gezelter 3906 %
1173     \subsection{Torques}
1174 gezelter 3985 When energies are written in the form of Eq.~({\ref{ugeneral}), then
1175     torques can be found in a relatively straightforward
1176     manner,\cite{Allen:2006fk}
1177 gezelter 3906 %
1178     \begin{eqnarray}
1179     \mathbf{\tau}_{\bf a} =
1180     \sum_m
1181     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1182     ( \hat{r} \times \hat{a}_m )
1183     -\sum_{mn}
1184     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1185     (\hat{a}_m \times \hat{b}_n) \\
1186     %
1187     \mathbf{\tau}_{\bf b} =
1188     \sum_m
1189     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1190     ( \hat{r} \times \hat{b}_m)
1191     +\sum_{mn}
1192     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1193     (\hat{a}_m \times \hat{b}_n) .
1194     \end{eqnarray}
1195     %
1196     %
1197 gezelter 3985 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1198     methods are given in space-frame coordinates:
1199 gezelter 3906 %
1200     %
1201 gezelter 3985 \begin{align}
1202     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1203     C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1204 gezelter 3906 %
1205     %
1206     %
1207 gezelter 3985 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1208     2C_{\bf a}
1209     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1210 gezelter 3906 %
1211     %
1212     %
1213 gezelter 3985 % \begin{equation}
1214     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1215     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1216     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1217     % \end{equation}
1218 gezelter 3906 %
1219     %
1220     %
1221 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1222     \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1223 gezelter 3906 % 2
1224 gezelter 3985 -
1225 gezelter 3906 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1226 gezelter 3985 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1227 gezelter 3906 %
1228     %
1229     %
1230 gezelter 3985 % \begin{equation}
1231     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1232     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1233     % % 2
1234     % +\frac{1}{4\pi \epsilon_0}
1235     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1236     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1237     % \end{equation}
1238 gezelter 3906 %
1239     %
1240     %
1241 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1242     \Bigl[
1243 gezelter 3906 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1244     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1245     +2 \mathbf{D}_{\mathbf{a}} \times
1246     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1247     \Bigr] v_{31}(r)
1248     % 3
1249 gezelter 3985 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1250     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1251 gezelter 3906 %
1252     %
1253     %
1254 gezelter 3985 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1255     \Bigl[
1256 gezelter 3906 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1257     \hat{r}
1258     -2 \mathbf{D}_{\mathbf{a}} \times
1259     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1260     \Bigr] v_{31}(r)
1261     % 2
1262 gezelter 3985 +
1263 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1264 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1265 gezelter 3906 %
1266     %
1267     %
1268 gezelter 3985 % \begin{equation}
1269     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1270     % \frac{1}{4\pi \epsilon_0} \Bigl[
1271     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1272     % +2 \mathbf{D}_{\mathbf{b}} \times
1273     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1274     % \Bigr] v_{31}(r)
1275     % % 3
1276     % - \frac{2}{4\pi \epsilon_0}
1277     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1278     % (\hat{r} \cdot \mathbf
1279     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1280     % \end{equation}
1281 gezelter 3906 %
1282     %
1283     %
1284 gezelter 3985 % \begin{equation}
1285     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1286     % \frac{1}{4\pi \epsilon_0} \Bigl[
1287     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1288     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1289     % +2 \mathbf{D}_{\mathbf{b}} \times
1290     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1291     % % 2
1292     % +\frac{1}{4\pi \epsilon_0}
1293     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1294     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1295     % \end{equation}
1296 gezelter 3906 %
1297     %
1298     %
1299     \begin{split}
1300 gezelter 3985 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1301     -4
1302 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1303     v_{41}(r) \\
1304     % 2
1305 gezelter 3985 &+
1306 gezelter 3906 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1307     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1308     +4 \hat{r} \times
1309     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1310     % 3
1311     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1312     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1313     % 4
1314 gezelter 3985 &+ 2
1315 gezelter 3906 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1316 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1317 gezelter 3906 %
1318     %
1319     %
1320     \begin{split}
1321     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1322 gezelter 3985 &4
1323 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1324     % 2
1325 gezelter 3985 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1326 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1327     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1328     \mathbf{Q}_{{\mathbf b}} ) \times
1329     \hat{r}
1330     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1331     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1332     \Bigr] v_{42}(r) \\
1333     % 4
1334 gezelter 3985 &+2
1335 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1336 gezelter 3985 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1337     \end{align}
1338     %
1339     Here, we have defined the matrix cross product in an identical form
1340     as in Ref. \onlinecite{Smith98}:
1341     \begin{equation}
1342     \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1343     \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1344     -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1345     \right]
1346 gezelter 3906 \end{equation}
1347 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1348     permuations of the matrix indices.
1349 gezelter 3980
1350 gezelter 3985 All of the radial functions required for torques are identical with
1351     the radial functions previously computed for the interaction energies.
1352     These are tabulated for both shifted force methods in table
1353     \ref{tab:tableenergy}. The torques for higher multipoles on site
1354     $\mathbf{a}$ interacting with those of lower order on site
1355     $\mathbf{b}$ can be obtained by swapping indices in the expressions
1356     above.
1357    
1358 gezelter 3980 \section{Comparison to known multipolar energies}
1359    
1360     To understand how these new real-space multipole methods behave in
1361     computer simulations, it is vital to test against established methods
1362     for computing electrostatic interactions in periodic systems, and to
1363     evaluate the size and sources of any errors that arise from the
1364     real-space cutoffs. In this paper we test Taylor-shifted and
1365     Gradient-shifted electrostatics against analytical methods for
1366     computing the energies of ordered multipolar arrays. In the following
1367     paper, we test the new methods against the multipolar Ewald sum for
1368     computing the energies, forces and torques for a wide range of typical
1369     condensed-phase (disordered) systems.
1370    
1371     Because long-range electrostatic effects can be significant in
1372     crystalline materials, ordered multipolar arrays present one of the
1373     biggest challenges for real-space cutoff methods. The dipolar
1374     analogues to the Madelung constants were first worked out by Sauer,
1375     who computed the energies of ordered dipole arrays of zero
1376     magnetization and obtained a number of these constants.\cite{Sauer}
1377     This theory was developed more completely by Luttinger and
1378 gezelter 3986 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1379     and other periodic structures. We have repeated the Luttinger \&
1380     Tisza series summations to much higher order and obtained the energy
1381     constants (converged to one part in $10^9$) in table \ref{tab:LT}.
1382    
1383     \begin{table*}[h]
1384 gezelter 3980 \centering{
1385     \caption{Luttinger \& Tisza arrays and their associated
1386     energy constants. Type "A" arrays have nearest neighbor strings of
1387     antiparallel dipoles. Type "B" arrays have nearest neighbor
1388     strings of antiparallel dipoles if the dipoles are contained in a
1389     plane perpendicular to the dipole direction that passes through
1390     the dipole.}
1391     }
1392     \label{tab:LT}
1393     \begin{ruledtabular}
1394     \begin{tabular}{cccc}
1395     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1396     A & SC & 001 & -2.676788684 \\
1397     A & BCC & 001 & 0 \\
1398     A & BCC & 111 & -1.770078733 \\
1399     A & FCC & 001 & 2.166932835 \\
1400     A & FCC & 011 & -1.083466417 \\
1401 gezelter 3986 B & SC & 001 & -2.676788684 \\
1402     B & BCC & 001 & -1.338394342 \\
1403     B & BCC & 111 & -1.770078733 \\
1404     B & FCC & 001 & -1.083466417 \\
1405     B & FCC & 011 & -1.807573634 \\
1406     -- & BCC & minimum & -1.985920929 \\
1407 gezelter 3980 \end{tabular}
1408     \end{ruledtabular}
1409     \end{table*}
1410    
1411     In addition to the A and B arrays, there is an additional minimum
1412     energy structure for the BCC lattice that was found by Luttinger \&
1413 gezelter 3986 Tisza. The total electrostatic energy for any of the arrays is given
1414     by:
1415 gezelter 3980 \begin{equation}
1416     E = C N^2 \mu^2
1417     \end{equation}
1418 gezelter 3986 where $C$ is the energy constant given in table \ref{tab:LT}, $N$ is
1419     the number of dipoles per unit volume, and $\mu$ is the strength of
1420     the dipole.
1421 gezelter 3980
1422 gezelter 3988 To test the new electrostatic methods, we have constructed very large,
1423     $N$ = 8,000~(sc), 16,000~(bcc), or 32,000~(fcc) arrays of dipoles in
1424     the orientations described in table \ref{tab:LT}. For the purposes of
1425     testing the energy expressions and the self-neutralization schemes,
1426     the primary quantity of interest is the analytic energy constant for
1427     the perfect arrays. Convergence to these constants are shown as a
1428     function of both the cutoff radius, $r_c$, and the damping parameter,
1429     $\alpha$ in Figs. \ref{fig:energyConstVsCutoff} and XXX. We have
1430     simultaneously tested a hard cutoff (where the kernel is simply
1431     truncated at the cutoff radius), as well as a shifted potential (SP)
1432     form which includes a potential-shifting and self-interaction term,
1433     but does not shift the forces and torques smoothly at the cutoff
1434 gezelter 3986 radius.
1435    
1436 gezelter 3988 \begin{figure}
1437     \includegraphics[width=4.5in]{energyConstVsCutoff}
1438     \caption{Convergence to the analytic energy constants as a function of
1439     cutoff radius (normalized by the lattice constant) for the different
1440     real-space methods. The two crystals shown here are the ``B'' array
1441     for bcc crystals with the dipoles along the 001 direction (upper),
1442     as well as the minimum energy bcc lattice (lower). The analytic
1443     energy constants are shown as a grey dashed line. The left panel
1444     shows results for the undamped kernel ($1/r$), while the damped
1445     error function kernel, $B_0(r)$ was used in the right panel. }
1446     \label{fig:energyConstVsCutoff}
1447     \end{figure}
1448    
1449     The Hard cutoff exhibits oscillations around the analytic energy
1450     constants, and converges to incorrect energies when the complementary
1451     error function damping kernel is used. The shifted potential (SP) and
1452     gradient-shifted force (GSF) approximations converge to the correct
1453     energy smoothly by $r_c / 6 a$ even for the undamped case. This
1454     indicates that the correction provided by the self term is required
1455     for obtaining accurate energies. The Taylor-shifted force (TSF)
1456     approximation appears to perturb the potential too much inside the
1457     cutoff region to provide accurate measures of the energy constants.
1458    
1459    
1460 gezelter 3986 {\it Quadrupolar} analogues to the Madelung constants were first
1461     worked out by Nagai and Nakamura who computed the energies of selected
1462     quadrupole arrays based on extensions to the Luttinger and Tisza
1463     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1464 gezelter 3980 energy constants for the lowest energy configurations for linear
1465     quadrupoles shown in table \ref{tab:NNQ}
1466    
1467     \begin{table*}
1468     \centering{
1469     \caption{Nagai and Nakamura Quadurpolar arrays}}
1470     \label{tab:NNQ}
1471     \begin{ruledtabular}
1472     \begin{tabular}{ccc}
1473     Lattice & Quadrupole Direction & Energy constants \\ \hline
1474     SC & 111 & -8.3 \\
1475     BCC & 011 & -21.7 \\
1476     FCC & 111 & -80.5
1477     \end{tabular}
1478     \end{ruledtabular}
1479     \end{table*}
1480    
1481     In analogy to the dipolar arrays, the total electrostatic energy for
1482     the quadrupolar arrays is:
1483     \begin{equation}
1484     E = C \frac{3}{4} N^2 Q^2
1485     \end{equation}
1486     where $Q$ is the quadrupole moment.
1487    
1488 gezelter 3985 \section{Conclusion}
1489     We have presented two efficient real-space methods for computing the
1490     interactions between point multipoles. These methods have the benefit
1491     of smoothly truncating the energies, forces, and torques at the cutoff
1492     radius, making them attractive for both molecular dynamics (MD) and
1493     Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1494     (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1495     correct lattice energies for ordered dipolar and quadrupolar arrays,
1496     while the Taylor-Shifted Force (TSF) is too severe an approximation to
1497     provide accurate convergence to lattice energies.
1498 gezelter 3980
1499 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1500     lattice energy constants with reasonably small cutoff radii. The only
1501     exception we have observed is for crystals which exhibit a bulk
1502     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1503     In this particular case, the multipole neutralization scheme can
1504     interfere with the correct computation of the energies. We note that
1505     the energies for these arrangements are typically much larger than for
1506     crystals with net-zero moments, so this is not expected to be an issue
1507     in most simulations.
1508 gezelter 3980
1509 gezelter 3985 In large systems, these new methods can be made to scale approximately
1510     linearly with system size, and detailed comparisons with the Ewald sum
1511     for a wide range of chemical environments follows in the second paper.
1512 gezelter 3980
1513 gezelter 3906 \begin{acknowledgments}
1514 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1515     Fennell. Support for this project was provided by the National
1516     Science Foundation under grant CHE-0848243. Computational time was
1517     provided by the Center for Research Computing (CRC) at the
1518     University of Notre Dame.
1519 gezelter 3906 \end{acknowledgments}
1520    
1521 gezelter 3984 \newpage
1522 gezelter 3906 \appendix
1523    
1524 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1525 gezelter 3985 \label{SmithFunc}
1526 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1527     formulas given in his appendix.\cite{Smith98} The first function
1528     $B_0(r)$ is defined by
1529 gezelter 3906 %
1530     \begin{equation}
1531     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1532     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1533     \end{equation}
1534     %
1535     The first derivative of this function is
1536     %
1537     \begin{equation}
1538     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1539     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1540     \end{equation}
1541     %
1542 gezelter 3984 which can be used to define a function $B_1(r)$:
1543 gezelter 3906 %
1544     \begin{equation}
1545     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1546     \end{equation}
1547     %
1548 gezelter 3984 In general, the recurrence relation,
1549 gezelter 3906 \begin{equation}
1550     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1551     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1552     \text{e}^{-{\alpha}^2r^2}
1553 gezelter 3984 \right] ,
1554 gezelter 3906 \end{equation}
1555 gezelter 3984 is very useful for building up higher derivatives. Using these
1556     formulas, we find:
1557 gezelter 3906 %
1558 gezelter 3984 \begin{align}
1559     \frac{dB_0}{dr}=&-rB_1(r) \\
1560     \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1561     \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1562     \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1563     \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1564     \end{align}
1565 gezelter 3906 %
1566 gezelter 3984 As noted by Smith, it is possible to approximate the $B_l(r)$
1567     functions,
1568 gezelter 3906 %
1569     \begin{equation}
1570     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1571     +\text{O}(r) .
1572     \end{equation}
1573 gezelter 3984 \newpage
1574     \section{The $r$-dependent factors for TSF electrostatics}
1575 gezelter 3906
1576     Using the shifted damped functions $f_n(r)$ defined by:
1577     %
1578     \begin{equation}
1579 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1580 gezelter 3906 \end{equation}
1581     %
1582 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1583     this Appendix, we provide formulas for successive derivatives of this
1584     function. (If there is no damping, then $B_0(r)$ is replaced by
1585     $1/r$.) First, we find:
1586 gezelter 3906 %
1587     \begin{equation}
1588     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1589     \end{equation}
1590     %
1591 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1592     function, and we define higher-order derivatives as follows:
1593 gezelter 3906 %
1594 gezelter 3984 \begin{align}
1595     g_n(r)=& \frac{d f_n}{d r} =
1596     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1597     h_n(r)=& \frac{d^2f_n}{d r^2} =
1598     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1599     s_n(r)=& \frac{d^3f_n}{d r^3} =
1600     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1601     t_n(r)=& \frac{d^4f_n}{d r^4} =
1602     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1603     u_n(r)=& \frac{d^5f_n}{d r^5} =
1604     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1605     \end{align}
1606 gezelter 3906 %
1607 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1608 gezelter 3906 %
1609     \begin{equation}
1610 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1611 gezelter 3906 \end{equation}
1612    
1613 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1614     stored on a grid for values of $r$ from $0$ to $r_c$. The functions
1615     needed are listed schematically below:
1616 gezelter 3906 %
1617     \begin{eqnarray}
1618     f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1619     g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1620     h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1621     s_2 \quad s_3 \quad &s_4 \nonumber \\
1622     t_3 \quad &t_4 \nonumber \\
1623     &u_4 \nonumber .
1624     \end{eqnarray}
1625    
1626     Using these functions, we find
1627     %
1628 gezelter 3984 \begin{align}
1629     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1630     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1631     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1632     \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1633 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1634     \delta_{ \beta \gamma} r_\alpha \right)
1635     \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1636     + r_\alpha r_\beta r_\gamma
1637 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1638     \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1639 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1640     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1641     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1642     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1643 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1644     + \text{5 permutations}
1645 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1646     \right) \nonumber \\
1647 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1648 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1649 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1650 gezelter 3906 \frac{\partial^5 f_n}
1651 gezelter 3984 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1652 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1653 gezelter 3984 + \text{14 permutations} \right)
1654 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1655 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1656     + \text{9 permutations}
1657 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1658     \right) \nonumber \\
1659 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1660 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1661 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1662     \end{align}
1663 gezelter 3906 %
1664     %
1665     %
1666 gezelter 3984 \newpage
1667     \section{The $r$-dependent factors for GSF electrostatics}
1668 gezelter 3906
1669 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1670     rather the individual terms in the multipole interaction energies.
1671     For damped charges , this still brings into the algebra multiple
1672     derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1673     we generalize the notation of the previous appendix. For $f(r)=1/r$
1674     (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1675 gezelter 3906 %
1676 gezelter 3984 \begin{align}
1677     g(r)=& \frac{df}{d r}\\
1678     h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1679     s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1680     t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1681     u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1682     \end{align}
1683 gezelter 3906 %
1684 gezelter 3984 For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1685     under the column ``Bare Coulomb.'' Equations \ref{eq:b9} to
1686     \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1687     $n$ is eliminated.
1688 gezelter 3906
1689 gezelter 3980 \newpage
1690    
1691     \bibliography{multipole}
1692    
1693 gezelter 3906 \end{document}
1694     %
1695     % ****** End of file multipole.tex ******