ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3989
Committed: Thu Jan 2 21:17:44 2014 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 65240 byte(s)
Log Message:
Updates

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 3980
39 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44 gezelter 3988 %\preprint{AIP/123-QED}
45 gezelter 3906
46 gezelter 3988 \title{Real space alternatives to the Ewald
47 gezelter 3980 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48 gezelter 3906
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52    
53     \author{J. Daniel Gezelter}
54     \email{gezelter@nd.edu.}
55     \affiliation{Department of Chemistry and Biochemistry, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58     \author{Kathie E. Newman}
59     \affiliation{Department of Physics, University
60     of Notre Dame, Notre Dame, IN 46556}
61    
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \begin{abstract}
67 gezelter 3980 We have extended the original damped-shifted force (DSF)
68     electrostatic kernel and have been able to derive two new
69     electrostatic potentials for higher-order multipoles that are based
70     on truncated Taylor expansions around the cutoff radius. For
71     multipole-multipole interactions, we find that each of the distinct
72     orientational contributions has a separate radial function to ensure
73     that the overall forces and torques vanish at the cutoff radius. In
74     this paper, we present energy, force, and torque expressions for the
75     new models, and compare these real-space interaction models to exact
76     results for ordered arrays of multipoles.
77 gezelter 3906 \end{abstract}
78    
79 gezelter 3988 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80 gezelter 3906 % Classification Scheme.
81 gezelter 3988 %\keywords{Suggested keywords}%Use showkeys class option if keyword
82 gezelter 3906 %display desired
83     \maketitle
84    
85     \section{Introduction}
86 gezelter 3982 There has been increasing interest in real-space methods for
87     calculating electrostatic interactions in computer simulations of
88     condensed molecular
89 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90     The simplest of these techniques was developed by Wolf {\it et al.}
91     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
93     simple damped shifted force (DSF) modification to Wolf's method could
94     give nearly quantitative agreement with smooth particle mesh Ewald
95     (SPME)\cite{Essmann95} configurational energy differences as well as
96     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97 gezelter 3906
98 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
99     surprisingly good, particularly for systems with uniform charge
100     density. Additionally, dielectric constants obtained using DSF and
101 gezelter 3986 similar methods where the force vanishes at $r_{c}$ are
102 gezelter 3980 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103     related methods have now been widely investigated,\cite{Hansen:2012uq}
104 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
105     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
106     DSF electrostatics provides a compromise between the computational
107     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
108     treatments.
109 gezelter 3906
110 gezelter 3980 One common feature of many coarse-graining approaches, which treat
111     entire molecular subsystems as a single rigid body, is simplification
112     of the electrostatic interactions between these bodies so that fewer
113     site-site interactions are required to compute configurational
114 gezelter 3986 energies. To do this, the interactions between coarse-grained sites
115     are typically taken to be point
116     multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
117 gezelter 3906
118 gezelter 3986 Water, in particular, has been modeled recently with point multipoles
119     up to octupolar
120     order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
121     maximum efficiency, these models require the use of an approximate
122     multipole expansion as the exact multipole expansion can become quite
123     expensive (particularly when handled via the Ewald
124     sum).\cite{Ichiye:2006qy} Point multipoles and multipole
125     polarizability have also been utilized in the AMOEBA water model and
126 gezelter 3980 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
127 gezelter 3906
128 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
129     dynamics. Multipolar interactions are inherently short-ranged, and
130     should not need the relatively expensive Ewald treatment. However,
131     real-space cutoff methods are normally applied in an orientation-blind
132     fashion so multipoles which leave and then re-enter a cutoff sphere in
133     a different orientation can cause energy discontinuities.
134 gezelter 3906
135 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
136 gezelter 3985 kernel to point multipoles. We describe two distinct real-space
137 gezelter 3982 interaction models for higher-order multipoles based on two truncated
138     Taylor expansions that are carried out at the cutoff radius. We are
139     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
140     electrostatics. Because of differences in the initial assumptions,
141 gezelter 3986 the two methods yield related, but somewhat different expressions for
142     energies, forces, and torques.
143 gezelter 3906
144 gezelter 3982 In this paper we outline the new methodology and give functional forms
145     for the energies, forces, and torques up to quadrupole-quadrupole
146     order. We also compare the new methods to analytic energy constants
147 gezelter 3986 for periodic arrays of point multipoles. In the following paper, we
148 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
149     simulation enviornments.
150 gezelter 3982
151 gezelter 3980 \section{Methodology}
152 gezelter 3986 An efficient real-space electrostatic method involves the use of a
153     pair-wise functional form,
154     \begin{equation}
155     V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
156 gezelter 3989 \sum_i V_i^\mathrm{self}
157 gezelter 3986 \end{equation}
158     that is short-ranged and easily truncated at a cutoff radius,
159     \begin{equation}
160 gezelter 3989 V_\mathrm{pair}(r_{ij},\Omega_i, \Omega_j) = \left\{
161 gezelter 3986 \begin{array}{ll}
162     V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
163     0 & \quad r > r_c ,
164     \end{array}
165     \right.
166     \end{equation}
167 gezelter 3989 along with an easily computed self-interaction term ($\sum_i
168     V_i^\mathrm{self}$) which has linear-scaling with the number of
169 gezelter 3986 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
170     coordinates of the two sites. The computational efficiency, energy
171     conservation, and even some physical properties of a simulation can
172     depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173     the cutoff radius. The goal of any approximation method should be to
174     mimic the real behavior of the electrostatic interactions as closely
175     as possible without sacrificing the near-linear scaling of a cutoff
176     method.
177 gezelter 3906
178 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
179     The DSF and Wolf methods operate by neutralizing the total charge
180     contained within the cutoff sphere surrounding each particle. This is
181     accomplished by shifting the potential functions to generate image
182     charges on the surface of the cutoff sphere for each pair interaction
183 gezelter 3986 computed within $r_c$. Damping using a complementary error
184 gezelter 3982 function is applied to the potential to accelerate convergence. The
185     potential for the DSF method, where $\alpha$ is the adjustable damping
186     parameter, is given by
187 gezelter 3980 \begin{equation*}
188 gezelter 3986 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
189 gezelter 3980 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
190 gezelter 3986 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
191 gezelter 3980 + \frac{2\alpha}{\pi^{1/2}}
192 gezelter 3986 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
193     \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
194 gezelter 3980 \label{eq:DSFPot}
195     \end{equation*}
196 gezelter 3985 Note that in this potential and in all electrostatic quantities that
197 gezelter 3986 follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
198 gezelter 3985 clarity.
199 gezelter 3980
200     To insure net charge neutrality within each cutoff sphere, an
201     additional ``self'' term is added to the potential. This term is
202     constant (as long as the charges and cutoff radius do not change), and
203     exists outside the normal pair-loop for molecular simulations. It can
204     be thought of as a contribution from a charge opposite in sign, but
205     equal in magnitude, to the central charge, which has been spread out
206     over the surface of the cutoff sphere. A portion of the self term is
207     identical to the self term in the Ewald summation, and comes from the
208     utilization of the complimentary error function for electrostatic
209 gezelter 3986 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
210     extend the Wolf self-neutralization method to zero out the dipole and
211     higher order multipoles contained within the cutoff
212 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
213 gezelter 3982
214 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
215     multipoles by insuring net charge-neutrality and net-zero moments
216     within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
217     central dipolar site $\mathbf{D}_i$ is interacting with point dipole
218     $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
219     self-neutralization scheme for point multipoles involves projecting
220     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
221     sphere. There are also significant modifications made to make the
222     forces and torques go smoothly to zero at the cutoff distance.
223 gezelter 3982
224 gezelter 3980 \begin{figure}
225 gezelter 3982 \includegraphics[width=3in]{SM}
226 gezelter 3980 \caption{Reversed multipoles are projected onto the surface of the
227     cutoff sphere. The forces, torques, and potential are then smoothly
228     shifted to zero as the sites leave the cutoff region.}
229     \label{fig:shiftedMultipoles}
230     \end{figure}
231    
232 gezelter 3986 As in the point-charge approach, there is an additional contribution
233     from self-neutralization of site $i$. The self term for multipoles is
234 gezelter 3982 described in section \ref{sec:selfTerm}.
235 gezelter 3906
236 gezelter 3982 \subsection{The multipole expansion}
237    
238 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
239 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
240     interact via electrostatics only and describe those interactions in
241     terms of a standard multipole expansion. Putting the origin of the
242     coordinate system at the center of mass of $\bf a$, we use vectors
243 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
244     a$. Then the electrostatic potential of object $\bf a$ at
245     $\mathbf{r}$ is given by
246 gezelter 3906 \begin{equation}
247 gezelter 3985 V_a(\mathbf r) =
248 gezelter 3906 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
249     \end{equation}
250 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
251     notation. Here Greek indices are used to indicate space coordinates
252     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
253     labelling specific charges in $\bf a$ and $\bf b$ respectively. The
254     Taylor expansion,
255 gezelter 3906 \begin{equation}
256     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
257     \left( 1
258     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
259     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
260     \right)
261 gezelter 3982 \frac{1}{r} ,
262 gezelter 3906 \end{equation}
263 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
264     terms of multipole operators,
265 gezelter 3906 \begin{equation}
266 gezelter 3985 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
267 gezelter 3906 \end{equation}
268     where
269     \begin{equation}
270     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
271     + Q_{{\bf a}\alpha\beta}
272     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
273     \end{equation}
274 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
275     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
276 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
277     which can be expressed as a distribution of charges,
278     \begin{align}
279     C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
280     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
281     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
282     \end{align}
283     Note that the definition of the primitive quadrupole here differs from
284     the standard traceless form, and contains an additional Taylor-series
285     based factor of $1/2$.
286 gezelter 3906
287     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
288     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
289     \begin{equation}
290 gezelter 3982 U_{\bf{ab}}(r)
291 gezelter 3985 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
292 gezelter 3982 \end{equation}
293     This can also be expanded as a Taylor series in $r$. Using a notation
294     similar to before to define the multipoles on object {\bf b},
295     \begin{equation}
296 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
297     + Q_{{\bf b}\alpha\beta}
298     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
299     \end{equation}
300 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
301 gezelter 3906 \begin{equation}
302 gezelter 3985 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
303 gezelter 3906 \end{equation}
304 gezelter 3982 This form has the benefit of separating out the energies of
305     interaction into contributions from the charge, dipole, and quadrupole
306 gezelter 3986 of $\bf a$ interacting with the same multipoles on $\bf b$.
307 gezelter 3906
308 gezelter 3982 \subsection{Damped Coulomb interactions}
309     In the standard multipole expansion, one typically uses the bare
310     Coulomb potential, with radial dependence $1/r$, as shown in
311     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
312     interaction, which results from replacing point charges with Gaussian
313     distributions of charge with width $\alpha$. In damped multipole
314     electrostatics, the kernel ($1/r$) of the expansion is replaced with
315     the function:
316 gezelter 3906 \begin{equation}
317     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319     \end{equation}
320 gezelter 3982 We develop equations below using the function $f(r)$ to represent
321 gezelter 3986 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322     bare or damped Coulomb kernels (or any other function) as long as
323     derivatives of these functions are known. Smith's convenient
324     functions $B_l(r)$ are summarized in Appendix A.
325 gezelter 3906
326 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
327     energy as well as forces and torques as $r\rightarrow r_c$. To
328     describe how this goal may be met, we use two examples, charge-charge
329 gezelter 3986 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
330     explain the idea.
331 gezelter 3906
332 gezelter 3984 \subsection{Shifted-force methods}
333 gezelter 3982 In the shifted-force approximation, the interaction energy for two
334     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
335     written:
336 gezelter 3906 \begin{equation}
337 gezelter 3985 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
338 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
339     \right) .
340     \end{equation}
341 gezelter 3982 Two shifting terms appear in this equations, one from the
342 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
343     derivative to vanish at the cutoff radius.
344 gezelter 3982
345     Since one derivative of the interaction energy is needed for the
346     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
347     interaction energy, that is:
348 gezelter 3906 \begin{equation}
349     \frac{d\,}{dr}
350     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
351     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
352     \right) .
353     \end{equation}
354 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
355     are a number of ways to generalize this derivative shift for
356 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
357     higher-order Taylor series for $r$ near $r_c$, and the other based on
358     linear shift of the kernel gradients at the cutoff itself.
359 gezelter 3906
360 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
361 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
362     is based on a Taylor expansion containing the same number of
363     derivatives required for each force term to vanish at the cutoff. For
364     example, the quadrupole-quadrupole interaction energy requires four
365     derivatives of the kernel, and the force requires one additional
366 gezelter 3986 derivative. For quadrupole-quadrupole interactions, we therefore
367     require shifted energy expressions that include up to $(r-r_c)^5$ so
368     that all energies, forces, and torques are zero as $r \rightarrow
369     r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
370     from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
371     derivatives to be taken when deriving a given multipole energy. We
372     choose a function with guaranteed smooth derivatives -- a truncated
373     Taylor series of the function $f(r)$, e.g.,
374 gezelter 3906 %
375     \begin{equation}
376 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
377 gezelter 3906 \end{equation}
378     %
379     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
380     Thus, for $f(r)=1/r$, we find
381     %
382     \begin{equation}
383     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
384     \end{equation}
385     %
386 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
387     dipole $\bf b$, we write
388 gezelter 3906 %
389     \begin{equation}
390     U_{C_{\bf a}D_{\bf b}}(r)=
391 gezelter 3985 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
392     = C_{\bf a} D_{{\bf b}\alpha}
393 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
394     \end{equation}
395     %
396 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
397 gezelter 3906 %
398     \begin{equation}
399 gezelter 3985 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
400 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
401     \frac{r_\alpha r_\beta}{r^2}
402     \left( -\frac{1}{r} \frac {\partial} {\partial r}
403     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
404     \end{equation}
405     %
406 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
407 gezelter 3906 %
408     \begin{equation}
409     F_{C_{\bf a}D_{\bf b}\beta} =
410 gezelter 3985 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
411 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
412 gezelter 3985 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
413 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
414     \end{equation}
415     %
416     This expansion shows the expected $1/r^3$ dependence of the force.
417    
418 gezelter 3984 In general, we can write
419 gezelter 3906 %
420     \begin{equation}
421 gezelter 3985 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
422 gezelter 3906 \label{generic}
423     \end{equation}
424     %
425 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
426     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
427     $n=4$ for quadrupole-quadrupole. For example, in
428     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
429     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
430     $\partial^4/\partial r_\alpha \partial r_\beta \partial
431     r_\gamma \partial r_\delta$, with implied summation combining the
432     space indices.
433 gezelter 3906
434 gezelter 3984 In the formulas presented in the tables below, the placeholder
435     function $f(r)$ is used to represent the electrostatic kernel (either
436     damped or undamped). The main functions that go into the force and
437 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
438     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
439     of the same index $n$. The algebra required to evaluate energies,
440     forces and torques is somewhat tedious, so only the final forms are
441 gezelter 3986 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
442 gezelter 3906
443 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
444 gezelter 3985 The second, and conceptually simpler approach to force-shifting
445     maintains only the linear $(r-r_c)$ term in the truncated Taylor
446     expansion, and has a similar interaction energy for all multipole
447     orders:
448 gezelter 3906 \begin{equation}
449 gezelter 3985 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
450     \lvert _{r_c} .
451     \label{generic2}
452 gezelter 3906 \end{equation}
453 gezelter 3985 Here the gradient for force shifting is evaluated for an image
454 gezelter 3986 multipole projected onto the surface of the cutoff sphere (see fig
455 gezelter 3985 \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
456     appear. The primary difference between the TSF and GSF methods is the
457     stage at which the Taylor Series is applied; in the Taylor-shifted
458     approach, it is applied to the kernel itself. In the Gradient-shifted
459     approach, it is applied to individual radial interactions terms in the
460     multipole expansion. Energies from this method thus have the general
461     form:
462 gezelter 3906 \begin{equation}
463 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
464     \label{generic3}
465 gezelter 3906 \end{equation}
466    
467 gezelter 3986 Functional forms for both methods (TSF and GSF) can both be summarized
468 gezelter 3985 using the form of Eq.~(\ref{generic3}). The basic forms for the
469     energy, force, and torque expressions are tabulated for both shifting
470 gezelter 3986 approaches below -- for each separate orientational contribution, only
471 gezelter 3985 the radial factors differ between the two methods.
472 gezelter 3906
473     \subsection{\label{sec:level2}Body and space axes}
474 gezelter 3989 Although objects $\bf a$ and $\bf b$ rotate during a molecular
475     dynamics (MD) simulation, their multipole tensors remain fixed in
476     body-frame coordinates. While deriving force and torque expressions,
477     it is therefore convenient to write the energies, forces, and torques
478     in intermediate forms involving the vectors of the rotation matrices.
479     We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
480     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
481     In a typical simulation , the initial axes are obtained by
482     diagonalizing the moment of inertia tensors for the objects. (N.B.,
483     the body axes are generally {\it not} the same as those for which the
484     quadrupole moment is diagonal.) The rotation matrices are then
485     propagated during the simulation.
486 gezelter 3906
487 gezelter 3989 The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
488 gezelter 3985 expressed using these unit vectors:
489 gezelter 3906 \begin{eqnarray}
490     \hat{\mathbf {a}} =
491     \begin{pmatrix}
492     \hat{a}_1 \\
493     \hat{a}_2 \\
494     \hat{a}_3
495 gezelter 3989 \end{pmatrix}, \qquad
496 gezelter 3906 \hat{\mathbf {b}} =
497     \begin{pmatrix}
498     \hat{b}_1 \\
499     \hat{b}_2 \\
500     \hat{b}_3
501     \end{pmatrix}
502     \end{eqnarray}
503     %
504 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
505 gezelter 3989 coordinates.
506    
507     Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
508     {\em et al.},\cite{Price:1984fk} showed that if the interaction
509     energies are written explicitly in terms of $\hat{r}$ and the body
510     axes ($\hat{a}_m$, $\hat{b}_n$) :
511 gezelter 3906 %
512 gezelter 3985 \begin{equation}
513 gezelter 3989 U(r, \{\hat{a}_m \cdot \hat{r} \},
514     \{\hat{b}_n\cdot \hat{r} \},
515     \{\hat{a}_m \cdot \hat{b}_n \}) .
516     \label{ugeneral}
517     \end{equation}
518     %
519     the forces come out relatively cleanly,
520     %
521     \begin{equation}
522     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
523     = \frac{\partial U}{\partial r} \hat{r}
524     + \sum_m \left[
525     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
526     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
527     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
528     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
529     \right] \label{forceequation}.
530     \end{equation}
531    
532     The torques can also be found in a relatively similar
533     manner,
534     %
535     \begin{eqnarray}
536     \mathbf{\tau}_{\bf a} =
537     \sum_m
538     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
539     ( \hat{r} \times \hat{a}_m )
540     -\sum_{mn}
541     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
542     (\hat{a}_m \times \hat{b}_n) \\
543     %
544     \mathbf{\tau}_{\bf b} =
545     \sum_m
546     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
547     ( \hat{r} \times \hat{b}_m)
548     +\sum_{mn}
549     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
550     (\hat{a}_m \times \hat{b}_n) .
551     \end{eqnarray}
552    
553     Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
554     is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
555     We also made use of the identities,
556     %
557     \begin{align}
558     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
559     =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
560     \right) \\
561     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
562     =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
563     \right) .
564     \end{align}
565    
566     Many of the multipole contractions required can be written in one of
567     three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
568     and $\hat{b}_n$. In the torque expressions, it is useful to have the
569     angular-dependent terms available in all three fashions, e.g. for the
570     dipole-dipole contraction:
571     %
572     \begin{equation}
573 gezelter 3906 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
574 gezelter 3985 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
575     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
576     \end{equation}
577 gezelter 3906 %
578 gezelter 3985 The first two forms are written using space coordinates. The first
579     form is standard in the chemistry literature, while the second is
580     expressed using implied summation notation. The third form shows
581     explicit sums over body indices and the dot products now indicate
582     contractions using space indices.
583 gezelter 3906
584 gezelter 3989 In computing our force and torque expressions, we carried out most of
585     the work in body coordinates, and have transformed the expressions
586     back to space-frame coordinates, which are reported below. Interested
587     readers may consult the supplemental information for this paper for
588     the intermediate body-frame expressions.
589 gezelter 3906
590 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
591    
592 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
593     summation~\cite{Wolf99} and the damped shifted force (DSF)
594     extension~\cite{Fennell:2006zl} also included self-interactions that
595     are handled separately from the pairwise interactions between
596     sites. The self-term is normally calculated via a single loop over all
597     sites in the system, and is relatively cheap to evaluate. The
598     self-interaction has contributions from two sources.
599    
600     First, the neutralization procedure within the cutoff radius requires
601     a contribution from a charge opposite in sign, but equal in magnitude,
602     to the central charge, which has been spread out over the surface of
603     the cutoff sphere. For a system of undamped charges, the total
604     self-term is
605 gezelter 3980 \begin{equation}
606     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
607     \label{eq:selfTerm}
608     \end{equation}
609 gezelter 3985
610     Second, charge damping with the complementary error function is a
611     partial analogy to the Ewald procedure which splits the interaction
612     into real and reciprocal space sums. The real space sum is retained
613     in the Wolf and DSF methods. The reciprocal space sum is first
614     minimized by folding the largest contribution (the self-interaction)
615     into the self-interaction from charge neutralization of the damped
616     potential. The remainder of the reciprocal space portion is then
617     discarded (as this contributes the largest computational cost and
618     complexity to the Ewald sum). For a system containing only damped
619     charges, the complete self-interaction can be written as
620 gezelter 3980 \begin{equation}
621     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
622     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
623     C_{\bf a}^{2}.
624     \label{eq:dampSelfTerm}
625     \end{equation}
626    
627     The extension of DSF electrostatics to point multipoles requires
628     treatment of {\it both} the self-neutralization and reciprocal
629     contributions to the self-interaction for higher order multipoles. In
630     this section we give formulae for these interactions up to quadrupolar
631     order.
632    
633     The self-neutralization term is computed by taking the {\it
634     non-shifted} kernel for each interaction, placing a multipole of
635     equal magnitude (but opposite in polarization) on the surface of the
636     cutoff sphere, and averaging over the surface of the cutoff sphere.
637     Because the self term is carried out as a single sum over sites, the
638     reciprocal-space portion is identical to half of the self-term
639     obtained by Smith and Aguado and Madden for the application of the
640     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
641     site which posesses a charge, dipole, and multipole, both types of
642     contribution are given in table \ref{tab:tableSelf}.
643    
644     \begin{table*}
645     \caption{\label{tab:tableSelf} Self-interaction contributions for
646     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
647     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
648     \begin{ruledtabular}
649     \begin{tabular}{lccc}
650     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
651     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
652     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
653     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
654 gezelter 3989 Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
655 gezelter 3980 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
656     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
657     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
658     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
659     \end{tabular}
660     \end{ruledtabular}
661     \end{table*}
662    
663     For sites which simultaneously contain charges and quadrupoles, the
664     self-interaction includes a cross-interaction between these two
665     multipole orders. Symmetry prevents the charge-dipole and
666     dipole-quadrupole interactions from contributing to the
667     self-interaction. The functions that go into the self-neutralization
668 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
669     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
670     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
671     have been evaluated at the cutoff distance. For undamped
672     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
673     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
674     on. Appendix \ref{SmithFunc} contains recursion relations that allow
675     rapid evaluation of these derivatives.
676 gezelter 3980
677 gezelter 3985 \section{Interaction energies, forces, and torques}
678     The main result of this paper is a set of expressions for the
679     energies, forces and torques (up to quadrupole-quadrupole order) that
680     work for both the Taylor-shifted and Gradient-shifted approximations.
681     These expressions were derived using a set of generic radial
682     functions. Without using the shifting approximations mentioned above,
683     some of these radial functions would be identical, and the expressions
684     coalesce into the familiar forms for unmodified multipole-multipole
685     interactions. Table \ref{tab:tableenergy} maps between the generic
686     functions and the radial functions derived for both the Taylor-shifted
687     and Gradient-shifted methods. The energy equations are written in
688     terms of lab-frame representations of the dipoles, quadrupoles, and
689     the unit vector connecting the two objects,
690 gezelter 3906
691     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
692     %
693     %
694     % u ca cb
695     %
696 gezelter 3983 \begin{align}
697     U_{C_{\bf a}C_{\bf b}}(r)=&
698 gezelter 3985 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
699 gezelter 3983 \\
700 gezelter 3906 %
701     % u ca db
702     %
703 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
704 gezelter 3985 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
705 gezelter 3906 \label{uchdip}
706 gezelter 3983 \\
707 gezelter 3906 %
708     % u ca qb
709     %
710 gezelter 3985 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
711     v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
712     \hat{r} \right) v_{22}(r) \Bigr]
713 gezelter 3906 \label{uchquad}
714 gezelter 3983 \\
715 gezelter 3906 %
716     % u da cb
717     %
718 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
719     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
720     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
721     %\\
722 gezelter 3906 %
723     % u da db
724     %
725 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
726 gezelter 3985 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
727 gezelter 3906 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
728     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
729     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
730     v_{22}(r) \Bigr]
731     \label{udipdip}
732 gezelter 3983 \\
733 gezelter 3906 %
734     % u da qb
735     %
736     \begin{split}
737     % 1
738 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
739 gezelter 3985 -\Bigl[
740 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
741     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
742     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
743     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
744     % 2
745 gezelter 3985 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
746 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
747     \label{udipquad}
748     \end{split}
749 gezelter 3983 \\
750 gezelter 3906 %
751     % u qa cb
752     %
753 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
754     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
755     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
756     %\label{uquadch}
757     %\\
758 gezelter 3906 %
759     % u qa db
760     %
761 gezelter 3983 %\begin{split}
762 gezelter 3906 %1
763 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
764     %\frac{1}{4\pi \epsilon_0} \Bigl[
765     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
766     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
767     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
768     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
769 gezelter 3906 % 2
770 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
771     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
772     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
773     %\label{uquaddip}
774     %\end{split}
775     %\\
776 gezelter 3906 %
777     % u qa qb
778     %
779     \begin{split}
780     %1
781 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
782 gezelter 3985 \Bigl[
783 gezelter 3906 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
784 gezelter 3989 +2
785     \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
786 gezelter 3906 \\
787     % 2
788 gezelter 3985 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
789 gezelter 3906 \left( \hat{r} \cdot
790     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
791     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
792     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
793     \cdot \hat{r} \right) +4 (\hat{r} \cdot
794     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
795     \Bigr] v_{42}(r)
796     \\
797     % 4
798 gezelter 3985 &+
799 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
800     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
801     \label{uquadquad}
802     \end{split}
803 gezelter 3983 \end{align}
804 gezelter 3985 %
805 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
806     with those on site $\mathbf{a}$ can be obtained by swapping indices
807     along with the sign of the intersite vector, $\hat{r}$.
808 gezelter 3906
809     %
810     %
811     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
812     %
813    
814 gezelter 3985 \begin{sidewaystable}
815     \caption{\label{tab:tableenergy}Radial functions used in the energy
816     and torque equations. The $f, g, h, s, t, \mathrm{and} u$
817     functions used in this table are defined in Appendices B and C.}
818     \begin{tabular}{|c|c|l|l|} \hline
819     Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
820 gezelter 3906 \\ \hline
821     %
822     %
823     %
824     %Ch-Ch&
825     $v_{01}(r)$ &
826     $\frac{1}{r}$ &
827     $f_0(r)$ &
828     $f(r)-f(r_c)-(r-r_c)g(r_c)$
829     \\
830     %
831     %
832     %
833     %Ch-Di&
834     $v_{11}(r)$ &
835     $-\frac{1}{r^2}$ &
836     $g_1(r)$ &
837     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
838     %
839     %
840     %
841     %Ch-Qu/Di-Di&
842     $v_{21}(r)$ &
843     $-\frac{1}{r^3} $ &
844     $\frac{g_2(r)}{r} $ &
845     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
846     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
847     $v_{22}(r)$ &
848     $\frac{3}{r^3} $ &
849     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
850     $\left(-\frac{g(r)}{r}+h(r) \right)
851 gezelter 3985 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
852     &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
853 gezelter 3906 \\
854     %
855     %
856     %
857     %Di-Qu &
858     $v_{31}(r)$ &
859     $\frac{3}{r^4} $ &
860     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
861     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
862     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
863 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
864 gezelter 3906 \\
865     %
866     $v_{32}(r)$ &
867     $-\frac{15}{r^4} $ &
868     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
869     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
870     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
871 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
872 gezelter 3906 \\
873     %
874     %
875     %
876     %Qu-Qu&
877     $v_{41}(r)$ &
878     $\frac{3}{r^5} $ &
879     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
880     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
881     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
882 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
883 gezelter 3906 \\
884     % 2
885     $v_{42}(r)$ &
886     $- \frac{15}{r^5} $ &
887     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
888     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
889     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
890 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
891 gezelter 3906 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
892     \\
893     % 3
894     $v_{43}(r)$ &
895     $ \frac{105}{r^5} $ &
896     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
897     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
898 gezelter 3985 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
899     &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
900     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
901 gezelter 3906 \end{tabular}
902 gezelter 3985 \end{sidewaystable}
903 gezelter 3906 %
904     %
905     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
906     %
907    
908 gezelter 3985 \begin{sidewaystable}
909 gezelter 3906 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
910 gezelter 3985 \begin{tabular}{|c|c|l|l|} \hline
911     Function&Definition&Taylor-Shifted&Gradient-Shifted
912 gezelter 3906 \\ \hline
913     %
914     %
915     %
916     $w_a(r)$&
917 gezelter 3985 $\frac{d v_{01}}{dr}$&
918     $g_0(r)$&
919     $g(r)-g(r_c)$ \\
920 gezelter 3906 %
921     %
922     $w_b(r)$ &
923 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
924     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
925     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
926 gezelter 3906 %
927     $w_c(r)$ &
928 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
929     $\frac{g_1(r)}{r} $ &
930     $\frac{v_{11}(r)}{r}$\\
931 gezelter 3906 %
932     %
933     $w_d(r)$&
934 gezelter 3985 $\frac{d v_{21}}{dr}$&
935     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
936     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
937     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
938 gezelter 3906 %
939     $w_e(r)$ &
940 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
941     $\frac{v_{22}(r)}{r}$ &
942 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
943     %
944     %
945     $w_f(r)$&
946 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
947     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
948     $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
949     &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
950     \right)-\frac{2v_{22}(r)}{r}$\\
951 gezelter 3906 %
952     $w_g(r)$&
953 gezelter 3985 $\frac{v_{31}(r)}{r}$&
954     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
955 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
956     %
957     $w_h(r)$ &
958 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
959     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
960     $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
961     &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
962 gezelter 3906 % 2
963     $w_i(r)$ &
964 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
965     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
966     $\frac{v_{32}(r)}{r}$\\
967 gezelter 3906 %
968     $w_j(r)$ &
969 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
970     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
971     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
972     &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
973     -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
974 gezelter 3906 %
975     $w_k(r)$ &
976 gezelter 3985 $\frac{d v_{41}}{dr} $ &
977     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
978     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
979     -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
980 gezelter 3906 %
981     $w_l(r)$ &
982 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
983     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
984     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
985     &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
986     -\frac{2v_{42}(r)}{r}$\\
987 gezelter 3906 %
988     $w_m(r)$ &
989 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
990     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
991     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
992     &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
993     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
994     &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
995 gezelter 3906 %
996     $w_n(r)$ &
997 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
998     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
999     $\frac{v_{42}(r)}{r}$\\
1000 gezelter 3906 %
1001     $w_o(r)$ &
1002 gezelter 3985 $\frac{v_{43}(r)}{r}$&
1003     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1004     $\frac{v_{43}(r)}{r}$ \\ \hline
1005 gezelter 3906 %
1006    
1007     \end{tabular}
1008 gezelter 3985 \end{sidewaystable}
1009 gezelter 3906 %
1010     %
1011     %
1012    
1013     \subsection{Forces}
1014 gezelter 3985 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1015     $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1016     a simple charge-charge interaction, these forces will point along the
1017     $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1018     \mathbf{r}_a $. Thus
1019 gezelter 3906 %
1020     \begin{equation}
1021     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1022     \quad \text{and} \quad F_{\bf b \alpha}
1023     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
1024     \end{equation}
1025     %
1026 gezelter 3985 We list below the force equations written in terms of lab-frame
1027     coordinates. The radial functions used in the two methods are listed
1028     in Table \ref{tab:tableFORCE}
1029 gezelter 3906 %
1030 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1031 gezelter 3906 %
1032     % **************************************************************************
1033     % f ca cb
1034     %
1035 gezelter 3985 \begin{align}
1036     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1037     C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1038 gezelter 3906 %
1039     %
1040     %
1041 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1042     C_{\bf a} \Bigl[
1043 gezelter 3906 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1044     w_b(r) \hat{r}
1045 gezelter 3985 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1046 gezelter 3906 %
1047     %
1048     %
1049 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1050     C_{\bf a } \Bigr[
1051 gezelter 3906 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1052     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1053 gezelter 3985 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1054     \right) w_f(r) \hat{r} \Bigr] \\
1055 gezelter 3906 %
1056     %
1057     %
1058 gezelter 3985 % \begin{equation}
1059     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1060     % -C_{\bf{b}} \Bigl[
1061     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1062     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1063     % \end{equation}
1064 gezelter 3906 %
1065     %
1066     %
1067 gezelter 3985 \begin{split}
1068     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1069 gezelter 3906 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1070     + \left( \mathbf{D}_{\mathbf {a}}
1071     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1072 gezelter 3985 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1073 gezelter 3906 % 2
1074 gezelter 3985 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1075     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1076     \end{split}\\
1077 gezelter 3906 %
1078     %
1079     %
1080     \begin{split}
1081 gezelter 3985 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1082 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1083     +2 \mathbf{D}_{\mathbf{a}} \cdot
1084     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1085 gezelter 3985 - \Bigl[
1086 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1087     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1088     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1089     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1090     % 3
1091 gezelter 3985 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1092 gezelter 3906 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1093     w_i(r)
1094     % 4
1095 gezelter 3985 -
1096 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1097 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1098 gezelter 3906 %
1099     %
1100 gezelter 3985 % \begin{equation}
1101     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1102     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1103     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1104     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1105     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1106     % \end{equation}
1107     % %
1108     % \begin{equation}
1109     % \begin{split}
1110     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1111     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1112     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1113     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1114     % % 2
1115     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1116     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1117     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1118     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1119     % % 3
1120     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1121     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1122     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1123     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1124     % % 4
1125     % +\frac{1}{4\pi \epsilon_0}
1126     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1127     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1128     % \end{split}
1129     % \end{equation}
1130 gezelter 3906 %
1131     %
1132     %
1133     \begin{split}
1134 gezelter 3985 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1135     \Bigl[
1136 gezelter 3989 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1137     + 2 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1138 gezelter 3906 % 2
1139 gezelter 3985 &+ \Bigl[
1140 gezelter 3906 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1141     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1142     % 3
1143     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1144     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1145     % 4
1146 gezelter 3985 &+ \Bigl[
1147 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1148     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1149     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1150     % 5
1151     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1152     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1153     %
1154 gezelter 3985 &+ \Bigl[
1155 gezelter 3906 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1156     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1157     %6
1158     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1159     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1160     % 7
1161 gezelter 3985 &+
1162 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1163 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1164     \end{align}
1165     Note that the forces for higher multipoles on site $\mathbf{a}$
1166     interacting with those of lower order on site $\mathbf{b}$ can be
1167     obtained by swapping indices in the expressions above.
1168    
1169 gezelter 3906 %
1170 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1171 gezelter 3906 %
1172     \subsection{Torques}
1173 gezelter 3989
1174 gezelter 3906 %
1175 gezelter 3985 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1176     methods are given in space-frame coordinates:
1177 gezelter 3906 %
1178     %
1179 gezelter 3985 \begin{align}
1180     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1181     C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1182 gezelter 3906 %
1183     %
1184     %
1185 gezelter 3985 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1186     2C_{\bf a}
1187     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1188 gezelter 3906 %
1189     %
1190     %
1191 gezelter 3985 % \begin{equation}
1192     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1193     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1194     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1195     % \end{equation}
1196 gezelter 3906 %
1197     %
1198     %
1199 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1200     \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1201 gezelter 3906 % 2
1202 gezelter 3985 -
1203 gezelter 3906 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1204 gezelter 3985 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1205 gezelter 3906 %
1206     %
1207     %
1208 gezelter 3985 % \begin{equation}
1209     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1210     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1211     % % 2
1212     % +\frac{1}{4\pi \epsilon_0}
1213     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1214     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1215     % \end{equation}
1216 gezelter 3906 %
1217     %
1218     %
1219 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1220     \Bigl[
1221 gezelter 3906 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1222     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1223     +2 \mathbf{D}_{\mathbf{a}} \times
1224     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1225     \Bigr] v_{31}(r)
1226     % 3
1227 gezelter 3985 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1228     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1229 gezelter 3906 %
1230     %
1231     %
1232 gezelter 3985 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1233     \Bigl[
1234 gezelter 3906 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1235     \hat{r}
1236     -2 \mathbf{D}_{\mathbf{a}} \times
1237     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1238     \Bigr] v_{31}(r)
1239     % 2
1240 gezelter 3985 +
1241 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1242 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1243 gezelter 3906 %
1244     %
1245     %
1246 gezelter 3985 % \begin{equation}
1247     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1248     % \frac{1}{4\pi \epsilon_0} \Bigl[
1249     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1250     % +2 \mathbf{D}_{\mathbf{b}} \times
1251     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1252     % \Bigr] v_{31}(r)
1253     % % 3
1254     % - \frac{2}{4\pi \epsilon_0}
1255     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1256     % (\hat{r} \cdot \mathbf
1257     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1258     % \end{equation}
1259 gezelter 3906 %
1260     %
1261     %
1262 gezelter 3985 % \begin{equation}
1263     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1264     % \frac{1}{4\pi \epsilon_0} \Bigl[
1265     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1266     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1267     % +2 \mathbf{D}_{\mathbf{b}} \times
1268     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1269     % % 2
1270     % +\frac{1}{4\pi \epsilon_0}
1271     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1272     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1273     % \end{equation}
1274 gezelter 3906 %
1275     %
1276     %
1277     \begin{split}
1278 gezelter 3985 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1279     -4
1280 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1281     v_{41}(r) \\
1282     % 2
1283 gezelter 3985 &+
1284 gezelter 3906 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1285     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1286     +4 \hat{r} \times
1287     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1288     % 3
1289     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1290     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1291     % 4
1292 gezelter 3985 &+ 2
1293 gezelter 3906 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1294 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1295 gezelter 3906 %
1296     %
1297     %
1298     \begin{split}
1299     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1300 gezelter 3985 &4
1301 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1302     % 2
1303 gezelter 3985 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1304 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1305     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1306     \mathbf{Q}_{{\mathbf b}} ) \times
1307     \hat{r}
1308     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1309     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1310     \Bigr] v_{42}(r) \\
1311     % 4
1312 gezelter 3985 &+2
1313 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1314 gezelter 3985 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1315     \end{align}
1316     %
1317     Here, we have defined the matrix cross product in an identical form
1318     as in Ref. \onlinecite{Smith98}:
1319     \begin{equation}
1320     \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1321     \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1322     -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1323     \right]
1324 gezelter 3906 \end{equation}
1325 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1326     permuations of the matrix indices.
1327 gezelter 3980
1328 gezelter 3985 All of the radial functions required for torques are identical with
1329     the radial functions previously computed for the interaction energies.
1330     These are tabulated for both shifted force methods in table
1331     \ref{tab:tableenergy}. The torques for higher multipoles on site
1332     $\mathbf{a}$ interacting with those of lower order on site
1333     $\mathbf{b}$ can be obtained by swapping indices in the expressions
1334     above.
1335    
1336 gezelter 3980 \section{Comparison to known multipolar energies}
1337    
1338     To understand how these new real-space multipole methods behave in
1339     computer simulations, it is vital to test against established methods
1340     for computing electrostatic interactions in periodic systems, and to
1341     evaluate the size and sources of any errors that arise from the
1342     real-space cutoffs. In this paper we test Taylor-shifted and
1343     Gradient-shifted electrostatics against analytical methods for
1344     computing the energies of ordered multipolar arrays. In the following
1345     paper, we test the new methods against the multipolar Ewald sum for
1346     computing the energies, forces and torques for a wide range of typical
1347     condensed-phase (disordered) systems.
1348    
1349     Because long-range electrostatic effects can be significant in
1350     crystalline materials, ordered multipolar arrays present one of the
1351     biggest challenges for real-space cutoff methods. The dipolar
1352     analogues to the Madelung constants were first worked out by Sauer,
1353     who computed the energies of ordered dipole arrays of zero
1354     magnetization and obtained a number of these constants.\cite{Sauer}
1355     This theory was developed more completely by Luttinger and
1356 gezelter 3986 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1357     and other periodic structures. We have repeated the Luttinger \&
1358     Tisza series summations to much higher order and obtained the energy
1359     constants (converged to one part in $10^9$) in table \ref{tab:LT}.
1360    
1361     \begin{table*}[h]
1362 gezelter 3980 \centering{
1363     \caption{Luttinger \& Tisza arrays and their associated
1364 gezelter 3989 energy constants. Type ``A'' arrays have nearest neighbor strings of
1365     antiparallel dipoles. Type ``B'' arrays have nearest neighbor
1366 gezelter 3980 strings of antiparallel dipoles if the dipoles are contained in a
1367     plane perpendicular to the dipole direction that passes through
1368     the dipole.}
1369     }
1370     \label{tab:LT}
1371     \begin{ruledtabular}
1372     \begin{tabular}{cccc}
1373     Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1374     A & SC & 001 & -2.676788684 \\
1375     A & BCC & 001 & 0 \\
1376     A & BCC & 111 & -1.770078733 \\
1377     A & FCC & 001 & 2.166932835 \\
1378     A & FCC & 011 & -1.083466417 \\
1379 gezelter 3986 B & SC & 001 & -2.676788684 \\
1380     B & BCC & 001 & -1.338394342 \\
1381     B & BCC & 111 & -1.770078733 \\
1382     B & FCC & 001 & -1.083466417 \\
1383     B & FCC & 011 & -1.807573634 \\
1384     -- & BCC & minimum & -1.985920929 \\
1385 gezelter 3980 \end{tabular}
1386     \end{ruledtabular}
1387     \end{table*}
1388    
1389     In addition to the A and B arrays, there is an additional minimum
1390     energy structure for the BCC lattice that was found by Luttinger \&
1391 gezelter 3986 Tisza. The total electrostatic energy for any of the arrays is given
1392     by:
1393 gezelter 3980 \begin{equation}
1394     E = C N^2 \mu^2
1395     \end{equation}
1396 gezelter 3986 where $C$ is the energy constant given in table \ref{tab:LT}, $N$ is
1397     the number of dipoles per unit volume, and $\mu$ is the strength of
1398     the dipole.
1399 gezelter 3980
1400 gezelter 3988 To test the new electrostatic methods, we have constructed very large,
1401     $N$ = 8,000~(sc), 16,000~(bcc), or 32,000~(fcc) arrays of dipoles in
1402     the orientations described in table \ref{tab:LT}. For the purposes of
1403     testing the energy expressions and the self-neutralization schemes,
1404     the primary quantity of interest is the analytic energy constant for
1405     the perfect arrays. Convergence to these constants are shown as a
1406     function of both the cutoff radius, $r_c$, and the damping parameter,
1407     $\alpha$ in Figs. \ref{fig:energyConstVsCutoff} and XXX. We have
1408     simultaneously tested a hard cutoff (where the kernel is simply
1409     truncated at the cutoff radius), as well as a shifted potential (SP)
1410     form which includes a potential-shifting and self-interaction term,
1411     but does not shift the forces and torques smoothly at the cutoff
1412 gezelter 3989 radius. The SP method is essentially an extension of the original
1413     Wolf method for multipoles.
1414 gezelter 3986
1415 gezelter 3989 \begin{figure}[!htbp]
1416 gezelter 3988 \includegraphics[width=4.5in]{energyConstVsCutoff}
1417     \caption{Convergence to the analytic energy constants as a function of
1418     cutoff radius (normalized by the lattice constant) for the different
1419     real-space methods. The two crystals shown here are the ``B'' array
1420     for bcc crystals with the dipoles along the 001 direction (upper),
1421     as well as the minimum energy bcc lattice (lower). The analytic
1422     energy constants are shown as a grey dashed line. The left panel
1423     shows results for the undamped kernel ($1/r$), while the damped
1424     error function kernel, $B_0(r)$ was used in the right panel. }
1425     \label{fig:energyConstVsCutoff}
1426     \end{figure}
1427    
1428     The Hard cutoff exhibits oscillations around the analytic energy
1429     constants, and converges to incorrect energies when the complementary
1430     error function damping kernel is used. The shifted potential (SP) and
1431     gradient-shifted force (GSF) approximations converge to the correct
1432     energy smoothly by $r_c / 6 a$ even for the undamped case. This
1433     indicates that the correction provided by the self term is required
1434     for obtaining accurate energies. The Taylor-shifted force (TSF)
1435     approximation appears to perturb the potential too much inside the
1436     cutoff region to provide accurate measures of the energy constants.
1437    
1438    
1439 gezelter 3986 {\it Quadrupolar} analogues to the Madelung constants were first
1440     worked out by Nagai and Nakamura who computed the energies of selected
1441     quadrupole arrays based on extensions to the Luttinger and Tisza
1442     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1443 gezelter 3980 energy constants for the lowest energy configurations for linear
1444     quadrupoles shown in table \ref{tab:NNQ}
1445    
1446     \begin{table*}
1447     \centering{
1448     \caption{Nagai and Nakamura Quadurpolar arrays}}
1449     \label{tab:NNQ}
1450     \begin{ruledtabular}
1451     \begin{tabular}{ccc}
1452     Lattice & Quadrupole Direction & Energy constants \\ \hline
1453     SC & 111 & -8.3 \\
1454     BCC & 011 & -21.7 \\
1455     FCC & 111 & -80.5
1456     \end{tabular}
1457     \end{ruledtabular}
1458     \end{table*}
1459    
1460     In analogy to the dipolar arrays, the total electrostatic energy for
1461     the quadrupolar arrays is:
1462     \begin{equation}
1463     E = C \frac{3}{4} N^2 Q^2
1464     \end{equation}
1465     where $Q$ is the quadrupole moment.
1466    
1467 gezelter 3985 \section{Conclusion}
1468     We have presented two efficient real-space methods for computing the
1469     interactions between point multipoles. These methods have the benefit
1470     of smoothly truncating the energies, forces, and torques at the cutoff
1471     radius, making them attractive for both molecular dynamics (MD) and
1472     Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1473     (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1474     correct lattice energies for ordered dipolar and quadrupolar arrays,
1475     while the Taylor-Shifted Force (TSF) is too severe an approximation to
1476     provide accurate convergence to lattice energies.
1477 gezelter 3980
1478 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1479     lattice energy constants with reasonably small cutoff radii. The only
1480     exception we have observed is for crystals which exhibit a bulk
1481     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1482     In this particular case, the multipole neutralization scheme can
1483     interfere with the correct computation of the energies. We note that
1484     the energies for these arrangements are typically much larger than for
1485     crystals with net-zero moments, so this is not expected to be an issue
1486     in most simulations.
1487 gezelter 3980
1488 gezelter 3985 In large systems, these new methods can be made to scale approximately
1489     linearly with system size, and detailed comparisons with the Ewald sum
1490     for a wide range of chemical environments follows in the second paper.
1491 gezelter 3980
1492 gezelter 3906 \begin{acknowledgments}
1493 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1494     Fennell. Support for this project was provided by the National
1495     Science Foundation under grant CHE-0848243. Computational time was
1496     provided by the Center for Research Computing (CRC) at the
1497     University of Notre Dame.
1498 gezelter 3906 \end{acknowledgments}
1499    
1500 gezelter 3984 \newpage
1501 gezelter 3906 \appendix
1502    
1503 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1504 gezelter 3985 \label{SmithFunc}
1505 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1506     formulas given in his appendix.\cite{Smith98} The first function
1507     $B_0(r)$ is defined by
1508 gezelter 3906 %
1509     \begin{equation}
1510     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1511     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1512     \end{equation}
1513     %
1514     The first derivative of this function is
1515     %
1516     \begin{equation}
1517     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1518     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1519     \end{equation}
1520     %
1521 gezelter 3984 which can be used to define a function $B_1(r)$:
1522 gezelter 3906 %
1523     \begin{equation}
1524     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1525     \end{equation}
1526     %
1527 gezelter 3984 In general, the recurrence relation,
1528 gezelter 3906 \begin{equation}
1529     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1530     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1531     \text{e}^{-{\alpha}^2r^2}
1532 gezelter 3984 \right] ,
1533 gezelter 3906 \end{equation}
1534 gezelter 3984 is very useful for building up higher derivatives. Using these
1535     formulas, we find:
1536 gezelter 3906 %
1537 gezelter 3984 \begin{align}
1538     \frac{dB_0}{dr}=&-rB_1(r) \\
1539     \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1540     \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1541     \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1542     \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1543     \end{align}
1544 gezelter 3906 %
1545 gezelter 3984 As noted by Smith, it is possible to approximate the $B_l(r)$
1546     functions,
1547 gezelter 3906 %
1548     \begin{equation}
1549     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1550     +\text{O}(r) .
1551     \end{equation}
1552 gezelter 3984 \newpage
1553     \section{The $r$-dependent factors for TSF electrostatics}
1554 gezelter 3906
1555     Using the shifted damped functions $f_n(r)$ defined by:
1556     %
1557     \begin{equation}
1558 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1559 gezelter 3906 \end{equation}
1560     %
1561 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1562     this Appendix, we provide formulas for successive derivatives of this
1563     function. (If there is no damping, then $B_0(r)$ is replaced by
1564     $1/r$.) First, we find:
1565 gezelter 3906 %
1566     \begin{equation}
1567     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1568     \end{equation}
1569     %
1570 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1571     function, and we define higher-order derivatives as follows:
1572 gezelter 3906 %
1573 gezelter 3984 \begin{align}
1574     g_n(r)=& \frac{d f_n}{d r} =
1575     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1576     h_n(r)=& \frac{d^2f_n}{d r^2} =
1577     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1578     s_n(r)=& \frac{d^3f_n}{d r^3} =
1579     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1580     t_n(r)=& \frac{d^4f_n}{d r^4} =
1581     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1582     u_n(r)=& \frac{d^5f_n}{d r^5} =
1583     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1584     \end{align}
1585 gezelter 3906 %
1586 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1587 gezelter 3906 %
1588     \begin{equation}
1589 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1590 gezelter 3906 \end{equation}
1591 gezelter 3989 % The functions
1592     % needed are listed schematically below:
1593     % %
1594     % \begin{eqnarray}
1595     % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1596     % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1597     % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1598     % s_2 \quad s_3 \quad &s_4 \nonumber \\
1599     % t_3 \quad &t_4 \nonumber \\
1600     % &u_4 \nonumber .
1601     % \end{eqnarray}
1602 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1603 gezelter 3989 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1604     functions, we find
1605 gezelter 3906 %
1606 gezelter 3984 \begin{align}
1607     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1608     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1609     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1610 gezelter 3989 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1611 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1612     \delta_{ \beta \gamma} r_\alpha \right)
1613 gezelter 3989 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1614     & + r_\alpha r_\beta r_\gamma
1615 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1616 gezelter 3989 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1617     r_\gamma \partial r_\delta} =&
1618 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1619     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1620     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1621     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1622 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1623     + \text{5 permutations}
1624 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1625     \right) \nonumber \\
1626 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1627 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1628 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1629 gezelter 3906 \frac{\partial^5 f_n}
1630 gezelter 3989 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1631     r_\delta \partial r_\epsilon} =&
1632 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1633 gezelter 3984 + \text{14 permutations} \right)
1634 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1635 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1636     + \text{9 permutations}
1637 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1638     \right) \nonumber \\
1639 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1640 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1641 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1642     \end{align}
1643 gezelter 3906 %
1644     %
1645     %
1646 gezelter 3984 \newpage
1647     \section{The $r$-dependent factors for GSF electrostatics}
1648 gezelter 3906
1649 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1650     rather the individual terms in the multipole interaction energies.
1651     For damped charges , this still brings into the algebra multiple
1652     derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1653 gezelter 3989 we generalize the notation of the previous appendix. For either
1654     $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1655 gezelter 3906 %
1656 gezelter 3984 \begin{align}
1657     g(r)=& \frac{df}{d r}\\
1658     h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1659     s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1660     t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1661     u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1662     \end{align}
1663 gezelter 3906 %
1664 gezelter 3989 For undamped charges Table I lists these derivatives under the column
1665     ``Bare Coulomb.'' Equations \ref{eq:b9} to \ref{eq:b13} are still
1666     correct for GSF electrostatics if the subscript $n$ is eliminated.
1667 gezelter 3906
1668 gezelter 3980 \newpage
1669    
1670     \bibliography{multipole}
1671    
1672 gezelter 3906 \end{document}
1673     %
1674     % ****** End of file multipole.tex ******