ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3990
Committed: Fri Jan 3 18:28:01 2014 UTC (10 years, 5 months ago) by gezelter
Content type: application/x-tex
File size: 64794 byte(s)
Log Message:
most recent edits

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 3980
39 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44 gezelter 3988 %\preprint{AIP/123-QED}
45 gezelter 3906
46 gezelter 3988 \title{Real space alternatives to the Ewald
47 gezelter 3980 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48 gezelter 3906
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52    
53     \author{J. Daniel Gezelter}
54     \email{gezelter@nd.edu.}
55     \affiliation{Department of Chemistry and Biochemistry, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58     \author{Kathie E. Newman}
59     \affiliation{Department of Physics, University
60     of Notre Dame, Notre Dame, IN 46556}
61    
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \begin{abstract}
67 gezelter 3980 We have extended the original damped-shifted force (DSF)
68     electrostatic kernel and have been able to derive two new
69     electrostatic potentials for higher-order multipoles that are based
70     on truncated Taylor expansions around the cutoff radius. For
71     multipole-multipole interactions, we find that each of the distinct
72     orientational contributions has a separate radial function to ensure
73     that the overall forces and torques vanish at the cutoff radius. In
74     this paper, we present energy, force, and torque expressions for the
75     new models, and compare these real-space interaction models to exact
76     results for ordered arrays of multipoles.
77 gezelter 3906 \end{abstract}
78    
79 gezelter 3988 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80 gezelter 3906 % Classification Scheme.
81 gezelter 3988 %\keywords{Suggested keywords}%Use showkeys class option if keyword
82 gezelter 3906 %display desired
83     \maketitle
84    
85     \section{Introduction}
86 gezelter 3982 There has been increasing interest in real-space methods for
87     calculating electrostatic interactions in computer simulations of
88     condensed molecular
89 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90     The simplest of these techniques was developed by Wolf {\it et al.}
91     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
93     simple damped shifted force (DSF) modification to Wolf's method could
94     give nearly quantitative agreement with smooth particle mesh Ewald
95     (SPME)\cite{Essmann95} configurational energy differences as well as
96     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97 gezelter 3906
98 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
99     surprisingly good, particularly for systems with uniform charge
100     density. Additionally, dielectric constants obtained using DSF and
101 gezelter 3986 similar methods where the force vanishes at $r_{c}$ are
102 gezelter 3980 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103     related methods have now been widely investigated,\cite{Hansen:2012uq}
104 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
105     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
106     DSF electrostatics provides a compromise between the computational
107     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
108     treatments.
109 gezelter 3906
110 gezelter 3980 One common feature of many coarse-graining approaches, which treat
111     entire molecular subsystems as a single rigid body, is simplification
112     of the electrostatic interactions between these bodies so that fewer
113     site-site interactions are required to compute configurational
114 gezelter 3986 energies. To do this, the interactions between coarse-grained sites
115     are typically taken to be point
116     multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
117 gezelter 3906
118 gezelter 3986 Water, in particular, has been modeled recently with point multipoles
119     up to octupolar
120     order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
121     maximum efficiency, these models require the use of an approximate
122     multipole expansion as the exact multipole expansion can become quite
123     expensive (particularly when handled via the Ewald
124     sum).\cite{Ichiye:2006qy} Point multipoles and multipole
125     polarizability have also been utilized in the AMOEBA water model and
126 gezelter 3980 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
127 gezelter 3906
128 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
129     dynamics. Multipolar interactions are inherently short-ranged, and
130     should not need the relatively expensive Ewald treatment. However,
131     real-space cutoff methods are normally applied in an orientation-blind
132     fashion so multipoles which leave and then re-enter a cutoff sphere in
133     a different orientation can cause energy discontinuities.
134 gezelter 3906
135 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
136 gezelter 3985 kernel to point multipoles. We describe two distinct real-space
137 gezelter 3982 interaction models for higher-order multipoles based on two truncated
138     Taylor expansions that are carried out at the cutoff radius. We are
139     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
140     electrostatics. Because of differences in the initial assumptions,
141 gezelter 3986 the two methods yield related, but somewhat different expressions for
142     energies, forces, and torques.
143 gezelter 3906
144 gezelter 3982 In this paper we outline the new methodology and give functional forms
145     for the energies, forces, and torques up to quadrupole-quadrupole
146     order. We also compare the new methods to analytic energy constants
147 gezelter 3986 for periodic arrays of point multipoles. In the following paper, we
148 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
149     simulation enviornments.
150 gezelter 3982
151 gezelter 3980 \section{Methodology}
152 gezelter 3986 An efficient real-space electrostatic method involves the use of a
153     pair-wise functional form,
154     \begin{equation}
155     V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
156 gezelter 3989 \sum_i V_i^\mathrm{self}
157 gezelter 3986 \end{equation}
158     that is short-ranged and easily truncated at a cutoff radius,
159     \begin{equation}
160 gezelter 3989 V_\mathrm{pair}(r_{ij},\Omega_i, \Omega_j) = \left\{
161 gezelter 3986 \begin{array}{ll}
162     V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
163     0 & \quad r > r_c ,
164     \end{array}
165     \right.
166     \end{equation}
167 gezelter 3989 along with an easily computed self-interaction term ($\sum_i
168     V_i^\mathrm{self}$) which has linear-scaling with the number of
169 gezelter 3986 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
170     coordinates of the two sites. The computational efficiency, energy
171     conservation, and even some physical properties of a simulation can
172     depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173     the cutoff radius. The goal of any approximation method should be to
174     mimic the real behavior of the electrostatic interactions as closely
175     as possible without sacrificing the near-linear scaling of a cutoff
176     method.
177 gezelter 3906
178 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
179     The DSF and Wolf methods operate by neutralizing the total charge
180     contained within the cutoff sphere surrounding each particle. This is
181     accomplished by shifting the potential functions to generate image
182     charges on the surface of the cutoff sphere for each pair interaction
183 gezelter 3986 computed within $r_c$. Damping using a complementary error
184 gezelter 3982 function is applied to the potential to accelerate convergence. The
185     potential for the DSF method, where $\alpha$ is the adjustable damping
186     parameter, is given by
187 gezelter 3980 \begin{equation*}
188 gezelter 3986 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
189 gezelter 3980 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
190 gezelter 3986 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
191 gezelter 3980 + \frac{2\alpha}{\pi^{1/2}}
192 gezelter 3986 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
193     \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
194 gezelter 3980 \label{eq:DSFPot}
195     \end{equation*}
196 gezelter 3985 Note that in this potential and in all electrostatic quantities that
197 gezelter 3986 follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
198 gezelter 3985 clarity.
199 gezelter 3980
200     To insure net charge neutrality within each cutoff sphere, an
201     additional ``self'' term is added to the potential. This term is
202     constant (as long as the charges and cutoff radius do not change), and
203     exists outside the normal pair-loop for molecular simulations. It can
204     be thought of as a contribution from a charge opposite in sign, but
205     equal in magnitude, to the central charge, which has been spread out
206     over the surface of the cutoff sphere. A portion of the self term is
207     identical to the self term in the Ewald summation, and comes from the
208     utilization of the complimentary error function for electrostatic
209 gezelter 3986 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
210     extend the Wolf self-neutralization method to zero out the dipole and
211     higher order multipoles contained within the cutoff
212 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
213 gezelter 3982
214 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
215     multipoles by insuring net charge-neutrality and net-zero moments
216     within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
217     central dipolar site $\mathbf{D}_i$ is interacting with point dipole
218     $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
219     self-neutralization scheme for point multipoles involves projecting
220     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
221     sphere. There are also significant modifications made to make the
222     forces and torques go smoothly to zero at the cutoff distance.
223 gezelter 3982
224 gezelter 3980 \begin{figure}
225 gezelter 3982 \includegraphics[width=3in]{SM}
226 gezelter 3980 \caption{Reversed multipoles are projected onto the surface of the
227     cutoff sphere. The forces, torques, and potential are then smoothly
228     shifted to zero as the sites leave the cutoff region.}
229     \label{fig:shiftedMultipoles}
230     \end{figure}
231    
232 gezelter 3986 As in the point-charge approach, there is an additional contribution
233     from self-neutralization of site $i$. The self term for multipoles is
234 gezelter 3982 described in section \ref{sec:selfTerm}.
235 gezelter 3906
236 gezelter 3982 \subsection{The multipole expansion}
237    
238 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
239 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
240     interact via electrostatics only and describe those interactions in
241     terms of a standard multipole expansion. Putting the origin of the
242     coordinate system at the center of mass of $\bf a$, we use vectors
243 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
244     a$. Then the electrostatic potential of object $\bf a$ at
245     $\mathbf{r}$ is given by
246 gezelter 3906 \begin{equation}
247 gezelter 3985 V_a(\mathbf r) =
248 gezelter 3906 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
249     \end{equation}
250 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
251     notation. Here Greek indices are used to indicate space coordinates
252     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
253     labelling specific charges in $\bf a$ and $\bf b$ respectively. The
254     Taylor expansion,
255 gezelter 3906 \begin{equation}
256     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
257     \left( 1
258     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
259     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
260     \right)
261 gezelter 3982 \frac{1}{r} ,
262 gezelter 3906 \end{equation}
263 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
264     terms of multipole operators,
265 gezelter 3906 \begin{equation}
266 gezelter 3985 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
267 gezelter 3906 \end{equation}
268     where
269     \begin{equation}
270     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
271     + Q_{{\bf a}\alpha\beta}
272     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
273     \end{equation}
274 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
275     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
276 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
277     which can be expressed as a distribution of charges,
278     \begin{align}
279     C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
280     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
281     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
282     \end{align}
283     Note that the definition of the primitive quadrupole here differs from
284     the standard traceless form, and contains an additional Taylor-series
285     based factor of $1/2$.
286 gezelter 3906
287     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
288     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
289     \begin{equation}
290 gezelter 3982 U_{\bf{ab}}(r)
291 gezelter 3985 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
292 gezelter 3982 \end{equation}
293     This can also be expanded as a Taylor series in $r$. Using a notation
294     similar to before to define the multipoles on object {\bf b},
295     \begin{equation}
296 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
297     + Q_{{\bf b}\alpha\beta}
298     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
299     \end{equation}
300 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
301 gezelter 3906 \begin{equation}
302 gezelter 3985 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
303 gezelter 3906 \end{equation}
304 gezelter 3982 This form has the benefit of separating out the energies of
305     interaction into contributions from the charge, dipole, and quadrupole
306 gezelter 3986 of $\bf a$ interacting with the same multipoles on $\bf b$.
307 gezelter 3906
308 gezelter 3982 \subsection{Damped Coulomb interactions}
309     In the standard multipole expansion, one typically uses the bare
310     Coulomb potential, with radial dependence $1/r$, as shown in
311     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
312     interaction, which results from replacing point charges with Gaussian
313     distributions of charge with width $\alpha$. In damped multipole
314     electrostatics, the kernel ($1/r$) of the expansion is replaced with
315     the function:
316 gezelter 3906 \begin{equation}
317     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319     \end{equation}
320 gezelter 3982 We develop equations below using the function $f(r)$ to represent
321 gezelter 3986 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322     bare or damped Coulomb kernels (or any other function) as long as
323     derivatives of these functions are known. Smith's convenient
324     functions $B_l(r)$ are summarized in Appendix A.
325 gezelter 3906
326 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
327     energy as well as forces and torques as $r\rightarrow r_c$. To
328     describe how this goal may be met, we use two examples, charge-charge
329 gezelter 3986 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
330     explain the idea.
331 gezelter 3906
332 gezelter 3984 \subsection{Shifted-force methods}
333 gezelter 3982 In the shifted-force approximation, the interaction energy for two
334     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
335     written:
336 gezelter 3906 \begin{equation}
337 gezelter 3985 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
338 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
339     \right) .
340     \end{equation}
341 gezelter 3982 Two shifting terms appear in this equations, one from the
342 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
343     derivative to vanish at the cutoff radius.
344 gezelter 3982
345     Since one derivative of the interaction energy is needed for the
346     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
347     interaction energy, that is:
348 gezelter 3906 \begin{equation}
349     \frac{d\,}{dr}
350     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
351     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
352     \right) .
353     \end{equation}
354 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
355     are a number of ways to generalize this derivative shift for
356 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
357     higher-order Taylor series for $r$ near $r_c$, and the other based on
358     linear shift of the kernel gradients at the cutoff itself.
359 gezelter 3906
360 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
361 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
362     is based on a Taylor expansion containing the same number of
363     derivatives required for each force term to vanish at the cutoff. For
364     example, the quadrupole-quadrupole interaction energy requires four
365     derivatives of the kernel, and the force requires one additional
366 gezelter 3986 derivative. For quadrupole-quadrupole interactions, we therefore
367     require shifted energy expressions that include up to $(r-r_c)^5$ so
368     that all energies, forces, and torques are zero as $r \rightarrow
369     r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
370     from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
371     derivatives to be taken when deriving a given multipole energy. We
372     choose a function with guaranteed smooth derivatives -- a truncated
373     Taylor series of the function $f(r)$, e.g.,
374 gezelter 3906 %
375     \begin{equation}
376 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
377 gezelter 3906 \end{equation}
378     %
379     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
380     Thus, for $f(r)=1/r$, we find
381     %
382     \begin{equation}
383     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
384     \end{equation}
385     %
386 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
387     dipole $\bf b$, we write
388 gezelter 3906 %
389     \begin{equation}
390     U_{C_{\bf a}D_{\bf b}}(r)=
391 gezelter 3985 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
392     = C_{\bf a} D_{{\bf b}\alpha}
393 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
394     \end{equation}
395     %
396 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
397 gezelter 3906 %
398     \begin{equation}
399 gezelter 3985 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
400 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
401     \frac{r_\alpha r_\beta}{r^2}
402     \left( -\frac{1}{r} \frac {\partial} {\partial r}
403     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
404     \end{equation}
405     %
406 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
407 gezelter 3906 %
408     \begin{equation}
409     F_{C_{\bf a}D_{\bf b}\beta} =
410 gezelter 3985 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
411 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
412 gezelter 3985 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
413 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
414     \end{equation}
415     %
416     This expansion shows the expected $1/r^3$ dependence of the force.
417    
418 gezelter 3984 In general, we can write
419 gezelter 3906 %
420     \begin{equation}
421 gezelter 3985 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
422 gezelter 3906 \label{generic}
423     \end{equation}
424     %
425 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
426     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
427     $n=4$ for quadrupole-quadrupole. For example, in
428     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
429     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
430     $\partial^4/\partial r_\alpha \partial r_\beta \partial
431     r_\gamma \partial r_\delta$, with implied summation combining the
432     space indices.
433 gezelter 3906
434 gezelter 3984 In the formulas presented in the tables below, the placeholder
435     function $f(r)$ is used to represent the electrostatic kernel (either
436     damped or undamped). The main functions that go into the force and
437 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
438     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
439     of the same index $n$. The algebra required to evaluate energies,
440     forces and torques is somewhat tedious, so only the final forms are
441 gezelter 3986 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
442 gezelter 3906
443 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
444 gezelter 3985 The second, and conceptually simpler approach to force-shifting
445     maintains only the linear $(r-r_c)$ term in the truncated Taylor
446     expansion, and has a similar interaction energy for all multipole
447     orders:
448 gezelter 3906 \begin{equation}
449 gezelter 3990 U^{\text{GSF}} =
450     U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
451     U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) - (r-r_c) \hat{r}
452     \cdot \nabla U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) \Big \lvert _{r_c} .
453 gezelter 3985 \label{generic2}
454 gezelter 3906 \end{equation}
455 gezelter 3990 Both the potential and the gradient for force shifting are evaluated
456     for an image multipole projected onto the surface of the cutoff sphere
457     (see fig \ref{fig:shiftedMultipoles}). The image multipole retains
458     the orientation ($\hat{\mathbf{b}}$) of the interacting multipole. No
459     higher order terms $(r-r_c)^n$ appear. The primary difference between
460     the TSF and GSF methods is the stage at which the Taylor Series is
461     applied; in the Taylor-shifted approach, it is applied to the kernel
462     itself. In the Gradient-shifted approach, it is applied to individual
463     radial interactions terms in the multipole expansion. Energies from
464     this method thus have the general form:
465 gezelter 3906 \begin{equation}
466 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
467     \label{generic3}
468 gezelter 3906 \end{equation}
469    
470 gezelter 3986 Functional forms for both methods (TSF and GSF) can both be summarized
471 gezelter 3985 using the form of Eq.~(\ref{generic3}). The basic forms for the
472     energy, force, and torque expressions are tabulated for both shifting
473 gezelter 3986 approaches below -- for each separate orientational contribution, only
474 gezelter 3985 the radial factors differ between the two methods.
475 gezelter 3906
476     \subsection{\label{sec:level2}Body and space axes}
477 gezelter 3989 Although objects $\bf a$ and $\bf b$ rotate during a molecular
478     dynamics (MD) simulation, their multipole tensors remain fixed in
479     body-frame coordinates. While deriving force and torque expressions,
480     it is therefore convenient to write the energies, forces, and torques
481     in intermediate forms involving the vectors of the rotation matrices.
482     We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
483     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
484     In a typical simulation , the initial axes are obtained by
485     diagonalizing the moment of inertia tensors for the objects. (N.B.,
486     the body axes are generally {\it not} the same as those for which the
487     quadrupole moment is diagonal.) The rotation matrices are then
488     propagated during the simulation.
489 gezelter 3906
490 gezelter 3989 The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
491 gezelter 3985 expressed using these unit vectors:
492 gezelter 3906 \begin{eqnarray}
493     \hat{\mathbf {a}} =
494     \begin{pmatrix}
495     \hat{a}_1 \\
496     \hat{a}_2 \\
497     \hat{a}_3
498 gezelter 3989 \end{pmatrix}, \qquad
499 gezelter 3906 \hat{\mathbf {b}} =
500     \begin{pmatrix}
501     \hat{b}_1 \\
502     \hat{b}_2 \\
503     \hat{b}_3
504     \end{pmatrix}
505     \end{eqnarray}
506     %
507 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
508 gezelter 3989 coordinates.
509    
510     Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
511     {\em et al.},\cite{Price:1984fk} showed that if the interaction
512     energies are written explicitly in terms of $\hat{r}$ and the body
513     axes ($\hat{a}_m$, $\hat{b}_n$) :
514 gezelter 3906 %
515 gezelter 3985 \begin{equation}
516 gezelter 3989 U(r, \{\hat{a}_m \cdot \hat{r} \},
517     \{\hat{b}_n\cdot \hat{r} \},
518     \{\hat{a}_m \cdot \hat{b}_n \}) .
519     \label{ugeneral}
520     \end{equation}
521     %
522     the forces come out relatively cleanly,
523     %
524     \begin{equation}
525     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
526     = \frac{\partial U}{\partial r} \hat{r}
527     + \sum_m \left[
528     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
529     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
530     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
531     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
532     \right] \label{forceequation}.
533     \end{equation}
534    
535     The torques can also be found in a relatively similar
536     manner,
537     %
538     \begin{eqnarray}
539     \mathbf{\tau}_{\bf a} =
540     \sum_m
541     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
542     ( \hat{r} \times \hat{a}_m )
543     -\sum_{mn}
544     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
545     (\hat{a}_m \times \hat{b}_n) \\
546     %
547     \mathbf{\tau}_{\bf b} =
548     \sum_m
549     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
550     ( \hat{r} \times \hat{b}_m)
551     +\sum_{mn}
552     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
553     (\hat{a}_m \times \hat{b}_n) .
554     \end{eqnarray}
555    
556     Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
557     is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
558     We also made use of the identities,
559     %
560     \begin{align}
561     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
562     =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
563     \right) \\
564     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
565     =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
566     \right) .
567     \end{align}
568    
569     Many of the multipole contractions required can be written in one of
570     three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
571     and $\hat{b}_n$. In the torque expressions, it is useful to have the
572     angular-dependent terms available in all three fashions, e.g. for the
573     dipole-dipole contraction:
574     %
575     \begin{equation}
576 gezelter 3906 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
577 gezelter 3985 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
578     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
579     \end{equation}
580 gezelter 3906 %
581 gezelter 3985 The first two forms are written using space coordinates. The first
582     form is standard in the chemistry literature, while the second is
583     expressed using implied summation notation. The third form shows
584     explicit sums over body indices and the dot products now indicate
585     contractions using space indices.
586 gezelter 3906
587 gezelter 3989 In computing our force and torque expressions, we carried out most of
588     the work in body coordinates, and have transformed the expressions
589     back to space-frame coordinates, which are reported below. Interested
590     readers may consult the supplemental information for this paper for
591     the intermediate body-frame expressions.
592 gezelter 3906
593 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
594    
595 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
596     summation~\cite{Wolf99} and the damped shifted force (DSF)
597     extension~\cite{Fennell:2006zl} also included self-interactions that
598     are handled separately from the pairwise interactions between
599     sites. The self-term is normally calculated via a single loop over all
600     sites in the system, and is relatively cheap to evaluate. The
601     self-interaction has contributions from two sources.
602    
603     First, the neutralization procedure within the cutoff radius requires
604     a contribution from a charge opposite in sign, but equal in magnitude,
605     to the central charge, which has been spread out over the surface of
606     the cutoff sphere. For a system of undamped charges, the total
607     self-term is
608 gezelter 3980 \begin{equation}
609     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
610     \label{eq:selfTerm}
611     \end{equation}
612 gezelter 3985
613     Second, charge damping with the complementary error function is a
614     partial analogy to the Ewald procedure which splits the interaction
615     into real and reciprocal space sums. The real space sum is retained
616     in the Wolf and DSF methods. The reciprocal space sum is first
617     minimized by folding the largest contribution (the self-interaction)
618     into the self-interaction from charge neutralization of the damped
619     potential. The remainder of the reciprocal space portion is then
620     discarded (as this contributes the largest computational cost and
621     complexity to the Ewald sum). For a system containing only damped
622     charges, the complete self-interaction can be written as
623 gezelter 3980 \begin{equation}
624     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
625     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
626     C_{\bf a}^{2}.
627     \label{eq:dampSelfTerm}
628     \end{equation}
629    
630     The extension of DSF electrostatics to point multipoles requires
631     treatment of {\it both} the self-neutralization and reciprocal
632     contributions to the self-interaction for higher order multipoles. In
633     this section we give formulae for these interactions up to quadrupolar
634     order.
635    
636     The self-neutralization term is computed by taking the {\it
637     non-shifted} kernel for each interaction, placing a multipole of
638     equal magnitude (but opposite in polarization) on the surface of the
639     cutoff sphere, and averaging over the surface of the cutoff sphere.
640     Because the self term is carried out as a single sum over sites, the
641     reciprocal-space portion is identical to half of the self-term
642     obtained by Smith and Aguado and Madden for the application of the
643     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
644     site which posesses a charge, dipole, and multipole, both types of
645     contribution are given in table \ref{tab:tableSelf}.
646    
647     \begin{table*}
648     \caption{\label{tab:tableSelf} Self-interaction contributions for
649     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
650     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
651     \begin{ruledtabular}
652     \begin{tabular}{lccc}
653     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
654     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
655     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
656     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
657 gezelter 3989 Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
658 gezelter 3980 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
659     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
660     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
661     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
662     \end{tabular}
663     \end{ruledtabular}
664     \end{table*}
665    
666     For sites which simultaneously contain charges and quadrupoles, the
667     self-interaction includes a cross-interaction between these two
668     multipole orders. Symmetry prevents the charge-dipole and
669     dipole-quadrupole interactions from contributing to the
670     self-interaction. The functions that go into the self-neutralization
671 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
672     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
673     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
674     have been evaluated at the cutoff distance. For undamped
675     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
676     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
677     on. Appendix \ref{SmithFunc} contains recursion relations that allow
678     rapid evaluation of these derivatives.
679 gezelter 3980
680 gezelter 3985 \section{Interaction energies, forces, and torques}
681     The main result of this paper is a set of expressions for the
682     energies, forces and torques (up to quadrupole-quadrupole order) that
683     work for both the Taylor-shifted and Gradient-shifted approximations.
684     These expressions were derived using a set of generic radial
685     functions. Without using the shifting approximations mentioned above,
686     some of these radial functions would be identical, and the expressions
687     coalesce into the familiar forms for unmodified multipole-multipole
688     interactions. Table \ref{tab:tableenergy} maps between the generic
689     functions and the radial functions derived for both the Taylor-shifted
690     and Gradient-shifted methods. The energy equations are written in
691     terms of lab-frame representations of the dipoles, quadrupoles, and
692     the unit vector connecting the two objects,
693 gezelter 3906
694     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
695     %
696     %
697     % u ca cb
698     %
699 gezelter 3983 \begin{align}
700     U_{C_{\bf a}C_{\bf b}}(r)=&
701 gezelter 3985 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
702 gezelter 3983 \\
703 gezelter 3906 %
704     % u ca db
705     %
706 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
707 gezelter 3985 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
708 gezelter 3906 \label{uchdip}
709 gezelter 3983 \\
710 gezelter 3906 %
711     % u ca qb
712     %
713 gezelter 3985 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
714     v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
715     \hat{r} \right) v_{22}(r) \Bigr]
716 gezelter 3906 \label{uchquad}
717 gezelter 3983 \\
718 gezelter 3906 %
719     % u da cb
720     %
721 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
722     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
723     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
724     %\\
725 gezelter 3906 %
726     % u da db
727     %
728 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
729 gezelter 3985 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
730 gezelter 3906 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
731     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
732     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
733     v_{22}(r) \Bigr]
734     \label{udipdip}
735 gezelter 3983 \\
736 gezelter 3906 %
737     % u da qb
738     %
739     \begin{split}
740     % 1
741 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
742 gezelter 3985 -\Bigl[
743 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
744     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
745     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
746     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
747     % 2
748 gezelter 3985 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
749 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
750     \label{udipquad}
751     \end{split}
752 gezelter 3983 \\
753 gezelter 3906 %
754     % u qa cb
755     %
756 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
757     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
758     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
759     %\label{uquadch}
760     %\\
761 gezelter 3906 %
762     % u qa db
763     %
764 gezelter 3983 %\begin{split}
765 gezelter 3906 %1
766 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
767     %\frac{1}{4\pi \epsilon_0} \Bigl[
768     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
769     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
770     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
771     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
772 gezelter 3906 % 2
773 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
774     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
775     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
776     %\label{uquaddip}
777     %\end{split}
778     %\\
779 gezelter 3906 %
780     % u qa qb
781     %
782     \begin{split}
783     %1
784 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
785 gezelter 3985 \Bigl[
786 gezelter 3906 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
787 gezelter 3989 +2
788     \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
789 gezelter 3906 \\
790     % 2
791 gezelter 3985 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
792 gezelter 3906 \left( \hat{r} \cdot
793     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
794     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
795     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
796     \cdot \hat{r} \right) +4 (\hat{r} \cdot
797     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
798     \Bigr] v_{42}(r)
799     \\
800     % 4
801 gezelter 3985 &+
802 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
803     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
804     \label{uquadquad}
805     \end{split}
806 gezelter 3983 \end{align}
807 gezelter 3985 %
808 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
809     with those on site $\mathbf{a}$ can be obtained by swapping indices
810     along with the sign of the intersite vector, $\hat{r}$.
811 gezelter 3906
812     %
813     %
814     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
815     %
816    
817 gezelter 3985 \begin{sidewaystable}
818     \caption{\label{tab:tableenergy}Radial functions used in the energy
819     and torque equations. The $f, g, h, s, t, \mathrm{and} u$
820     functions used in this table are defined in Appendices B and C.}
821     \begin{tabular}{|c|c|l|l|} \hline
822     Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
823 gezelter 3906 \\ \hline
824     %
825     %
826     %
827     %Ch-Ch&
828     $v_{01}(r)$ &
829     $\frac{1}{r}$ &
830     $f_0(r)$ &
831     $f(r)-f(r_c)-(r-r_c)g(r_c)$
832     \\
833     %
834     %
835     %
836     %Ch-Di&
837     $v_{11}(r)$ &
838     $-\frac{1}{r^2}$ &
839     $g_1(r)$ &
840     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
841     %
842     %
843     %
844     %Ch-Qu/Di-Di&
845     $v_{21}(r)$ &
846     $-\frac{1}{r^3} $ &
847     $\frac{g_2(r)}{r} $ &
848     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
849     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
850     $v_{22}(r)$ &
851     $\frac{3}{r^3} $ &
852     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
853     $\left(-\frac{g(r)}{r}+h(r) \right)
854 gezelter 3985 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
855     &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
856 gezelter 3906 \\
857     %
858     %
859     %
860     %Di-Qu &
861     $v_{31}(r)$ &
862     $\frac{3}{r^4} $ &
863     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
864     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
865     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
866 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
867 gezelter 3906 \\
868     %
869     $v_{32}(r)$ &
870     $-\frac{15}{r^4} $ &
871     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
872     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
873     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
874 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
875 gezelter 3906 \\
876     %
877     %
878     %
879     %Qu-Qu&
880     $v_{41}(r)$ &
881     $\frac{3}{r^5} $ &
882     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
883     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
884     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
885 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
886 gezelter 3906 \\
887     % 2
888     $v_{42}(r)$ &
889     $- \frac{15}{r^5} $ &
890     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
891     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
892     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
893 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
894 gezelter 3906 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
895     \\
896     % 3
897     $v_{43}(r)$ &
898     $ \frac{105}{r^5} $ &
899     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
900     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
901 gezelter 3985 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
902     &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
903     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
904 gezelter 3906 \end{tabular}
905 gezelter 3985 \end{sidewaystable}
906 gezelter 3906 %
907     %
908     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
909     %
910    
911 gezelter 3985 \begin{sidewaystable}
912 gezelter 3906 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
913 gezelter 3985 \begin{tabular}{|c|c|l|l|} \hline
914     Function&Definition&Taylor-Shifted&Gradient-Shifted
915 gezelter 3906 \\ \hline
916     %
917     %
918     %
919     $w_a(r)$&
920 gezelter 3985 $\frac{d v_{01}}{dr}$&
921     $g_0(r)$&
922     $g(r)-g(r_c)$ \\
923 gezelter 3906 %
924     %
925     $w_b(r)$ &
926 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
927     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
928     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
929 gezelter 3906 %
930     $w_c(r)$ &
931 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
932     $\frac{g_1(r)}{r} $ &
933     $\frac{v_{11}(r)}{r}$\\
934 gezelter 3906 %
935     %
936     $w_d(r)$&
937 gezelter 3985 $\frac{d v_{21}}{dr}$&
938     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
939     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
940     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
941 gezelter 3906 %
942     $w_e(r)$ &
943 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
944     $\frac{v_{22}(r)}{r}$ &
945 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
946     %
947     %
948     $w_f(r)$&
949 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
950     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
951     $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
952     &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
953     \right)-\frac{2v_{22}(r)}{r}$\\
954 gezelter 3906 %
955     $w_g(r)$&
956 gezelter 3985 $\frac{v_{31}(r)}{r}$&
957     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
958 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
959     %
960     $w_h(r)$ &
961 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
962     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
963     $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
964     &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
965 gezelter 3906 % 2
966     $w_i(r)$ &
967 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
968     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
969     $\frac{v_{32}(r)}{r}$\\
970 gezelter 3906 %
971     $w_j(r)$ &
972 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
973     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
974     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
975     &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
976     -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
977 gezelter 3906 %
978     $w_k(r)$ &
979 gezelter 3985 $\frac{d v_{41}}{dr} $ &
980     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
981     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
982     -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
983 gezelter 3906 %
984     $w_l(r)$ &
985 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
986     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
987     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
988     &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
989     -\frac{2v_{42}(r)}{r}$\\
990 gezelter 3906 %
991     $w_m(r)$ &
992 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
993     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
994     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
995     &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
996     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
997     &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
998 gezelter 3906 %
999     $w_n(r)$ &
1000 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
1001     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1002     $\frac{v_{42}(r)}{r}$\\
1003 gezelter 3906 %
1004     $w_o(r)$ &
1005 gezelter 3985 $\frac{v_{43}(r)}{r}$&
1006     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1007     $\frac{v_{43}(r)}{r}$ \\ \hline
1008 gezelter 3906 %
1009    
1010     \end{tabular}
1011 gezelter 3985 \end{sidewaystable}
1012 gezelter 3906 %
1013     %
1014     %
1015    
1016     \subsection{Forces}
1017 gezelter 3985 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1018     $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1019     a simple charge-charge interaction, these forces will point along the
1020     $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1021     \mathbf{r}_a $. Thus
1022 gezelter 3906 %
1023     \begin{equation}
1024     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1025     \quad \text{and} \quad F_{\bf b \alpha}
1026     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
1027     \end{equation}
1028     %
1029 gezelter 3985 We list below the force equations written in terms of lab-frame
1030     coordinates. The radial functions used in the two methods are listed
1031     in Table \ref{tab:tableFORCE}
1032 gezelter 3906 %
1033 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1034 gezelter 3906 %
1035     % **************************************************************************
1036     % f ca cb
1037     %
1038 gezelter 3985 \begin{align}
1039     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1040     C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1041 gezelter 3906 %
1042     %
1043     %
1044 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1045     C_{\bf a} \Bigl[
1046 gezelter 3906 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1047     w_b(r) \hat{r}
1048 gezelter 3985 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1049 gezelter 3906 %
1050     %
1051     %
1052 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1053     C_{\bf a } \Bigr[
1054 gezelter 3906 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1055     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1056 gezelter 3985 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1057     \right) w_f(r) \hat{r} \Bigr] \\
1058 gezelter 3906 %
1059     %
1060     %
1061 gezelter 3985 % \begin{equation}
1062     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1063     % -C_{\bf{b}} \Bigl[
1064     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1065     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1066     % \end{equation}
1067 gezelter 3906 %
1068     %
1069     %
1070 gezelter 3985 \begin{split}
1071     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1072 gezelter 3906 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1073     + \left( \mathbf{D}_{\mathbf {a}}
1074     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1075 gezelter 3985 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1076 gezelter 3906 % 2
1077 gezelter 3985 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1078     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1079     \end{split}\\
1080 gezelter 3906 %
1081     %
1082     %
1083     \begin{split}
1084 gezelter 3985 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1085 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1086     +2 \mathbf{D}_{\mathbf{a}} \cdot
1087     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1088 gezelter 3985 - \Bigl[
1089 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1090     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1091     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1092     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1093     % 3
1094 gezelter 3985 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1095 gezelter 3906 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1096     w_i(r)
1097     % 4
1098 gezelter 3985 -
1099 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1100 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1101 gezelter 3906 %
1102     %
1103 gezelter 3985 % \begin{equation}
1104     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1105     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1106     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1107     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1108     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1109     % \end{equation}
1110     % %
1111     % \begin{equation}
1112     % \begin{split}
1113     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1114     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1115     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1116     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1117     % % 2
1118     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1119     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1120     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1121     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1122     % % 3
1123     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1124     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1125     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1126     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1127     % % 4
1128     % +\frac{1}{4\pi \epsilon_0}
1129     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1130     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1131     % \end{split}
1132     % \end{equation}
1133 gezelter 3906 %
1134     %
1135     %
1136     \begin{split}
1137 gezelter 3985 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1138     \Bigl[
1139 gezelter 3989 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1140     + 2 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1141 gezelter 3906 % 2
1142 gezelter 3985 &+ \Bigl[
1143 gezelter 3906 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1144     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1145     % 3
1146     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1147     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1148     % 4
1149 gezelter 3985 &+ \Bigl[
1150 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1151     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1152     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1153     % 5
1154     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1155     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1156     %
1157 gezelter 3985 &+ \Bigl[
1158 gezelter 3906 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1159     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1160     %6
1161     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1162     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1163     % 7
1164 gezelter 3985 &+
1165 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1166 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1167     \end{align}
1168     Note that the forces for higher multipoles on site $\mathbf{a}$
1169     interacting with those of lower order on site $\mathbf{b}$ can be
1170     obtained by swapping indices in the expressions above.
1171    
1172 gezelter 3906 %
1173 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1174 gezelter 3906 %
1175     \subsection{Torques}
1176 gezelter 3989
1177 gezelter 3906 %
1178 gezelter 3985 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1179     methods are given in space-frame coordinates:
1180 gezelter 3906 %
1181     %
1182 gezelter 3985 \begin{align}
1183     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1184     C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1185 gezelter 3906 %
1186     %
1187     %
1188 gezelter 3985 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1189     2C_{\bf a}
1190     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1191 gezelter 3906 %
1192     %
1193     %
1194 gezelter 3985 % \begin{equation}
1195     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1196     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1197     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1198     % \end{equation}
1199 gezelter 3906 %
1200     %
1201     %
1202 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1203     \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1204 gezelter 3906 % 2
1205 gezelter 3985 -
1206 gezelter 3906 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1207 gezelter 3985 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1208 gezelter 3906 %
1209     %
1210     %
1211 gezelter 3985 % \begin{equation}
1212     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1213     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1214     % % 2
1215     % +\frac{1}{4\pi \epsilon_0}
1216     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1217     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1218     % \end{equation}
1219 gezelter 3906 %
1220     %
1221     %
1222 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1223     \Bigl[
1224 gezelter 3906 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1225     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1226     +2 \mathbf{D}_{\mathbf{a}} \times
1227     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1228     \Bigr] v_{31}(r)
1229     % 3
1230 gezelter 3985 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1231     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1232 gezelter 3906 %
1233     %
1234     %
1235 gezelter 3985 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1236     \Bigl[
1237 gezelter 3906 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1238     \hat{r}
1239     -2 \mathbf{D}_{\mathbf{a}} \times
1240     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1241     \Bigr] v_{31}(r)
1242     % 2
1243 gezelter 3985 +
1244 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1245 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1246 gezelter 3906 %
1247     %
1248     %
1249 gezelter 3985 % \begin{equation}
1250     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1251     % \frac{1}{4\pi \epsilon_0} \Bigl[
1252     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1253     % +2 \mathbf{D}_{\mathbf{b}} \times
1254     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1255     % \Bigr] v_{31}(r)
1256     % % 3
1257     % - \frac{2}{4\pi \epsilon_0}
1258     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1259     % (\hat{r} \cdot \mathbf
1260     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1261     % \end{equation}
1262 gezelter 3906 %
1263     %
1264     %
1265 gezelter 3985 % \begin{equation}
1266     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1267     % \frac{1}{4\pi \epsilon_0} \Bigl[
1268     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1269     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1270     % +2 \mathbf{D}_{\mathbf{b}} \times
1271     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1272     % % 2
1273     % +\frac{1}{4\pi \epsilon_0}
1274     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1275     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1276     % \end{equation}
1277 gezelter 3906 %
1278     %
1279     %
1280     \begin{split}
1281 gezelter 3985 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1282     -4
1283 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1284     v_{41}(r) \\
1285     % 2
1286 gezelter 3985 &+
1287 gezelter 3906 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1288     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1289     +4 \hat{r} \times
1290     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1291     % 3
1292     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1293     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1294     % 4
1295 gezelter 3985 &+ 2
1296 gezelter 3906 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1297 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1298 gezelter 3906 %
1299     %
1300     %
1301     \begin{split}
1302     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1303 gezelter 3985 &4
1304 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1305     % 2
1306 gezelter 3985 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1307 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1308     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1309     \mathbf{Q}_{{\mathbf b}} ) \times
1310     \hat{r}
1311     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1312     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1313     \Bigr] v_{42}(r) \\
1314     % 4
1315 gezelter 3985 &+2
1316 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1317 gezelter 3985 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1318     \end{align}
1319     %
1320     Here, we have defined the matrix cross product in an identical form
1321     as in Ref. \onlinecite{Smith98}:
1322     \begin{equation}
1323     \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1324     \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1325     -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1326     \right]
1327 gezelter 3906 \end{equation}
1328 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1329     permuations of the matrix indices.
1330 gezelter 3980
1331 gezelter 3985 All of the radial functions required for torques are identical with
1332     the radial functions previously computed for the interaction energies.
1333     These are tabulated for both shifted force methods in table
1334     \ref{tab:tableenergy}. The torques for higher multipoles on site
1335     $\mathbf{a}$ interacting with those of lower order on site
1336     $\mathbf{b}$ can be obtained by swapping indices in the expressions
1337     above.
1338    
1339 gezelter 3990 \section{Related real-space methods}
1340     One can also formulate a shifted potential,
1341     \begin{equation}
1342     U^{\text{SP}} = U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) -
1343     U(\mathbf{r}_c, \hat{\mathbf{a}}, \hat{\mathbf{b}}),
1344     \label{eq:SP}
1345     \end{equation}
1346     obtained by projecting the image multipole onto the surface of the
1347     cutoff sphere. The shifted potential (SP) can be thought of as a
1348     simple extension to the original Wolf method. The energies and
1349     torques for the SP can be easily obtained by zeroing out the $(r-r_c)$
1350     terms in the final column of table \ref{tab:tableenergy}. SP forces
1351     (which retain discontinuities at the cutoff sphere) can be obtained by
1352     eliminating all functions that depend on $r_c$ in the last column of
1353     table \ref{tab:tableFORCE}. The self-energy contributions to the SP
1354     potential are identical to both the GSF and TSF methods.
1355    
1356 gezelter 3980 \section{Comparison to known multipolar energies}
1357    
1358     To understand how these new real-space multipole methods behave in
1359     computer simulations, it is vital to test against established methods
1360     for computing electrostatic interactions in periodic systems, and to
1361     evaluate the size and sources of any errors that arise from the
1362 gezelter 3990 real-space cutoffs. In this paper we test both TSF and GSF
1363     electrostatics against analytical methods for computing the energies
1364     of ordered multipolar arrays. In the following paper, we test the new
1365     methods against the multipolar Ewald sum for computing the energies,
1366     forces and torques for a wide range of typical condensed-phase
1367     (disordered) systems.
1368 gezelter 3980
1369     Because long-range electrostatic effects can be significant in
1370     crystalline materials, ordered multipolar arrays present one of the
1371     biggest challenges for real-space cutoff methods. The dipolar
1372     analogues to the Madelung constants were first worked out by Sauer,
1373     who computed the energies of ordered dipole arrays of zero
1374     magnetization and obtained a number of these constants.\cite{Sauer}
1375     This theory was developed more completely by Luttinger and
1376 gezelter 3986 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1377 gezelter 3990 and other periodic structures.
1378 gezelter 3986
1379 gezelter 3990 To test the new electrostatic methods, we have constructed very large,
1380     $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1381     Ref. \onlinecite{LT}. These structures include ``A'' lattices with
1382     nearest neighbor chains of antiparallel dipoles, as well as ``B''
1383     lattices with nearest neighbor strings of antiparallel dipoles if the
1384     dipoles are contained in a plane perpendicular to the dipole direction
1385     that passes through the dipole. We have also studied the minimum
1386 gezelter 3980 energy structure for the BCC lattice that was found by Luttinger \&
1387 gezelter 3986 Tisza. The total electrostatic energy for any of the arrays is given
1388     by:
1389 gezelter 3980 \begin{equation}
1390     E = C N^2 \mu^2
1391     \end{equation}
1392 gezelter 3990 where $C$ is the energy constant (equivalent to the Madelung
1393     constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1394     the strength of the dipole. Energy constants (converged to 1 part in
1395     $10^9$) are given in the supplemental information.
1396 gezelter 3980
1397 gezelter 3990 For the purposes of testing the energy expressions and the
1398     self-neutralization schemes, the primary quantity of interest is the
1399     analytic energy constant for the perfect arrays. Convergence to these
1400     constants are shown as a function of both the cutoff radius, $r_c$,
1401     and the damping parameter, $\alpha$ in Figs.
1402     \ref{fig:energyConstVsCutoff} and XXX. We have simultaneously tested a
1403     hard cutoff (where the kernel is simply truncated at the cutoff
1404     radius), as well as a shifted potential (SP) form which includes a
1405     potential-shifting and self-interaction term, but does not shift the
1406     forces and torques smoothly at the cutoff radius. The SP method is
1407     essentially an extension of the original Wolf method for multipoles.
1408 gezelter 3986
1409 gezelter 3989 \begin{figure}[!htbp]
1410 gezelter 3988 \includegraphics[width=4.5in]{energyConstVsCutoff}
1411     \caption{Convergence to the analytic energy constants as a function of
1412     cutoff radius (normalized by the lattice constant) for the different
1413     real-space methods. The two crystals shown here are the ``B'' array
1414     for bcc crystals with the dipoles along the 001 direction (upper),
1415     as well as the minimum energy bcc lattice (lower). The analytic
1416     energy constants are shown as a grey dashed line. The left panel
1417     shows results for the undamped kernel ($1/r$), while the damped
1418     error function kernel, $B_0(r)$ was used in the right panel. }
1419     \label{fig:energyConstVsCutoff}
1420     \end{figure}
1421    
1422     The Hard cutoff exhibits oscillations around the analytic energy
1423     constants, and converges to incorrect energies when the complementary
1424     error function damping kernel is used. The shifted potential (SP) and
1425     gradient-shifted force (GSF) approximations converge to the correct
1426     energy smoothly by $r_c / 6 a$ even for the undamped case. This
1427     indicates that the correction provided by the self term is required
1428     for obtaining accurate energies. The Taylor-shifted force (TSF)
1429     approximation appears to perturb the potential too much inside the
1430     cutoff region to provide accurate measures of the energy constants.
1431    
1432 gezelter 3986 {\it Quadrupolar} analogues to the Madelung constants were first
1433     worked out by Nagai and Nakamura who computed the energies of selected
1434     quadrupole arrays based on extensions to the Luttinger and Tisza
1435     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1436 gezelter 3980 energy constants for the lowest energy configurations for linear
1437 gezelter 3990 quadrupoles.
1438 gezelter 3980
1439     In analogy to the dipolar arrays, the total electrostatic energy for
1440     the quadrupolar arrays is:
1441     \begin{equation}
1442     E = C \frac{3}{4} N^2 Q^2
1443     \end{equation}
1444 gezelter 3990 where $Q$ is the quadrupole moment. The lowest energy
1445 gezelter 3980
1446 gezelter 3985 \section{Conclusion}
1447     We have presented two efficient real-space methods for computing the
1448     interactions between point multipoles. These methods have the benefit
1449     of smoothly truncating the energies, forces, and torques at the cutoff
1450     radius, making them attractive for both molecular dynamics (MD) and
1451     Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1452     (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1453     correct lattice energies for ordered dipolar and quadrupolar arrays,
1454     while the Taylor-Shifted Force (TSF) is too severe an approximation to
1455     provide accurate convergence to lattice energies.
1456 gezelter 3980
1457 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1458     lattice energy constants with reasonably small cutoff radii. The only
1459     exception we have observed is for crystals which exhibit a bulk
1460     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1461     In this particular case, the multipole neutralization scheme can
1462     interfere with the correct computation of the energies. We note that
1463     the energies for these arrangements are typically much larger than for
1464     crystals with net-zero moments, so this is not expected to be an issue
1465     in most simulations.
1466 gezelter 3980
1467 gezelter 3985 In large systems, these new methods can be made to scale approximately
1468     linearly with system size, and detailed comparisons with the Ewald sum
1469     for a wide range of chemical environments follows in the second paper.
1470 gezelter 3980
1471 gezelter 3906 \begin{acknowledgments}
1472 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1473     Fennell. Support for this project was provided by the National
1474     Science Foundation under grant CHE-0848243. Computational time was
1475     provided by the Center for Research Computing (CRC) at the
1476     University of Notre Dame.
1477 gezelter 3906 \end{acknowledgments}
1478    
1479 gezelter 3984 \newpage
1480 gezelter 3906 \appendix
1481    
1482 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1483 gezelter 3985 \label{SmithFunc}
1484 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1485     formulas given in his appendix.\cite{Smith98} The first function
1486     $B_0(r)$ is defined by
1487 gezelter 3906 %
1488     \begin{equation}
1489     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1490     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1491     \end{equation}
1492     %
1493     The first derivative of this function is
1494     %
1495     \begin{equation}
1496     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1497     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1498     \end{equation}
1499     %
1500 gezelter 3984 which can be used to define a function $B_1(r)$:
1501 gezelter 3906 %
1502     \begin{equation}
1503     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1504     \end{equation}
1505     %
1506 gezelter 3984 In general, the recurrence relation,
1507 gezelter 3906 \begin{equation}
1508     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1509     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1510     \text{e}^{-{\alpha}^2r^2}
1511 gezelter 3984 \right] ,
1512 gezelter 3906 \end{equation}
1513 gezelter 3984 is very useful for building up higher derivatives. Using these
1514     formulas, we find:
1515 gezelter 3906 %
1516 gezelter 3984 \begin{align}
1517     \frac{dB_0}{dr}=&-rB_1(r) \\
1518     \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1519     \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1520     \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1521     \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1522     \end{align}
1523 gezelter 3906 %
1524 gezelter 3984 As noted by Smith, it is possible to approximate the $B_l(r)$
1525     functions,
1526 gezelter 3906 %
1527     \begin{equation}
1528     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1529     +\text{O}(r) .
1530     \end{equation}
1531 gezelter 3984 \newpage
1532     \section{The $r$-dependent factors for TSF electrostatics}
1533 gezelter 3906
1534     Using the shifted damped functions $f_n(r)$ defined by:
1535     %
1536     \begin{equation}
1537 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1538 gezelter 3906 \end{equation}
1539     %
1540 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1541     this Appendix, we provide formulas for successive derivatives of this
1542     function. (If there is no damping, then $B_0(r)$ is replaced by
1543     $1/r$.) First, we find:
1544 gezelter 3906 %
1545     \begin{equation}
1546     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1547     \end{equation}
1548     %
1549 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1550     function, and we define higher-order derivatives as follows:
1551 gezelter 3906 %
1552 gezelter 3984 \begin{align}
1553     g_n(r)=& \frac{d f_n}{d r} =
1554     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1555     h_n(r)=& \frac{d^2f_n}{d r^2} =
1556     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1557     s_n(r)=& \frac{d^3f_n}{d r^3} =
1558     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1559     t_n(r)=& \frac{d^4f_n}{d r^4} =
1560     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1561     u_n(r)=& \frac{d^5f_n}{d r^5} =
1562     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1563     \end{align}
1564 gezelter 3906 %
1565 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1566 gezelter 3906 %
1567     \begin{equation}
1568 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1569 gezelter 3906 \end{equation}
1570 gezelter 3989 % The functions
1571     % needed are listed schematically below:
1572     % %
1573     % \begin{eqnarray}
1574     % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1575     % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1576     % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1577     % s_2 \quad s_3 \quad &s_4 \nonumber \\
1578     % t_3 \quad &t_4 \nonumber \\
1579     % &u_4 \nonumber .
1580     % \end{eqnarray}
1581 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1582 gezelter 3989 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1583     functions, we find
1584 gezelter 3906 %
1585 gezelter 3984 \begin{align}
1586     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1587     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1588     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1589 gezelter 3989 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1590 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1591     \delta_{ \beta \gamma} r_\alpha \right)
1592 gezelter 3989 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1593     & + r_\alpha r_\beta r_\gamma
1594 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1595 gezelter 3989 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1596     r_\gamma \partial r_\delta} =&
1597 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1598     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1599     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1600     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1601 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1602     + \text{5 permutations}
1603 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1604     \right) \nonumber \\
1605 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1606 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1607 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1608 gezelter 3906 \frac{\partial^5 f_n}
1609 gezelter 3989 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1610     r_\delta \partial r_\epsilon} =&
1611 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1612 gezelter 3984 + \text{14 permutations} \right)
1613 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1614 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1615     + \text{9 permutations}
1616 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1617     \right) \nonumber \\
1618 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1619 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1620 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1621     \end{align}
1622 gezelter 3906 %
1623     %
1624     %
1625 gezelter 3984 \newpage
1626     \section{The $r$-dependent factors for GSF electrostatics}
1627 gezelter 3906
1628 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1629     rather the individual terms in the multipole interaction energies.
1630     For damped charges , this still brings into the algebra multiple
1631     derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1632 gezelter 3989 we generalize the notation of the previous appendix. For either
1633     $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1634 gezelter 3906 %
1635 gezelter 3984 \begin{align}
1636     g(r)=& \frac{df}{d r}\\
1637     h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1638     s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1639     t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1640     u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1641     \end{align}
1642 gezelter 3906 %
1643 gezelter 3989 For undamped charges Table I lists these derivatives under the column
1644     ``Bare Coulomb.'' Equations \ref{eq:b9} to \ref{eq:b13} are still
1645     correct for GSF electrostatics if the subscript $n$ is eliminated.
1646 gezelter 3906
1647 gezelter 3980 \newpage
1648    
1649     \bibliography{multipole}
1650    
1651 gezelter 3906 \end{document}
1652     %
1653     % ****** End of file multipole.tex ******