ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 4114
Committed: Tue May 13 16:14:48 2014 UTC (10 years, 1 month ago) by mlamichh
Content type: application/x-tex
File size: 66591 byte(s)
Log Message:

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
39     %\linenumbers\relax % Commence numbering lines
40    
41     \begin{document}
42    
43 gezelter 3988 %\preprint{AIP/123-QED}
44 gezelter 3906
45 gezelter 3988 \title{Real space alternatives to the Ewald
46 gezelter 3980 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
47 gezelter 3906
48     \author{Madan Lamichhane}
49     \affiliation{Department of Physics, University
50     of Notre Dame, Notre Dame, IN 46556}
51    
52     \author{J. Daniel Gezelter}
53     \email{gezelter@nd.edu.}
54     \affiliation{Department of Chemistry and Biochemistry, University
55     of Notre Dame, Notre Dame, IN 46556}
56    
57     \author{Kathie E. Newman}
58     \affiliation{Department of Physics, University
59     of Notre Dame, Notre Dame, IN 46556}
60    
61    
62     \date{\today}% It is always \today, today,
63     % but any date may be explicitly specified
64    
65     \begin{abstract}
66 gezelter 3980 We have extended the original damped-shifted force (DSF)
67     electrostatic kernel and have been able to derive two new
68     electrostatic potentials for higher-order multipoles that are based
69     on truncated Taylor expansions around the cutoff radius. For
70     multipole-multipole interactions, we find that each of the distinct
71     orientational contributions has a separate radial function to ensure
72     that the overall forces and torques vanish at the cutoff radius. In
73     this paper, we present energy, force, and torque expressions for the
74     new models, and compare these real-space interaction models to exact
75     results for ordered arrays of multipoles.
76 gezelter 3906 \end{abstract}
77    
78 gezelter 3988 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
79 gezelter 3906 % Classification Scheme.
80 gezelter 3988 %\keywords{Suggested keywords}%Use showkeys class option if keyword
81 gezelter 3906 %display desired
82     \maketitle
83    
84     \section{Introduction}
85 gezelter 3982 There has been increasing interest in real-space methods for
86     calculating electrostatic interactions in computer simulations of
87     condensed molecular
88 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
89     The simplest of these techniques was developed by Wolf {\it et al.}
90     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
91 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
92     simple damped shifted force (DSF) modification to Wolf's method could
93     give nearly quantitative agreement with smooth particle mesh Ewald
94     (SPME)\cite{Essmann95} configurational energy differences as well as
95     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
96 gezelter 3906
97 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
98     surprisingly good, particularly for systems with uniform charge
99     density. Additionally, dielectric constants obtained using DSF and
100 gezelter 3986 similar methods where the force vanishes at $r_{c}$ are
101 gezelter 3980 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
102     related methods have now been widely investigated,\cite{Hansen:2012uq}
103 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
104     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
105     DSF electrostatics provides a compromise between the computational
106     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
107     treatments.
108 gezelter 3906
109 gezelter 3980 One common feature of many coarse-graining approaches, which treat
110     entire molecular subsystems as a single rigid body, is simplification
111     of the electrostatic interactions between these bodies so that fewer
112     site-site interactions are required to compute configurational
113 gezelter 3986 energies. To do this, the interactions between coarse-grained sites
114     are typically taken to be point
115     multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
116 gezelter 3906
117 gezelter 3986 Water, in particular, has been modeled recently with point multipoles
118     up to octupolar
119     order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
120     maximum efficiency, these models require the use of an approximate
121     multipole expansion as the exact multipole expansion can become quite
122     expensive (particularly when handled via the Ewald
123     sum).\cite{Ichiye:2006qy} Point multipoles and multipole
124     polarizability have also been utilized in the AMOEBA water model and
125 gezelter 3980 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
126 gezelter 3906
127 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
128     dynamics. Multipolar interactions are inherently short-ranged, and
129     should not need the relatively expensive Ewald treatment. However,
130     real-space cutoff methods are normally applied in an orientation-blind
131     fashion so multipoles which leave and then re-enter a cutoff sphere in
132     a different orientation can cause energy discontinuities.
133 gezelter 3906
134 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
135 gezelter 3985 kernel to point multipoles. We describe two distinct real-space
136 gezelter 3982 interaction models for higher-order multipoles based on two truncated
137     Taylor expansions that are carried out at the cutoff radius. We are
138     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
139     electrostatics. Because of differences in the initial assumptions,
140 gezelter 3986 the two methods yield related, but somewhat different expressions for
141     energies, forces, and torques.
142 gezelter 3906
143 gezelter 3982 In this paper we outline the new methodology and give functional forms
144     for the energies, forces, and torques up to quadrupole-quadrupole
145     order. We also compare the new methods to analytic energy constants
146 gezelter 3986 for periodic arrays of point multipoles. In the following paper, we
147 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
148     simulation enviornments.
149 gezelter 3982
150 gezelter 3980 \section{Methodology}
151 gezelter 3986 An efficient real-space electrostatic method involves the use of a
152     pair-wise functional form,
153     \begin{equation}
154 gezelter 4098 V = \sum_i \sum_{j>i} V_\mathrm{pair}(\mathbf{r}_{ij}, \Omega_i, \Omega_j) +
155 gezelter 3989 \sum_i V_i^\mathrm{self}
156 gezelter 3986 \end{equation}
157     that is short-ranged and easily truncated at a cutoff radius,
158     \begin{equation}
159 gezelter 4098 V_\mathrm{pair}(\mathbf{r}_{ij},\Omega_i, \Omega_j) = \left\{
160 gezelter 3986 \begin{array}{ll}
161 gezelter 4098 V_\mathrm{approx} (\mathbf{r}_{ij}, \Omega_i, \Omega_j) & \quad \left| \mathbf{r}_{ij} \right| \le r_c \\
162     0 & \quad \left| \mathbf{r}_{ij} \right| > r_c ,
163 gezelter 3986 \end{array}
164     \right.
165     \end{equation}
166 gezelter 3989 along with an easily computed self-interaction term ($\sum_i
167 gezelter 4098 V_i^\mathrm{self}$) which scales linearly with the number of
168 gezelter 3986 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
169 gezelter 4098 coordinates of the two sites, and $\mathbf{r}_{ij}$ is the vector
170     between the two sites. The computational efficiency, energy
171 gezelter 3986 conservation, and even some physical properties of a simulation can
172     depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173     the cutoff radius. The goal of any approximation method should be to
174     mimic the real behavior of the electrostatic interactions as closely
175     as possible without sacrificing the near-linear scaling of a cutoff
176     method.
177 gezelter 3906
178 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
179     The DSF and Wolf methods operate by neutralizing the total charge
180     contained within the cutoff sphere surrounding each particle. This is
181     accomplished by shifting the potential functions to generate image
182     charges on the surface of the cutoff sphere for each pair interaction
183 gezelter 4098 computed within $r_c$. Damping using a complementary error function is
184     applied to the potential to accelerate convergence. The interaction
185     for a pair of charges ($C_i$ and $C_j$) in the DSF method,
186 gezelter 3980 \begin{equation*}
187 gezelter 3986 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
188 gezelter 3980 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
189 gezelter 3986 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
190 gezelter 3980 + \frac{2\alpha}{\pi^{1/2}}
191 gezelter 3986 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
192     \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
193 gezelter 3980 \label{eq:DSFPot}
194     \end{equation*}
195 gezelter 4098 where $\alpha$ is the adjustable damping parameter. Note that in this
196     potential and in all electrostatic quantities that follow, the
197     standard $1/4 \pi \epsilon_{0}$ has been omitted for clarity.
198 gezelter 3980
199     To insure net charge neutrality within each cutoff sphere, an
200     additional ``self'' term is added to the potential. This term is
201     constant (as long as the charges and cutoff radius do not change), and
202     exists outside the normal pair-loop for molecular simulations. It can
203     be thought of as a contribution from a charge opposite in sign, but
204     equal in magnitude, to the central charge, which has been spread out
205     over the surface of the cutoff sphere. A portion of the self term is
206     identical to the self term in the Ewald summation, and comes from the
207     utilization of the complimentary error function for electrostatic
208 gezelter 3986 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
209     extend the Wolf self-neutralization method to zero out the dipole and
210     higher order multipoles contained within the cutoff
211 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
212 gezelter 3982
213 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
214     multipoles by insuring net charge-neutrality and net-zero moments
215     within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
216     central dipolar site $\mathbf{D}_i$ is interacting with point dipole
217     $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
218     self-neutralization scheme for point multipoles involves projecting
219     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
220     sphere. There are also significant modifications made to make the
221     forces and torques go smoothly to zero at the cutoff distance.
222 gezelter 3982
223 gezelter 3980
224 gezelter 3986 As in the point-charge approach, there is an additional contribution
225     from self-neutralization of site $i$. The self term for multipoles is
226 gezelter 3982 described in section \ref{sec:selfTerm}.
227 gezelter 3906
228 gezelter 3982 \subsection{The multipole expansion}
229    
230 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
231 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
232     interact via electrostatics only and describe those interactions in
233     terms of a standard multipole expansion. Putting the origin of the
234     coordinate system at the center of mass of $\bf a$, we use vectors
235 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
236     a$. Then the electrostatic potential of object $\bf a$ at
237     $\mathbf{r}$ is given by
238 gezelter 3906 \begin{equation}
239 gezelter 3985 V_a(\mathbf r) =
240 gezelter 3906 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
241     \end{equation}
242 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
243     notation. Here Greek indices are used to indicate space coordinates
244     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
245 gezelter 4098 labeling specific charges in $\bf a$ and $\bf b$ respectively. The
246 gezelter 3982 Taylor expansion,
247 gezelter 3906 \begin{equation}
248     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
249     \left( 1
250     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
251     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
252     \right)
253 gezelter 3982 \frac{1}{r} ,
254 gezelter 3906 \end{equation}
255 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
256     terms of multipole operators,
257 gezelter 3906 \begin{equation}
258 gezelter 3985 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
259 gezelter 3906 \end{equation}
260     where
261     \begin{equation}
262     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
263     + Q_{{\bf a}\alpha\beta}
264     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
265     \end{equation}
266 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
267     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
268 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
269     which can be expressed as a distribution of charges,
270     \begin{align}
271 gezelter 3996 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
272     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
273     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
274     r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
275 gezelter 3982 \end{align}
276     Note that the definition of the primitive quadrupole here differs from
277     the standard traceless form, and contains an additional Taylor-series
278 gezelter 3996 based factor of $1/2$. We are essentially treating the mass
279     distribution with higher priority; the moment of inertia tensor,
280     $\overleftrightarrow{\mathsf I}$, is diagonalized to obtain body-fixed
281     axes, and the charge distribution may result in a quadrupole tensor
282     that is not necessarily diagonal in the body frame. Additional
283     reasons for utilizing the primitive quadrupole are discussed in
284     section \ref{sec:damped}.
285 gezelter 3906
286     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
287     $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
288     \begin{equation}
289 gezelter 3982 U_{\bf{ab}}(r)
290 gezelter 3985 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
291 gezelter 3982 \end{equation}
292     This can also be expanded as a Taylor series in $r$. Using a notation
293     similar to before to define the multipoles on object {\bf b},
294     \begin{equation}
295 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
296     + Q_{{\bf b}\alpha\beta}
297     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
298     \end{equation}
299 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
300 gezelter 3906 \begin{equation}
301 gezelter 3985 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
302 gezelter 3906 \end{equation}
303 gezelter 3982 This form has the benefit of separating out the energies of
304     interaction into contributions from the charge, dipole, and quadrupole
305 gezelter 3986 of $\bf a$ interacting with the same multipoles on $\bf b$.
306 gezelter 3906
307 gezelter 3982 \subsection{Damped Coulomb interactions}
308 gezelter 3996 \label{sec:damped}
309 gezelter 3982 In the standard multipole expansion, one typically uses the bare
310     Coulomb potential, with radial dependence $1/r$, as shown in
311     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
312     interaction, which results from replacing point charges with Gaussian
313     distributions of charge with width $\alpha$. In damped multipole
314     electrostatics, the kernel ($1/r$) of the expansion is replaced with
315     the function:
316 gezelter 3906 \begin{equation}
317     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319     \end{equation}
320 gezelter 3982 We develop equations below using the function $f(r)$ to represent
321 gezelter 3986 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322     bare or damped Coulomb kernels (or any other function) as long as
323     derivatives of these functions are known. Smith's convenient
324 gezelter 3996 functions $B_l(r)$ are summarized in Appendix A. (N.B. there is one
325     important distinction between the two kernels, which is the behavior
326     of $\nabla^2 \frac{1}{r}$ compared with $\nabla^2 B_0(r)$. The former
327     is zero everywhere except for a delta function evaluated at the
328     origin. The latter also has delta function behavior, but is non-zero
329     for $r \neq 0$. Thus the standard justification for using a traceless
330     quadrupole tensor fails for the damped case.)
331 gezelter 3906
332 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
333     energy as well as forces and torques as $r\rightarrow r_c$. To
334     describe how this goal may be met, we use two examples, charge-charge
335 gezelter 3986 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
336     explain the idea.
337 gezelter 3906
338 gezelter 3984 \subsection{Shifted-force methods}
339 gezelter 3982 In the shifted-force approximation, the interaction energy for two
340     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
341     written:
342 gezelter 3906 \begin{equation}
343 gezelter 3985 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
344 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
345     \right) .
346     \end{equation}
347 gezelter 3982 Two shifting terms appear in this equations, one from the
348 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
349     derivative to vanish at the cutoff radius.
350 gezelter 3982
351     Since one derivative of the interaction energy is needed for the
352     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
353     interaction energy, that is:
354 gezelter 3906 \begin{equation}
355     \frac{d\,}{dr}
356     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
357     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
358     \right) .
359     \end{equation}
360 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
361     are a number of ways to generalize this derivative shift for
362 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
363     higher-order Taylor series for $r$ near $r_c$, and the other based on
364     linear shift of the kernel gradients at the cutoff itself.
365 gezelter 3906
366 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
367 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
368     is based on a Taylor expansion containing the same number of
369     derivatives required for each force term to vanish at the cutoff. For
370     example, the quadrupole-quadrupole interaction energy requires four
371     derivatives of the kernel, and the force requires one additional
372 gezelter 3986 derivative. For quadrupole-quadrupole interactions, we therefore
373     require shifted energy expressions that include up to $(r-r_c)^5$ so
374     that all energies, forces, and torques are zero as $r \rightarrow
375     r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
376     from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
377     derivatives to be taken when deriving a given multipole energy. We
378     choose a function with guaranteed smooth derivatives -- a truncated
379     Taylor series of the function $f(r)$, e.g.,
380 gezelter 3906 %
381     \begin{equation}
382 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
383 gezelter 3906 \end{equation}
384     %
385     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
386     Thus, for $f(r)=1/r$, we find
387     %
388     \begin{equation}
389     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
390     \end{equation}
391     %
392 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
393     dipole $\bf b$, we write
394 gezelter 3906 %
395     \begin{equation}
396     U_{C_{\bf a}D_{\bf b}}(r)=
397 gezelter 3985 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
398     = C_{\bf a} D_{{\bf b}\alpha}
399 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
400     \end{equation}
401     %
402 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
403 gezelter 3906 %
404     \begin{equation}
405 gezelter 3985 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
406 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
407     \frac{r_\alpha r_\beta}{r^2}
408     \left( -\frac{1}{r} \frac {\partial} {\partial r}
409     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
410     \end{equation}
411     %
412 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
413 gezelter 3906 %
414     \begin{equation}
415     F_{C_{\bf a}D_{\bf b}\beta} =
416 gezelter 3985 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
417 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
418 gezelter 3985 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
419 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
420     \end{equation}
421     %
422     This expansion shows the expected $1/r^3$ dependence of the force.
423    
424 gezelter 3984 In general, we can write
425 gezelter 3906 %
426     \begin{equation}
427 gezelter 4098 U^{\text{TSF}}= (\text{prefactor}) (\text{derivatives}) f_n(r)
428 gezelter 3906 \label{generic}
429     \end{equation}
430     %
431 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
432     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
433     $n=4$ for quadrupole-quadrupole. For example, in
434     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
435     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
436     $\partial^4/\partial r_\alpha \partial r_\beta \partial
437     r_\gamma \partial r_\delta$, with implied summation combining the
438     space indices.
439 gezelter 3906
440 gezelter 3984 In the formulas presented in the tables below, the placeholder
441     function $f(r)$ is used to represent the electrostatic kernel (either
442     damped or undamped). The main functions that go into the force and
443 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
444     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
445     of the same index $n$. The algebra required to evaluate energies,
446     forces and torques is somewhat tedious, so only the final forms are
447 gezelter 3986 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
448 gezelter 3996 One of the principal findings of our work is that the individual
449     orientational contributions to the various multipole-multipole
450     interactions must be treated with distinct radial functions, but each
451     of these contributions is independently force shifted at the cutoff
452     radius.
453 gezelter 3906
454 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
455 gezelter 3985 The second, and conceptually simpler approach to force-shifting
456     maintains only the linear $(r-r_c)$ term in the truncated Taylor
457     expansion, and has a similar interaction energy for all multipole
458     orders:
459 gezelter 3906 \begin{equation}
460 gezelter 3996 U^{\text{GSF}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
461 gezelter 3990 U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) - (r-r_c) \hat{r}
462 gezelter 3996 \cdot \nabla U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) \Big \lvert _{r_c} \right]
463 gezelter 3985 \label{generic2}
464 gezelter 3906 \end{equation}
465 gezelter 3996 where the sum describes a separate force-shifting that is applied to
466     each orientational contribution to the energy. Both the potential and
467     the gradient for force shifting are evaluated for an image multipole
468     projected onto the surface of the cutoff sphere (see fig
469     \ref{fig:shiftedMultipoles}). The image multipole retains the
470     orientation ($\hat{\mathbf{b}}$) of the interacting multipole. No
471 gezelter 3990 higher order terms $(r-r_c)^n$ appear. The primary difference between
472     the TSF and GSF methods is the stage at which the Taylor Series is
473     applied; in the Taylor-shifted approach, it is applied to the kernel
474     itself. In the Gradient-shifted approach, it is applied to individual
475     radial interactions terms in the multipole expansion. Energies from
476     this method thus have the general form:
477 gezelter 3906 \begin{equation}
478 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
479     \label{generic3}
480 gezelter 3906 \end{equation}
481    
482 gezelter 3986 Functional forms for both methods (TSF and GSF) can both be summarized
483 gezelter 3985 using the form of Eq.~(\ref{generic3}). The basic forms for the
484     energy, force, and torque expressions are tabulated for both shifting
485 gezelter 3986 approaches below -- for each separate orientational contribution, only
486 gezelter 3985 the radial factors differ between the two methods.
487 gezelter 3906
488     \subsection{\label{sec:level2}Body and space axes}
489 gezelter 3989 Although objects $\bf a$ and $\bf b$ rotate during a molecular
490     dynamics (MD) simulation, their multipole tensors remain fixed in
491     body-frame coordinates. While deriving force and torque expressions,
492     it is therefore convenient to write the energies, forces, and torques
493     in intermediate forms involving the vectors of the rotation matrices.
494     We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
495     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
496     In a typical simulation , the initial axes are obtained by
497     diagonalizing the moment of inertia tensors for the objects. (N.B.,
498     the body axes are generally {\it not} the same as those for which the
499     quadrupole moment is diagonal.) The rotation matrices are then
500     propagated during the simulation.
501 gezelter 3906
502 gezelter 3989 The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
503 gezelter 3985 expressed using these unit vectors:
504 gezelter 3906 \begin{eqnarray}
505     \hat{\mathbf {a}} =
506     \begin{pmatrix}
507     \hat{a}_1 \\
508     \hat{a}_2 \\
509     \hat{a}_3
510 gezelter 3989 \end{pmatrix}, \qquad
511 gezelter 3906 \hat{\mathbf {b}} =
512     \begin{pmatrix}
513     \hat{b}_1 \\
514     \hat{b}_2 \\
515     \hat{b}_3
516     \end{pmatrix}
517     \end{eqnarray}
518     %
519 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
520 gezelter 3989 coordinates.
521    
522     Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
523     {\em et al.},\cite{Price:1984fk} showed that if the interaction
524     energies are written explicitly in terms of $\hat{r}$ and the body
525     axes ($\hat{a}_m$, $\hat{b}_n$) :
526 gezelter 3906 %
527 gezelter 3985 \begin{equation}
528 gezelter 3989 U(r, \{\hat{a}_m \cdot \hat{r} \},
529     \{\hat{b}_n\cdot \hat{r} \},
530     \{\hat{a}_m \cdot \hat{b}_n \}) .
531     \label{ugeneral}
532     \end{equation}
533     %
534     the forces come out relatively cleanly,
535     %
536     \begin{equation}
537     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
538     = \frac{\partial U}{\partial r} \hat{r}
539     + \sum_m \left[
540     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
541     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
542     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
543     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
544     \right] \label{forceequation}.
545     \end{equation}
546    
547     The torques can also be found in a relatively similar
548     manner,
549     %
550     \begin{eqnarray}
551     \mathbf{\tau}_{\bf a} =
552     \sum_m
553     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
554     ( \hat{r} \times \hat{a}_m )
555     -\sum_{mn}
556     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
557     (\hat{a}_m \times \hat{b}_n) \\
558     %
559     \mathbf{\tau}_{\bf b} =
560     \sum_m
561     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
562     ( \hat{r} \times \hat{b}_m)
563     +\sum_{mn}
564     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
565     (\hat{a}_m \times \hat{b}_n) .
566     \end{eqnarray}
567    
568     Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
569     is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
570     We also made use of the identities,
571     %
572     \begin{align}
573     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
574     =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
575     \right) \\
576     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
577     =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
578     \right) .
579     \end{align}
580    
581     Many of the multipole contractions required can be written in one of
582     three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
583     and $\hat{b}_n$. In the torque expressions, it is useful to have the
584     angular-dependent terms available in all three fashions, e.g. for the
585     dipole-dipole contraction:
586     %
587     \begin{equation}
588 gezelter 3906 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
589 gezelter 3985 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
590     \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
591     \end{equation}
592 gezelter 3906 %
593 gezelter 3985 The first two forms are written using space coordinates. The first
594     form is standard in the chemistry literature, while the second is
595     expressed using implied summation notation. The third form shows
596     explicit sums over body indices and the dot products now indicate
597     contractions using space indices.
598 gezelter 3906
599 gezelter 3989 In computing our force and torque expressions, we carried out most of
600     the work in body coordinates, and have transformed the expressions
601     back to space-frame coordinates, which are reported below. Interested
602     readers may consult the supplemental information for this paper for
603     the intermediate body-frame expressions.
604 gezelter 3906
605 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
606    
607 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
608     summation~\cite{Wolf99} and the damped shifted force (DSF)
609 gezelter 4098 extension~\cite{Fennell:2006zl} also include self-interactions that
610 gezelter 3985 are handled separately from the pairwise interactions between
611     sites. The self-term is normally calculated via a single loop over all
612     sites in the system, and is relatively cheap to evaluate. The
613     self-interaction has contributions from two sources.
614    
615     First, the neutralization procedure within the cutoff radius requires
616     a contribution from a charge opposite in sign, but equal in magnitude,
617     to the central charge, which has been spread out over the surface of
618     the cutoff sphere. For a system of undamped charges, the total
619     self-term is
620 gezelter 3980 \begin{equation}
621     V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
622     \label{eq:selfTerm}
623     \end{equation}
624 gezelter 3985
625     Second, charge damping with the complementary error function is a
626     partial analogy to the Ewald procedure which splits the interaction
627     into real and reciprocal space sums. The real space sum is retained
628     in the Wolf and DSF methods. The reciprocal space sum is first
629     minimized by folding the largest contribution (the self-interaction)
630     into the self-interaction from charge neutralization of the damped
631     potential. The remainder of the reciprocal space portion is then
632     discarded (as this contributes the largest computational cost and
633     complexity to the Ewald sum). For a system containing only damped
634     charges, the complete self-interaction can be written as
635 gezelter 3980 \begin{equation}
636     V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
637     \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
638     C_{\bf a}^{2}.
639     \label{eq:dampSelfTerm}
640     \end{equation}
641    
642     The extension of DSF electrostatics to point multipoles requires
643     treatment of {\it both} the self-neutralization and reciprocal
644     contributions to the self-interaction for higher order multipoles. In
645     this section we give formulae for these interactions up to quadrupolar
646     order.
647    
648     The self-neutralization term is computed by taking the {\it
649     non-shifted} kernel for each interaction, placing a multipole of
650     equal magnitude (but opposite in polarization) on the surface of the
651     cutoff sphere, and averaging over the surface of the cutoff sphere.
652     Because the self term is carried out as a single sum over sites, the
653     reciprocal-space portion is identical to half of the self-term
654     obtained by Smith and Aguado and Madden for the application of the
655     Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
656 gezelter 4098 site which posesses a charge, dipole, and quadrupole, both types of
657 gezelter 3980 contribution are given in table \ref{tab:tableSelf}.
658    
659     \begin{table*}
660     \caption{\label{tab:tableSelf} Self-interaction contributions for
661     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
662     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
663     \begin{ruledtabular}
664     \begin{tabular}{lccc}
665     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
666     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
667     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
668     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
669 gezelter 3989 Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
670 gezelter 3980 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
671     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
672     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
673     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
674     \end{tabular}
675     \end{ruledtabular}
676     \end{table*}
677    
678     For sites which simultaneously contain charges and quadrupoles, the
679     self-interaction includes a cross-interaction between these two
680     multipole orders. Symmetry prevents the charge-dipole and
681     dipole-quadrupole interactions from contributing to the
682     self-interaction. The functions that go into the self-neutralization
683 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
684     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
685     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
686     have been evaluated at the cutoff distance. For undamped
687     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
688     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
689     on. Appendix \ref{SmithFunc} contains recursion relations that allow
690     rapid evaluation of these derivatives.
691 gezelter 3980
692 gezelter 3985 \section{Interaction energies, forces, and torques}
693     The main result of this paper is a set of expressions for the
694     energies, forces and torques (up to quadrupole-quadrupole order) that
695     work for both the Taylor-shifted and Gradient-shifted approximations.
696     These expressions were derived using a set of generic radial
697     functions. Without using the shifting approximations mentioned above,
698     some of these radial functions would be identical, and the expressions
699     coalesce into the familiar forms for unmodified multipole-multipole
700     interactions. Table \ref{tab:tableenergy} maps between the generic
701     functions and the radial functions derived for both the Taylor-shifted
702     and Gradient-shifted methods. The energy equations are written in
703     terms of lab-frame representations of the dipoles, quadrupoles, and
704     the unit vector connecting the two objects,
705 gezelter 3906
706     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
707     %
708     %
709     % u ca cb
710     %
711 gezelter 3983 \begin{align}
712     U_{C_{\bf a}C_{\bf b}}(r)=&
713 gezelter 3985 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
714 gezelter 3983 \\
715 gezelter 3906 %
716     % u ca db
717     %
718 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
719 gezelter 3985 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
720 gezelter 3906 \label{uchdip}
721 gezelter 3983 \\
722 gezelter 3906 %
723     % u ca qb
724     %
725 gezelter 3985 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
726     v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
727     \hat{r} \right) v_{22}(r) \Bigr]
728 gezelter 3906 \label{uchquad}
729 gezelter 3983 \\
730 gezelter 3906 %
731     % u da cb
732     %
733 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
734     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
735     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
736     %\\
737 gezelter 3906 %
738     % u da db
739     %
740 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
741 gezelter 3985 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
742 gezelter 3906 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
743     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
744     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
745     v_{22}(r) \Bigr]
746     \label{udipdip}
747 gezelter 3983 \\
748 gezelter 3906 %
749     % u da qb
750     %
751     \begin{split}
752     % 1
753 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
754 gezelter 3985 -\Bigl[
755 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
756     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
757     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
758     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
759     % 2
760 gezelter 3985 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
761 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
762     \label{udipquad}
763     \end{split}
764 gezelter 3983 \\
765 gezelter 3906 %
766     % u qa cb
767     %
768 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
769     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
770     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
771     %\label{uquadch}
772     %\\
773 gezelter 3906 %
774     % u qa db
775     %
776 gezelter 3983 %\begin{split}
777 gezelter 3906 %1
778 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
779     %\frac{1}{4\pi \epsilon_0} \Bigl[
780     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
781     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
782     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
783     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
784 gezelter 3906 % 2
785 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
786     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
787     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
788     %\label{uquaddip}
789     %\end{split}
790     %\\
791 gezelter 3906 %
792     % u qa qb
793     %
794     \begin{split}
795     %1
796 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
797 gezelter 3985 \Bigl[
798 gezelter 3906 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
799 gezelter 3989 +2
800     \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
801 gezelter 3906 \\
802     % 2
803 gezelter 3985 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
804 gezelter 3906 \left( \hat{r} \cdot
805     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
806     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
807     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
808     \cdot \hat{r} \right) +4 (\hat{r} \cdot
809     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
810     \Bigr] v_{42}(r)
811     \\
812     % 4
813 gezelter 3985 &+
814 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
815     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
816     \label{uquadquad}
817     \end{split}
818 gezelter 3983 \end{align}
819 gezelter 3985 %
820 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
821     with those on site $\mathbf{a}$ can be obtained by swapping indices
822     along with the sign of the intersite vector, $\hat{r}$.
823 gezelter 3906
824     %
825     %
826     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
827     %
828    
829 gezelter 3985 \begin{sidewaystable}
830     \caption{\label{tab:tableenergy}Radial functions used in the energy
831     and torque equations. The $f, g, h, s, t, \mathrm{and} u$
832     functions used in this table are defined in Appendices B and C.}
833     \begin{tabular}{|c|c|l|l|} \hline
834     Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
835 gezelter 3906 \\ \hline
836     %
837     %
838     %
839     %Ch-Ch&
840     $v_{01}(r)$ &
841     $\frac{1}{r}$ &
842     $f_0(r)$ &
843     $f(r)-f(r_c)-(r-r_c)g(r_c)$
844     \\
845     %
846     %
847     %
848     %Ch-Di&
849     $v_{11}(r)$ &
850     $-\frac{1}{r^2}$ &
851     $g_1(r)$ &
852     $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
853     %
854     %
855     %
856     %Ch-Qu/Di-Di&
857     $v_{21}(r)$ &
858     $-\frac{1}{r^3} $ &
859     $\frac{g_2(r)}{r} $ &
860     $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
861     \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
862     $v_{22}(r)$ &
863     $\frac{3}{r^3} $ &
864     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
865     $\left(-\frac{g(r)}{r}+h(r) \right)
866 gezelter 3985 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
867     &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
868 gezelter 3906 \\
869     %
870     %
871     %
872     %Di-Qu &
873     $v_{31}(r)$ &
874     $\frac{3}{r^4} $ &
875     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
876     $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
877     -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
878 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
879 gezelter 3906 \\
880     %
881     $v_{32}(r)$ &
882     $-\frac{15}{r^4} $ &
883     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
884     $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
885     - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
886 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
887 gezelter 3906 \\
888     %
889     %
890     %
891     %Qu-Qu&
892     $v_{41}(r)$ &
893     $\frac{3}{r^5} $ &
894     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
895     $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
896     - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
897 gezelter 3985 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
898 gezelter 3906 \\
899     % 2
900     $v_{42}(r)$ &
901     $- \frac{15}{r^5} $ &
902     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
903     $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
904     -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
905 gezelter 3985 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
906 gezelter 3906 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
907     \\
908     % 3
909     $v_{43}(r)$ &
910     $ \frac{105}{r^5} $ &
911     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
912     $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
913 gezelter 3985 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
914     &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
915     -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
916 gezelter 3906 \end{tabular}
917 gezelter 3985 \end{sidewaystable}
918 gezelter 3906 %
919     %
920     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
921     %
922    
923 gezelter 3985 \begin{sidewaystable}
924 gezelter 3906 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
925 gezelter 3985 \begin{tabular}{|c|c|l|l|} \hline
926     Function&Definition&Taylor-Shifted&Gradient-Shifted
927 gezelter 3906 \\ \hline
928     %
929     %
930     %
931     $w_a(r)$&
932 gezelter 3985 $\frac{d v_{01}}{dr}$&
933     $g_0(r)$&
934     $g(r)-g(r_c)$ \\
935 gezelter 3906 %
936     %
937     $w_b(r)$ &
938 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
939     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
940     $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
941 gezelter 3906 %
942     $w_c(r)$ &
943 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
944     $\frac{g_1(r)}{r} $ &
945     $\frac{v_{11}(r)}{r}$\\
946 gezelter 3906 %
947     %
948     $w_d(r)$&
949 gezelter 3985 $\frac{d v_{21}}{dr}$&
950     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
951     $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
952     -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
953 gezelter 3906 %
954     $w_e(r)$ &
955 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
956     $\frac{v_{22}(r)}{r}$ &
957 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
958     %
959     %
960     $w_f(r)$&
961 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
962     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
963     $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
964     &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
965     \right)-\frac{2v_{22}(r)}{r}$\\
966 gezelter 3906 %
967     $w_g(r)$&
968 gezelter 3985 $\frac{v_{31}(r)}{r}$&
969     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
970 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
971     %
972     $w_h(r)$ &
973 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
974     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
975     $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
976     &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
977 gezelter 3906 % 2
978     $w_i(r)$ &
979 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
980     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
981     $\frac{v_{32}(r)}{r}$\\
982 gezelter 3906 %
983     $w_j(r)$ &
984 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
985     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
986     $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
987     &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
988     -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
989 gezelter 3906 %
990     $w_k(r)$ &
991 gezelter 3985 $\frac{d v_{41}}{dr} $ &
992     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
993     $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
994     -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
995 gezelter 3906 %
996     $w_l(r)$ &
997 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
998     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
999     $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
1000     &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
1001     -\frac{2v_{42}(r)}{r}$\\
1002 gezelter 3906 %
1003     $w_m(r)$ &
1004 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
1005     $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
1006     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
1007     &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
1008     +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
1009     &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
1010 gezelter 3906 %
1011     $w_n(r)$ &
1012 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
1013     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1014     $\frac{v_{42}(r)}{r}$\\
1015 gezelter 3906 %
1016     $w_o(r)$ &
1017 gezelter 3985 $\frac{v_{43}(r)}{r}$&
1018     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1019     $\frac{v_{43}(r)}{r}$ \\ \hline
1020 gezelter 3906 %
1021    
1022     \end{tabular}
1023 gezelter 3985 \end{sidewaystable}
1024 gezelter 3906 %
1025     %
1026     %
1027    
1028     \subsection{Forces}
1029 gezelter 3985 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1030     $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1031     a simple charge-charge interaction, these forces will point along the
1032     $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1033     \mathbf{r}_a $. Thus
1034 gezelter 3906 %
1035     \begin{equation}
1036     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1037     \quad \text{and} \quad F_{\bf b \alpha}
1038     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
1039     \end{equation}
1040     %
1041 gezelter 3985 We list below the force equations written in terms of lab-frame
1042     coordinates. The radial functions used in the two methods are listed
1043     in Table \ref{tab:tableFORCE}
1044 gezelter 3906 %
1045 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1046 gezelter 3906 %
1047     % **************************************************************************
1048     % f ca cb
1049     %
1050 gezelter 3985 \begin{align}
1051     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1052     C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1053 gezelter 3906 %
1054     %
1055     %
1056 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1057     C_{\bf a} \Bigl[
1058 gezelter 3906 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1059     w_b(r) \hat{r}
1060 gezelter 3985 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1061 gezelter 3906 %
1062     %
1063     %
1064 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1065     C_{\bf a } \Bigr[
1066 gezelter 3906 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1067     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1068 gezelter 3985 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1069     \right) w_f(r) \hat{r} \Bigr] \\
1070 gezelter 3906 %
1071     %
1072     %
1073 gezelter 3985 % \begin{equation}
1074     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1075     % -C_{\bf{b}} \Bigl[
1076     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1077     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1078     % \end{equation}
1079 gezelter 3906 %
1080     %
1081     %
1082 gezelter 3985 \begin{split}
1083     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1084 gezelter 3906 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1085     + \left( \mathbf{D}_{\mathbf {a}}
1086     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1087 gezelter 3985 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1088 gezelter 3906 % 2
1089 gezelter 3985 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1090     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1091     \end{split}\\
1092 gezelter 3906 %
1093     %
1094     %
1095     \begin{split}
1096 gezelter 3985 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1097 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1098     +2 \mathbf{D}_{\mathbf{a}} \cdot
1099     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1100 gezelter 3985 - \Bigl[
1101 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1102     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1103     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1104     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1105     % 3
1106 gezelter 3985 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1107 gezelter 3906 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1108     w_i(r)
1109     % 4
1110 gezelter 3985 -
1111 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1112 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1113 gezelter 3906 %
1114     %
1115 gezelter 3985 % \begin{equation}
1116     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1117     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1118     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1119     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1120     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1121     % \end{equation}
1122     % %
1123     % \begin{equation}
1124     % \begin{split}
1125     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1126     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1127     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1128     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1129     % % 2
1130     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1131     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1132     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1133     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1134     % % 3
1135     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1136     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1137     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1138     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1139     % % 4
1140     % +\frac{1}{4\pi \epsilon_0}
1141     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1142     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1143     % \end{split}
1144     % \end{equation}
1145 gezelter 3906 %
1146     %
1147     %
1148     \begin{split}
1149 gezelter 3985 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1150     \Bigl[
1151 gezelter 3989 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1152     + 2 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1153 gezelter 3906 % 2
1154 gezelter 3985 &+ \Bigl[
1155 gezelter 3906 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1156     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1157     % 3
1158     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1159     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1160     % 4
1161 gezelter 3985 &+ \Bigl[
1162 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1163     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1164     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1165     % 5
1166     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1167     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1168     %
1169 gezelter 3985 &+ \Bigl[
1170 gezelter 3906 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1171     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1172     %6
1173     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1174     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1175     % 7
1176 gezelter 3985 &+
1177 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1178 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1179     \end{align}
1180     Note that the forces for higher multipoles on site $\mathbf{a}$
1181     interacting with those of lower order on site $\mathbf{b}$ can be
1182     obtained by swapping indices in the expressions above.
1183    
1184 gezelter 3906 %
1185 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1186 gezelter 3906 %
1187     \subsection{Torques}
1188 gezelter 3989
1189 gezelter 3906 %
1190 gezelter 3985 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1191     methods are given in space-frame coordinates:
1192 gezelter 3906 %
1193     %
1194 gezelter 3985 \begin{align}
1195     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1196     C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1197 gezelter 3906 %
1198     %
1199     %
1200 gezelter 3985 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1201     2C_{\bf a}
1202     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1203 gezelter 3906 %
1204     %
1205     %
1206 gezelter 3985 % \begin{equation}
1207     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1208     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1209     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1210     % \end{equation}
1211 gezelter 3906 %
1212     %
1213     %
1214 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1215     \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1216 gezelter 3906 % 2
1217 gezelter 3985 -
1218 gezelter 3906 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1219 gezelter 3985 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1220 gezelter 3906 %
1221     %
1222     %
1223 gezelter 3985 % \begin{equation}
1224     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1225     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1226     % % 2
1227     % +\frac{1}{4\pi \epsilon_0}
1228     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1229     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1230     % \end{equation}
1231 gezelter 3906 %
1232     %
1233     %
1234 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1235     \Bigl[
1236 gezelter 3906 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1237     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1238     +2 \mathbf{D}_{\mathbf{a}} \times
1239     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1240     \Bigr] v_{31}(r)
1241     % 3
1242 gezelter 3985 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1243     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1244 gezelter 3906 %
1245     %
1246     %
1247 gezelter 3985 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1248     \Bigl[
1249 gezelter 3906 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1250     \hat{r}
1251     -2 \mathbf{D}_{\mathbf{a}} \times
1252     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1253     \Bigr] v_{31}(r)
1254     % 2
1255 gezelter 3985 +
1256 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1257 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1258 gezelter 3906 %
1259     %
1260     %
1261 gezelter 3985 % \begin{equation}
1262     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1263     % \frac{1}{4\pi \epsilon_0} \Bigl[
1264     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1265     % +2 \mathbf{D}_{\mathbf{b}} \times
1266     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1267     % \Bigr] v_{31}(r)
1268     % % 3
1269     % - \frac{2}{4\pi \epsilon_0}
1270     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1271     % (\hat{r} \cdot \mathbf
1272     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1273     % \end{equation}
1274 gezelter 3906 %
1275     %
1276     %
1277 gezelter 3985 % \begin{equation}
1278     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1279     % \frac{1}{4\pi \epsilon_0} \Bigl[
1280     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1281     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1282     % +2 \mathbf{D}_{\mathbf{b}} \times
1283     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1284     % % 2
1285     % +\frac{1}{4\pi \epsilon_0}
1286     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1287     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1288     % \end{equation}
1289 gezelter 3906 %
1290     %
1291     %
1292     \begin{split}
1293 gezelter 3985 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1294     -4
1295 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1296     v_{41}(r) \\
1297     % 2
1298 gezelter 3985 &+
1299 gezelter 3906 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1300     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1301     +4 \hat{r} \times
1302     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1303     % 3
1304     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1305     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1306     % 4
1307 gezelter 3985 &+ 2
1308 gezelter 3906 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1309 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1310 gezelter 3906 %
1311     %
1312     %
1313     \begin{split}
1314     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1315 gezelter 3985 &4
1316 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1317     % 2
1318 gezelter 3985 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1319 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1320     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1321     \mathbf{Q}_{{\mathbf b}} ) \times
1322     \hat{r}
1323     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1324     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1325     \Bigr] v_{42}(r) \\
1326     % 4
1327 gezelter 3985 &+2
1328 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1329 gezelter 3985 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1330     \end{align}
1331     %
1332     Here, we have defined the matrix cross product in an identical form
1333     as in Ref. \onlinecite{Smith98}:
1334     \begin{equation}
1335     \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1336     \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1337     -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1338     \right]
1339 gezelter 3906 \end{equation}
1340 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1341     permuations of the matrix indices.
1342 gezelter 3980
1343 gezelter 3985 All of the radial functions required for torques are identical with
1344     the radial functions previously computed for the interaction energies.
1345     These are tabulated for both shifted force methods in table
1346     \ref{tab:tableenergy}. The torques for higher multipoles on site
1347     $\mathbf{a}$ interacting with those of lower order on site
1348     $\mathbf{b}$ can be obtained by swapping indices in the expressions
1349     above.
1350    
1351 gezelter 3990 \section{Related real-space methods}
1352 gezelter 4098 One can also formulate an extension of the Wolf approach for point
1353     multipoles by simply projecting the image multipole onto the surface
1354     of the cutoff sphere, and including the interactions with the central
1355     multipole and the image. This effectively shifts the total potential
1356     to zero at the cutoff radius,
1357 gezelter 3990 \begin{equation}
1358 gezelter 4098 U^{\text{SP}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
1359     U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) \right]
1360 gezelter 3990 \label{eq:SP}
1361     \end{equation}
1362 gezelter 4098 where the sum describes separate potential shifting that is applied to
1363     each orientational contribution to the energy.
1364    
1365     The energies and torques for the shifted potential (SP) can be easily
1366     obtained by zeroing out the $(r-r_c)$ terms in the final column of
1367     table \ref{tab:tableenergy}. Forces for the SP method retain
1368     discontinuities at the cutoff sphere, and can be obtained by
1369 gezelter 3990 eliminating all functions that depend on $r_c$ in the last column of
1370 gezelter 4098 table \ref{tab:tableFORCE}. The self-energy contributions for the SP
1371 gezelter 3990 potential are identical to both the GSF and TSF methods.
1372    
1373 gezelter 3980 \section{Comparison to known multipolar energies}
1374    
1375     To understand how these new real-space multipole methods behave in
1376     computer simulations, it is vital to test against established methods
1377     for computing electrostatic interactions in periodic systems, and to
1378     evaluate the size and sources of any errors that arise from the
1379 gezelter 3990 real-space cutoffs. In this paper we test both TSF and GSF
1380     electrostatics against analytical methods for computing the energies
1381     of ordered multipolar arrays. In the following paper, we test the new
1382     methods against the multipolar Ewald sum for computing the energies,
1383     forces and torques for a wide range of typical condensed-phase
1384     (disordered) systems.
1385 gezelter 3980
1386     Because long-range electrostatic effects can be significant in
1387     crystalline materials, ordered multipolar arrays present one of the
1388     biggest challenges for real-space cutoff methods. The dipolar
1389     analogues to the Madelung constants were first worked out by Sauer,
1390     who computed the energies of ordered dipole arrays of zero
1391     magnetization and obtained a number of these constants.\cite{Sauer}
1392     This theory was developed more completely by Luttinger and
1393 gezelter 3986 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1394 gezelter 3990 and other periodic structures.
1395 gezelter 3986
1396 gezelter 3990 To test the new electrostatic methods, we have constructed very large,
1397     $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1398     Ref. \onlinecite{LT}. These structures include ``A'' lattices with
1399     nearest neighbor chains of antiparallel dipoles, as well as ``B''
1400     lattices with nearest neighbor strings of antiparallel dipoles if the
1401     dipoles are contained in a plane perpendicular to the dipole direction
1402     that passes through the dipole. We have also studied the minimum
1403 gezelter 3980 energy structure for the BCC lattice that was found by Luttinger \&
1404 gezelter 3986 Tisza. The total electrostatic energy for any of the arrays is given
1405     by:
1406 gezelter 3980 \begin{equation}
1407     E = C N^2 \mu^2
1408     \end{equation}
1409 gezelter 3990 where $C$ is the energy constant (equivalent to the Madelung
1410     constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1411     the strength of the dipole. Energy constants (converged to 1 part in
1412     $10^9$) are given in the supplemental information.
1413 gezelter 3980
1414 gezelter 3990 For the purposes of testing the energy expressions and the
1415     self-neutralization schemes, the primary quantity of interest is the
1416     analytic energy constant for the perfect arrays. Convergence to these
1417     constants are shown as a function of both the cutoff radius, $r_c$,
1418     and the damping parameter, $\alpha$ in Figs.
1419     \ref{fig:energyConstVsCutoff} and XXX. We have simultaneously tested a
1420     hard cutoff (where the kernel is simply truncated at the cutoff
1421     radius), as well as a shifted potential (SP) form which includes a
1422     potential-shifting and self-interaction term, but does not shift the
1423     forces and torques smoothly at the cutoff radius. The SP method is
1424     essentially an extension of the original Wolf method for multipoles.
1425 gezelter 3986
1426 gezelter 3989 \begin{figure}[!htbp]
1427 gezelter 3988 \includegraphics[width=4.5in]{energyConstVsCutoff}
1428     \caption{Convergence to the analytic energy constants as a function of
1429     cutoff radius (normalized by the lattice constant) for the different
1430     real-space methods. The two crystals shown here are the ``B'' array
1431     for bcc crystals with the dipoles along the 001 direction (upper),
1432     as well as the minimum energy bcc lattice (lower). The analytic
1433     energy constants are shown as a grey dashed line. The left panel
1434     shows results for the undamped kernel ($1/r$), while the damped
1435     error function kernel, $B_0(r)$ was used in the right panel. }
1436     \label{fig:energyConstVsCutoff}
1437     \end{figure}
1438    
1439     The Hard cutoff exhibits oscillations around the analytic energy
1440     constants, and converges to incorrect energies when the complementary
1441     error function damping kernel is used. The shifted potential (SP) and
1442     gradient-shifted force (GSF) approximations converge to the correct
1443     energy smoothly by $r_c / 6 a$ even for the undamped case. This
1444     indicates that the correction provided by the self term is required
1445     for obtaining accurate energies. The Taylor-shifted force (TSF)
1446     approximation appears to perturb the potential too much inside the
1447     cutoff region to provide accurate measures of the energy constants.
1448    
1449 gezelter 3986 {\it Quadrupolar} analogues to the Madelung constants were first
1450     worked out by Nagai and Nakamura who computed the energies of selected
1451     quadrupole arrays based on extensions to the Luttinger and Tisza
1452     approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1453 gezelter 3980 energy constants for the lowest energy configurations for linear
1454 gezelter 3990 quadrupoles.
1455 gezelter 3980
1456     In analogy to the dipolar arrays, the total electrostatic energy for
1457     the quadrupolar arrays is:
1458     \begin{equation}
1459 gezelter 3996 E = C N \frac{3\bar{Q}^2}{4a^5}
1460 gezelter 3980 \end{equation}
1461 gezelter 3996 where $a$ is the lattice parameter, and $\bar{Q}$ is the effective
1462     quadrupole moment,
1463     \begin{equation}
1464 gezelter 4098 \bar{Q}^2 = 2 \left(3 Q : Q - (\text{Tr} Q)^2 \right)
1465 gezelter 3996 \end{equation}
1466     for the primitive quadrupole as defined in Eq. \ref{eq:quadrupole}.
1467     (For the traceless quadrupole tensor, $\Theta = 3 Q - \text{Tr} Q$,
1468 gezelter 4098 the effective moment, $\bar{Q}^2 = \frac{2}{3} \Theta : \Theta$.)
1469 gezelter 3980
1470 gezelter 3985 \section{Conclusion}
1471     We have presented two efficient real-space methods for computing the
1472     interactions between point multipoles. These methods have the benefit
1473     of smoothly truncating the energies, forces, and torques at the cutoff
1474     radius, making them attractive for both molecular dynamics (MD) and
1475     Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1476     (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1477     correct lattice energies for ordered dipolar and quadrupolar arrays,
1478     while the Taylor-Shifted Force (TSF) is too severe an approximation to
1479     provide accurate convergence to lattice energies.
1480 gezelter 3980
1481 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1482     lattice energy constants with reasonably small cutoff radii. The only
1483     exception we have observed is for crystals which exhibit a bulk
1484     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1485     In this particular case, the multipole neutralization scheme can
1486     interfere with the correct computation of the energies. We note that
1487     the energies for these arrangements are typically much larger than for
1488     crystals with net-zero moments, so this is not expected to be an issue
1489     in most simulations.
1490 gezelter 3980
1491 gezelter 3985 In large systems, these new methods can be made to scale approximately
1492     linearly with system size, and detailed comparisons with the Ewald sum
1493     for a wide range of chemical environments follows in the second paper.
1494 gezelter 3980
1495 gezelter 3906 \begin{acknowledgments}
1496 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1497     Fennell. Support for this project was provided by the National
1498     Science Foundation under grant CHE-0848243. Computational time was
1499     provided by the Center for Research Computing (CRC) at the
1500     University of Notre Dame.
1501 gezelter 3906 \end{acknowledgments}
1502    
1503 gezelter 3984 \newpage
1504 gezelter 3906 \appendix
1505    
1506 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1507 gezelter 3985 \label{SmithFunc}
1508 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1509     formulas given in his appendix.\cite{Smith98} The first function
1510     $B_0(r)$ is defined by
1511 gezelter 3906 %
1512     \begin{equation}
1513     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1514     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1515     \end{equation}
1516     %
1517     The first derivative of this function is
1518     %
1519     \begin{equation}
1520     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1521     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1522     \end{equation}
1523     %
1524 gezelter 3984 which can be used to define a function $B_1(r)$:
1525 gezelter 3906 %
1526     \begin{equation}
1527     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1528     \end{equation}
1529     %
1530 gezelter 3984 In general, the recurrence relation,
1531 gezelter 3906 \begin{equation}
1532     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1533     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1534     \text{e}^{-{\alpha}^2r^2}
1535 gezelter 3984 \right] ,
1536 gezelter 3906 \end{equation}
1537 gezelter 3984 is very useful for building up higher derivatives. Using these
1538     formulas, we find:
1539 gezelter 3906 %
1540 gezelter 3984 \begin{align}
1541     \frac{dB_0}{dr}=&-rB_1(r) \\
1542     \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1543     \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1544     \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1545     \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1546     \end{align}
1547 gezelter 3906 %
1548 gezelter 3984 As noted by Smith, it is possible to approximate the $B_l(r)$
1549     functions,
1550 gezelter 3906 %
1551     \begin{equation}
1552     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1553     +\text{O}(r) .
1554     \end{equation}
1555 gezelter 3984 \newpage
1556     \section{The $r$-dependent factors for TSF electrostatics}
1557 gezelter 3906
1558     Using the shifted damped functions $f_n(r)$ defined by:
1559     %
1560     \begin{equation}
1561 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1562 gezelter 3906 \end{equation}
1563     %
1564 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1565     this Appendix, we provide formulas for successive derivatives of this
1566     function. (If there is no damping, then $B_0(r)$ is replaced by
1567     $1/r$.) First, we find:
1568 gezelter 3906 %
1569     \begin{equation}
1570     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1571     \end{equation}
1572     %
1573 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1574     function, and we define higher-order derivatives as follows:
1575 gezelter 3906 %
1576 gezelter 3984 \begin{align}
1577     g_n(r)=& \frac{d f_n}{d r} =
1578     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1579     h_n(r)=& \frac{d^2f_n}{d r^2} =
1580     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1581     s_n(r)=& \frac{d^3f_n}{d r^3} =
1582     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1583     t_n(r)=& \frac{d^4f_n}{d r^4} =
1584     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1585     u_n(r)=& \frac{d^5f_n}{d r^5} =
1586     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1587     \end{align}
1588 gezelter 3906 %
1589 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1590 gezelter 3906 %
1591     \begin{equation}
1592 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1593 gezelter 3906 \end{equation}
1594 gezelter 3989 % The functions
1595     % needed are listed schematically below:
1596     % %
1597     % \begin{eqnarray}
1598     % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1599     % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1600     % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1601     % s_2 \quad s_3 \quad &s_4 \nonumber \\
1602     % t_3 \quad &t_4 \nonumber \\
1603     % &u_4 \nonumber .
1604     % \end{eqnarray}
1605 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1606 gezelter 3989 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1607     functions, we find
1608 gezelter 3906 %
1609 gezelter 3984 \begin{align}
1610     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1611     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1612     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1613 gezelter 3989 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1614 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1615     \delta_{ \beta \gamma} r_\alpha \right)
1616 gezelter 3989 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1617     & + r_\alpha r_\beta r_\gamma
1618 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1619 gezelter 3989 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1620     r_\gamma \partial r_\delta} =&
1621 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1622     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1623     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1624     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1625 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1626     + \text{5 permutations}
1627 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1628     \right) \nonumber \\
1629 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1630 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1631 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1632 gezelter 3906 \frac{\partial^5 f_n}
1633 gezelter 3989 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1634     r_\delta \partial r_\epsilon} =&
1635 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1636 gezelter 3984 + \text{14 permutations} \right)
1637 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1638 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1639     + \text{9 permutations}
1640 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1641     \right) \nonumber \\
1642 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1643 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1644 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1645     \end{align}
1646 gezelter 3906 %
1647     %
1648     %
1649 gezelter 3984 \newpage
1650     \section{The $r$-dependent factors for GSF electrostatics}
1651 gezelter 3906
1652 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1653     rather the individual terms in the multipole interaction energies.
1654     For damped charges , this still brings into the algebra multiple
1655     derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1656 gezelter 3989 we generalize the notation of the previous appendix. For either
1657     $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1658 gezelter 3906 %
1659 gezelter 3984 \begin{align}
1660     g(r)=& \frac{df}{d r}\\
1661     h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1662     s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1663     t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1664     u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1665     \end{align}
1666 gezelter 3906 %
1667 gezelter 3989 For undamped charges Table I lists these derivatives under the column
1668     ``Bare Coulomb.'' Equations \ref{eq:b9} to \ref{eq:b13} are still
1669     correct for GSF electrostatics if the subscript $n$ is eliminated.
1670 gezelter 3906
1671 gezelter 3980 \newpage
1672 mlamichh 4114 \bibliographystyle{aiprev}
1673 gezelter 3980 \bibliography{multipole}
1674    
1675 gezelter 3906 \end{document}
1676     %
1677     % ****** End of file multipole.tex ******