ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 4179
Committed: Wed Jun 11 19:46:13 2014 UTC (10 years ago) by gezelter
Content type: application/x-tex
File size: 72759 byte(s)
Log Message:
Latest fixes from Madan & Kathie

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26 gezelter 4172 % reprint,%
27 gezelter 3906 %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 4172
39 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44 gezelter 3988 %\preprint{AIP/123-QED}
45 gezelter 3906
46 gezelter 3988 \title{Real space alternatives to the Ewald
47 gezelter 4174 Sum. I. Shifted electrostatics for multipoles}
48 gezelter 3906
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52    
53     \author{J. Daniel Gezelter}
54     \email{gezelter@nd.edu.}
55     \affiliation{Department of Chemistry and Biochemistry, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58     \author{Kathie E. Newman}
59     \affiliation{Department of Physics, University
60     of Notre Dame, Notre Dame, IN 46556}
61    
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \begin{abstract}
67 gezelter 3980 We have extended the original damped-shifted force (DSF)
68 gezelter 4179 electrostatic kernel and have been able to derive three new
69 gezelter 3980 electrostatic potentials for higher-order multipoles that are based
70 gezelter 4179 on truncated Taylor expansions around the cutoff radius. These
71     include a shifted potential (SP) that generalizes the Wolf method
72     for point multipoles, and Taylor-shifted force (TSF) and
73     gradient-shifted force (GSF) potentials that are both
74     generalizations of DSF electrostatics for multipoles. We find that
75     each of the distinct orientational contributions requires a separate
76     radial function to ensure that pairwise energies, forces and torques
77     all vanish at the cutoff radius. In this paper, we present energy,
78     force, and torque expressions for the new models, and compare these
79     real-space interaction models to exact results for ordered arrays of
80     multipoles. We find that the GSF and SP methods converge rapidly to
81     the correct lattice energies for ordered dipolar and quadrupolar
82     arrays, while the Taylor-Shifted Force (TSF) is too severe an
83     approximation to provide accurate convergence to lattice energies.
84     Because real-space methods can be made to scale linearly with system
85     size, the SP and GSF are attractive options for large Monte Carlo
86     and molecular dynamics simulations.
87 gezelter 3906 \end{abstract}
88    
89 gezelter 3988 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
90 gezelter 3906 % Classification Scheme.
91 gezelter 3988 %\keywords{Suggested keywords}%Use showkeys class option if keyword
92 gezelter 3906 %display desired
93     \maketitle
94    
95     \section{Introduction}
96 gezelter 3982 There has been increasing interest in real-space methods for
97     calculating electrostatic interactions in computer simulations of
98     condensed molecular
99 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
100     The simplest of these techniques was developed by Wolf {\it et al.}
101     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
102 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
103     simple damped shifted force (DSF) modification to Wolf's method could
104     give nearly quantitative agreement with smooth particle mesh Ewald
105     (SPME)\cite{Essmann95} configurational energy differences as well as
106     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
107 gezelter 3906
108 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
109     surprisingly good, particularly for systems with uniform charge
110     density. Additionally, dielectric constants obtained using DSF and
111 gezelter 3986 similar methods where the force vanishes at $r_{c}$ are
112 gezelter 3980 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
113     related methods have now been widely investigated,\cite{Hansen:2012uq}
114 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
115     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
116     DSF electrostatics provides a compromise between the computational
117     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
118     treatments.
119 gezelter 3906
120 gezelter 3980 One common feature of many coarse-graining approaches, which treat
121     entire molecular subsystems as a single rigid body, is simplification
122     of the electrostatic interactions between these bodies so that fewer
123     site-site interactions are required to compute configurational
124 gezelter 3986 energies. To do this, the interactions between coarse-grained sites
125     are typically taken to be point
126     multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
127 gezelter 3906
128 gezelter 3986 Water, in particular, has been modeled recently with point multipoles
129     up to octupolar
130     order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
131     maximum efficiency, these models require the use of an approximate
132     multipole expansion as the exact multipole expansion can become quite
133     expensive (particularly when handled via the Ewald
134     sum).\cite{Ichiye:2006qy} Point multipoles and multipole
135     polarizability have also been utilized in the AMOEBA water model and
136 gezelter 3980 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
137 gezelter 3906
138 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
139     dynamics. Multipolar interactions are inherently short-ranged, and
140     should not need the relatively expensive Ewald treatment. However,
141     real-space cutoff methods are normally applied in an orientation-blind
142     fashion so multipoles which leave and then re-enter a cutoff sphere in
143     a different orientation can cause energy discontinuities.
144 gezelter 3906
145 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
146 gezelter 3985 kernel to point multipoles. We describe two distinct real-space
147 gezelter 3982 interaction models for higher-order multipoles based on two truncated
148     Taylor expansions that are carried out at the cutoff radius. We are
149     calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
150     electrostatics. Because of differences in the initial assumptions,
151 gezelter 3986 the two methods yield related, but somewhat different expressions for
152     energies, forces, and torques.
153 gezelter 3906
154 gezelter 3982 In this paper we outline the new methodology and give functional forms
155     for the energies, forces, and torques up to quadrupole-quadrupole
156     order. We also compare the new methods to analytic energy constants
157 gezelter 3986 for periodic arrays of point multipoles. In the following paper, we
158 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
159     simulation enviornments.
160 gezelter 3982
161 gezelter 3980 \section{Methodology}
162 gezelter 3986 An efficient real-space electrostatic method involves the use of a
163     pair-wise functional form,
164     \begin{equation}
165 gezelter 4175 U = \sum_i \sum_{j>i} U_\mathrm{pair}(\mathbf{r}_{ij}, \Omega_i, \Omega_j) +
166     \sum_i U_i^\mathrm{self}
167 gezelter 3986 \end{equation}
168     that is short-ranged and easily truncated at a cutoff radius,
169     \begin{equation}
170 gezelter 4175 U_\mathrm{pair}(\mathbf{r}_{ij},\Omega_i, \Omega_j) = \left\{
171 gezelter 3986 \begin{array}{ll}
172 gezelter 4175 U_\mathrm{approx} (\mathbf{r}_{ij}, \Omega_i, \Omega_j) & \quad \left| \mathbf{r}_{ij} \right| \le r_c \\
173 gezelter 4098 0 & \quad \left| \mathbf{r}_{ij} \right| > r_c ,
174 gezelter 3986 \end{array}
175     \right.
176     \end{equation}
177 gezelter 3989 along with an easily computed self-interaction term ($\sum_i
178 gezelter 4175 U_i^\mathrm{self}$) which scales linearly with the number of
179 gezelter 3986 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
180 gezelter 4098 coordinates of the two sites, and $\mathbf{r}_{ij}$ is the vector
181     between the two sites. The computational efficiency, energy
182 gezelter 3986 conservation, and even some physical properties of a simulation can
183 gezelter 4175 depend dramatically on how the $U_\mathrm{approx}$ function behaves at
184 gezelter 3986 the cutoff radius. The goal of any approximation method should be to
185     mimic the real behavior of the electrostatic interactions as closely
186     as possible without sacrificing the near-linear scaling of a cutoff
187     method.
188 gezelter 3906
189 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
190     The DSF and Wolf methods operate by neutralizing the total charge
191     contained within the cutoff sphere surrounding each particle. This is
192     accomplished by shifting the potential functions to generate image
193     charges on the surface of the cutoff sphere for each pair interaction
194 gezelter 4098 computed within $r_c$. Damping using a complementary error function is
195     applied to the potential to accelerate convergence. The interaction
196     for a pair of charges ($C_i$ and $C_j$) in the DSF method,
197 gezelter 3980 \begin{equation*}
198 gezelter 4175 U_\mathrm{DSF}(r_{ij}) = C_i C_j \Biggr{[}
199 gezelter 3980 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
200 gezelter 3986 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
201 gezelter 3980 + \frac{2\alpha}{\pi^{1/2}}
202 gezelter 3986 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
203     \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
204 gezelter 3980 \label{eq:DSFPot}
205     \end{equation*}
206 gezelter 4098 where $\alpha$ is the adjustable damping parameter. Note that in this
207     potential and in all electrostatic quantities that follow, the
208     standard $1/4 \pi \epsilon_{0}$ has been omitted for clarity.
209 gezelter 3980
210     To insure net charge neutrality within each cutoff sphere, an
211     additional ``self'' term is added to the potential. This term is
212     constant (as long as the charges and cutoff radius do not change), and
213     exists outside the normal pair-loop for molecular simulations. It can
214     be thought of as a contribution from a charge opposite in sign, but
215     equal in magnitude, to the central charge, which has been spread out
216     over the surface of the cutoff sphere. A portion of the self term is
217     identical to the self term in the Ewald summation, and comes from the
218     utilization of the complimentary error function for electrostatic
219 gezelter 3986 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
220     extend the Wolf self-neutralization method to zero out the dipole and
221     higher order multipoles contained within the cutoff
222 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
223 gezelter 3982
224 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
225     multipoles by insuring net charge-neutrality and net-zero moments
226     within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
227     central dipolar site $\mathbf{D}_i$ is interacting with point dipole
228     $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
229     self-neutralization scheme for point multipoles involves projecting
230     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
231     sphere. There are also significant modifications made to make the
232     forces and torques go smoothly to zero at the cutoff distance.
233 gezelter 3982
234 gezelter 4172 \begin{figure}
235     \includegraphics[width=3in]{SM}
236     \caption{Reversed multipoles are projected onto the surface of the
237     cutoff sphere. The forces, torques, and potential are then smoothly
238     shifted to zero as the sites leave the cutoff region.}
239     \label{fig:shiftedMultipoles}
240     \end{figure}
241 gezelter 3980
242 gezelter 3986 As in the point-charge approach, there is an additional contribution
243     from self-neutralization of site $i$. The self term for multipoles is
244 gezelter 3982 described in section \ref{sec:selfTerm}.
245 gezelter 3906
246 gezelter 3982 \subsection{The multipole expansion}
247    
248 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
249 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
250     interact via electrostatics only and describe those interactions in
251     terms of a standard multipole expansion. Putting the origin of the
252     coordinate system at the center of mass of $\bf a$, we use vectors
253 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
254     a$. Then the electrostatic potential of object $\bf a$ at
255     $\mathbf{r}$ is given by
256 gezelter 3906 \begin{equation}
257 gezelter 4175 \phi_a(\mathbf r) =
258 gezelter 3906 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
259     \end{equation}
260 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
261     notation. Here Greek indices are used to indicate space coordinates
262     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
263 gezelter 4098 labeling specific charges in $\bf a$ and $\bf b$ respectively. The
264 gezelter 3982 Taylor expansion,
265 gezelter 3906 \begin{equation}
266     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
267     \left( 1
268     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
269     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
270     \right)
271 gezelter 3982 \frac{1}{r} ,
272 gezelter 3906 \end{equation}
273 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
274     terms of multipole operators,
275 gezelter 3906 \begin{equation}
276 gezelter 4175 \phi_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
277 gezelter 3906 \end{equation}
278     where
279     \begin{equation}
280     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
281     + Q_{{\bf a}\alpha\beta}
282     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
283     \end{equation}
284 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
285     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
286 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
287     which can be expressed as a distribution of charges,
288     \begin{align}
289 gezelter 3996 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
290     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
291     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
292     r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
293 gezelter 3982 \end{align}
294     Note that the definition of the primitive quadrupole here differs from
295     the standard traceless form, and contains an additional Taylor-series
296 gezelter 3996 based factor of $1/2$. We are essentially treating the mass
297     distribution with higher priority; the moment of inertia tensor,
298     $\overleftrightarrow{\mathsf I}$, is diagonalized to obtain body-fixed
299     axes, and the charge distribution may result in a quadrupole tensor
300     that is not necessarily diagonal in the body frame. Additional
301     reasons for utilizing the primitive quadrupole are discussed in
302     section \ref{sec:damped}.
303 gezelter 3906
304     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
305 gezelter 4179 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $), the interaction energy is given by
306 gezelter 3906 \begin{equation}
307 gezelter 3982 U_{\bf{ab}}(r)
308 gezelter 3985 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
309 gezelter 3982 \end{equation}
310     This can also be expanded as a Taylor series in $r$. Using a notation
311     similar to before to define the multipoles on object {\bf b},
312     \begin{equation}
313 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
314     + Q_{{\bf b}\alpha\beta}
315     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
316     \end{equation}
317 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
318 gezelter 3906 \begin{equation}
319 gezelter 3985 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
320 gezelter 3906 \end{equation}
321 gezelter 3982 This form has the benefit of separating out the energies of
322     interaction into contributions from the charge, dipole, and quadrupole
323 gezelter 4179 of $\bf a$ interacting with the same multipoles in $\bf b$.
324 gezelter 3906
325 gezelter 3982 \subsection{Damped Coulomb interactions}
326 gezelter 3996 \label{sec:damped}
327 gezelter 3982 In the standard multipole expansion, one typically uses the bare
328     Coulomb potential, with radial dependence $1/r$, as shown in
329     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
330     interaction, which results from replacing point charges with Gaussian
331     distributions of charge with width $\alpha$. In damped multipole
332     electrostatics, the kernel ($1/r$) of the expansion is replaced with
333     the function:
334 gezelter 3906 \begin{equation}
335     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
336     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
337     \end{equation}
338 gezelter 3982 We develop equations below using the function $f(r)$ to represent
339 gezelter 3986 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
340     bare or damped Coulomb kernels (or any other function) as long as
341     derivatives of these functions are known. Smith's convenient
342 gezelter 4179 functions $B_l(r)$, which are used for derivatives of the damped
343     kernel, are summarized in Appendix A. (N.B. there is one important
344     distinction between the two kernels, which is the behavior of
345     $\nabla^2 \frac{1}{r}$ compared with $\nabla^2 B_0(r)$. The former is
346     zero everywhere except for a delta function evaluated at the origin.
347     The latter also has delta function behavior, but is non-zero for $r
348     \neq 0$. Thus the standard justification for using a traceless
349 gezelter 3996 quadrupole tensor fails for the damped case.)
350 gezelter 3906
351 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
352     energy as well as forces and torques as $r\rightarrow r_c$. To
353     describe how this goal may be met, we use two examples, charge-charge
354 gezelter 3986 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
355     explain the idea.
356 gezelter 3906
357 gezelter 3984 \subsection{Shifted-force methods}
358 gezelter 3982 In the shifted-force approximation, the interaction energy for two
359     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
360     written:
361 gezelter 3906 \begin{equation}
362 gezelter 3985 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
363 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
364     \right) .
365     \end{equation}
366 gezelter 3982 Two shifting terms appear in this equations, one from the
367 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
368     derivative to vanish at the cutoff radius.
369 gezelter 3982
370     Since one derivative of the interaction energy is needed for the
371     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
372     interaction energy, that is:
373 gezelter 3906 \begin{equation}
374     \frac{d\,}{dr}
375     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
376     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
377     \right) .
378     \end{equation}
379 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
380     are a number of ways to generalize this derivative shift for
381 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
382     higher-order Taylor series for $r$ near $r_c$, and the other based on
383     linear shift of the kernel gradients at the cutoff itself.
384 gezelter 3906
385 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
386 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
387     is based on a Taylor expansion containing the same number of
388     derivatives required for each force term to vanish at the cutoff. For
389     example, the quadrupole-quadrupole interaction energy requires four
390     derivatives of the kernel, and the force requires one additional
391 gezelter 3986 derivative. For quadrupole-quadrupole interactions, we therefore
392     require shifted energy expressions that include up to $(r-r_c)^5$ so
393     that all energies, forces, and torques are zero as $r \rightarrow
394     r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
395     from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
396     derivatives to be taken when deriving a given multipole energy. We
397     choose a function with guaranteed smooth derivatives -- a truncated
398     Taylor series of the function $f(r)$, e.g.,
399 gezelter 3906 %
400     \begin{equation}
401 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
402 gezelter 3906 \end{equation}
403     %
404     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
405     Thus, for $f(r)=1/r$, we find
406     %
407     \begin{equation}
408     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
409     \end{equation}
410     %
411 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
412     dipole $\bf b$, we write
413 gezelter 3906 %
414     \begin{equation}
415     U_{C_{\bf a}D_{\bf b}}(r)=
416 gezelter 3985 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
417     = C_{\bf a} D_{{\bf b}\alpha}
418 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
419     \end{equation}
420     %
421 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
422 gezelter 3906 %
423     \begin{equation}
424 gezelter 3985 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
425 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
426     \frac{r_\alpha r_\beta}{r^2}
427     \left( -\frac{1}{r} \frac {\partial} {\partial r}
428     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
429     \end{equation}
430     %
431 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
432 gezelter 3906 %
433     \begin{equation}
434     F_{C_{\bf a}D_{\bf b}\beta} =
435 gezelter 3985 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
436 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
437 gezelter 3985 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
438 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
439     \end{equation}
440     %
441     This expansion shows the expected $1/r^3$ dependence of the force.
442    
443 gezelter 3984 In general, we can write
444 gezelter 3906 %
445     \begin{equation}
446 gezelter 4098 U^{\text{TSF}}= (\text{prefactor}) (\text{derivatives}) f_n(r)
447 gezelter 3906 \label{generic}
448     \end{equation}
449     %
450 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
451     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
452     $n=4$ for quadrupole-quadrupole. For example, in
453     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
454     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
455     $\partial^4/\partial r_\alpha \partial r_\beta \partial
456     r_\gamma \partial r_\delta$, with implied summation combining the
457     space indices.
458 gezelter 3906
459 gezelter 3984 In the formulas presented in the tables below, the placeholder
460     function $f(r)$ is used to represent the electrostatic kernel (either
461     damped or undamped). The main functions that go into the force and
462 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
463     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
464     of the same index $n$. The algebra required to evaluate energies,
465     forces and torques is somewhat tedious, so only the final forms are
466 gezelter 3986 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
467 gezelter 3996 One of the principal findings of our work is that the individual
468     orientational contributions to the various multipole-multipole
469     interactions must be treated with distinct radial functions, but each
470     of these contributions is independently force shifted at the cutoff
471     radius.
472 gezelter 3906
473 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
474 gezelter 3985 The second, and conceptually simpler approach to force-shifting
475     maintains only the linear $(r-r_c)$ term in the truncated Taylor
476     expansion, and has a similar interaction energy for all multipole
477     orders:
478 gezelter 3906 \begin{equation}
479 gezelter 3996 U^{\text{GSF}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
480 gezelter 3990 U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) - (r-r_c) \hat{r}
481 gezelter 3996 \cdot \nabla U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) \Big \lvert _{r_c} \right]
482 gezelter 3985 \label{generic2}
483 gezelter 3906 \end{equation}
484 gezelter 3996 where the sum describes a separate force-shifting that is applied to
485     each orientational contribution to the energy. Both the potential and
486     the gradient for force shifting are evaluated for an image multipole
487     projected onto the surface of the cutoff sphere (see fig
488     \ref{fig:shiftedMultipoles}). The image multipole retains the
489     orientation ($\hat{\mathbf{b}}$) of the interacting multipole. No
490 gezelter 3990 higher order terms $(r-r_c)^n$ appear. The primary difference between
491     the TSF and GSF methods is the stage at which the Taylor Series is
492     applied; in the Taylor-shifted approach, it is applied to the kernel
493     itself. In the Gradient-shifted approach, it is applied to individual
494     radial interactions terms in the multipole expansion. Energies from
495     this method thus have the general form:
496 gezelter 3906 \begin{equation}
497 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
498     \label{generic3}
499 gezelter 3906 \end{equation}
500    
501 gezelter 3986 Functional forms for both methods (TSF and GSF) can both be summarized
502 gezelter 3985 using the form of Eq.~(\ref{generic3}). The basic forms for the
503     energy, force, and torque expressions are tabulated for both shifting
504 gezelter 3986 approaches below -- for each separate orientational contribution, only
505 gezelter 3985 the radial factors differ between the two methods.
506 gezelter 3906
507 gezelter 4179 \subsection{Generalization of the Wolf shifted potential (SP)}
508     It is also possible to formulate an extension of the Wolf approach for
509     multipoles by simply projecting the image multipole onto the surface
510     of the cutoff sphere, and including the interactions with the central
511     multipole and the image. This effectively shifts the pair potential
512     to zero at the cutoff radius,
513     \begin{equation}
514     U^{\text{SP}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
515     U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) \right]
516     \label{eq:SP}
517     \end{equation}
518     independent of the orientations of the two multipoles. The sum again
519     describes separate potential shifting that is applied to each
520     orientational contribution to the energy.
521    
522     The shifted potential (SP) method is a simple truncation of the GSF
523     method for each orientational contribution, leaving out the $(r-r_c)$
524     terms that multiply the gradient. Functional forms for the
525     shifted-potential (SP) method can also be summarized using the form of
526     Eq.~(\ref{eq:generic}). The energy, force, and torque expressions are
527     tabulated below for all three methods. As in the GSF and TSF methods,
528     for each separate orientational contribution, only the radial factors
529     differ between the SP, GSF, and TSF methods.
530    
531    
532 gezelter 3906 \subsection{\label{sec:level2}Body and space axes}
533 gezelter 3989 Although objects $\bf a$ and $\bf b$ rotate during a molecular
534     dynamics (MD) simulation, their multipole tensors remain fixed in
535     body-frame coordinates. While deriving force and torque expressions,
536     it is therefore convenient to write the energies, forces, and torques
537     in intermediate forms involving the vectors of the rotation matrices.
538     We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
539     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
540 gezelter 4179 In a typical simulation, the initial axes are obtained by
541 gezelter 3989 diagonalizing the moment of inertia tensors for the objects. (N.B.,
542     the body axes are generally {\it not} the same as those for which the
543     quadrupole moment is diagonal.) The rotation matrices are then
544     propagated during the simulation.
545 gezelter 3906
546 gezelter 3989 The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
547 gezelter 3985 expressed using these unit vectors:
548 gezelter 3906 \begin{eqnarray}
549     \hat{\mathbf {a}} =
550     \begin{pmatrix}
551     \hat{a}_1 \\
552     \hat{a}_2 \\
553     \hat{a}_3
554 gezelter 3989 \end{pmatrix}, \qquad
555 gezelter 3906 \hat{\mathbf {b}} =
556     \begin{pmatrix}
557     \hat{b}_1 \\
558     \hat{b}_2 \\
559     \hat{b}_3
560     \end{pmatrix}
561     \end{eqnarray}
562     %
563 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
564 gezelter 3989 coordinates.
565    
566     Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
567     {\em et al.},\cite{Price:1984fk} showed that if the interaction
568     energies are written explicitly in terms of $\hat{r}$ and the body
569     axes ($\hat{a}_m$, $\hat{b}_n$) :
570 gezelter 3906 %
571 gezelter 3985 \begin{equation}
572 gezelter 3989 U(r, \{\hat{a}_m \cdot \hat{r} \},
573     \{\hat{b}_n\cdot \hat{r} \},
574     \{\hat{a}_m \cdot \hat{b}_n \}) .
575     \label{ugeneral}
576     \end{equation}
577     %
578     the forces come out relatively cleanly,
579     %
580     \begin{equation}
581     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
582     = \frac{\partial U}{\partial r} \hat{r}
583     + \sum_m \left[
584     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
585     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
586     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
587     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
588     \right] \label{forceequation}.
589     \end{equation}
590    
591     The torques can also be found in a relatively similar
592     manner,
593     %
594     \begin{eqnarray}
595     \mathbf{\tau}_{\bf a} =
596     \sum_m
597     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
598     ( \hat{r} \times \hat{a}_m )
599     -\sum_{mn}
600     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
601     (\hat{a}_m \times \hat{b}_n) \\
602     %
603     \mathbf{\tau}_{\bf b} =
604     \sum_m
605     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
606     ( \hat{r} \times \hat{b}_m)
607     +\sum_{mn}
608     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
609     (\hat{a}_m \times \hat{b}_n) .
610     \end{eqnarray}
611    
612 gezelter 4179 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $
613 gezelter 3989 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
614     We also made use of the identities,
615     %
616     \begin{align}
617     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
618     =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
619     \right) \\
620     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
621     =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
622 gezelter 4179 \right).
623 gezelter 3989 \end{align}
624    
625     Many of the multipole contractions required can be written in one of
626     three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
627     and $\hat{b}_n$. In the torque expressions, it is useful to have the
628     angular-dependent terms available in all three fashions, e.g. for the
629     dipole-dipole contraction:
630     %
631     \begin{equation}
632 gezelter 3906 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
633 gezelter 3985 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
634 gezelter 4179 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}.
635 gezelter 3985 \end{equation}
636 gezelter 3906 %
637 gezelter 3985 The first two forms are written using space coordinates. The first
638     form is standard in the chemistry literature, while the second is
639     expressed using implied summation notation. The third form shows
640     explicit sums over body indices and the dot products now indicate
641     contractions using space indices.
642 gezelter 3906
643 gezelter 3989 In computing our force and torque expressions, we carried out most of
644     the work in body coordinates, and have transformed the expressions
645     back to space-frame coordinates, which are reported below. Interested
646     readers may consult the supplemental information for this paper for
647     the intermediate body-frame expressions.
648 gezelter 3906
649 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
650    
651 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
652     summation~\cite{Wolf99} and the damped shifted force (DSF)
653 gezelter 4098 extension~\cite{Fennell:2006zl} also include self-interactions that
654 gezelter 3985 are handled separately from the pairwise interactions between
655     sites. The self-term is normally calculated via a single loop over all
656     sites in the system, and is relatively cheap to evaluate. The
657     self-interaction has contributions from two sources.
658    
659     First, the neutralization procedure within the cutoff radius requires
660     a contribution from a charge opposite in sign, but equal in magnitude,
661     to the central charge, which has been spread out over the surface of
662     the cutoff sphere. For a system of undamped charges, the total
663     self-term is
664 gezelter 3980 \begin{equation}
665 gezelter 4179 U_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}.
666 gezelter 3980 \label{eq:selfTerm}
667     \end{equation}
668 gezelter 3985
669     Second, charge damping with the complementary error function is a
670     partial analogy to the Ewald procedure which splits the interaction
671     into real and reciprocal space sums. The real space sum is retained
672     in the Wolf and DSF methods. The reciprocal space sum is first
673     minimized by folding the largest contribution (the self-interaction)
674     into the self-interaction from charge neutralization of the damped
675     potential. The remainder of the reciprocal space portion is then
676     discarded (as this contributes the largest computational cost and
677     complexity to the Ewald sum). For a system containing only damped
678     charges, the complete self-interaction can be written as
679 gezelter 3980 \begin{equation}
680 gezelter 4175 U_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
681 gezelter 3980 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
682     C_{\bf a}^{2}.
683     \label{eq:dampSelfTerm}
684     \end{equation}
685    
686     The extension of DSF electrostatics to point multipoles requires
687     treatment of {\it both} the self-neutralization and reciprocal
688     contributions to the self-interaction for higher order multipoles. In
689     this section we give formulae for these interactions up to quadrupolar
690     order.
691    
692     The self-neutralization term is computed by taking the {\it
693     non-shifted} kernel for each interaction, placing a multipole of
694     equal magnitude (but opposite in polarization) on the surface of the
695     cutoff sphere, and averaging over the surface of the cutoff sphere.
696     Because the self term is carried out as a single sum over sites, the
697     reciprocal-space portion is identical to half of the self-term
698 gezelter 4179 obtained by Smith, and also by Aguado and Madden for the application
699     of the Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a
700     given site which posesses a charge, dipole, and quadrupole, both types
701     of contribution are given in table \ref{tab:tableSelf}.
702 gezelter 3980
703     \begin{table*}
704     \caption{\label{tab:tableSelf} Self-interaction contributions for
705     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
706     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
707     \begin{ruledtabular}
708     \begin{tabular}{lccc}
709     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
710     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
711     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
712     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
713 gezelter 3989 Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
714 gezelter 3980 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
715     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
716     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
717     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
718     \end{tabular}
719     \end{ruledtabular}
720     \end{table*}
721    
722     For sites which simultaneously contain charges and quadrupoles, the
723     self-interaction includes a cross-interaction between these two
724     multipole orders. Symmetry prevents the charge-dipole and
725     dipole-quadrupole interactions from contributing to the
726     self-interaction. The functions that go into the self-neutralization
727 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
728     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
729     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
730     have been evaluated at the cutoff distance. For undamped
731     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
732     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
733     on. Appendix \ref{SmithFunc} contains recursion relations that allow
734     rapid evaluation of these derivatives.
735 gezelter 3980
736 gezelter 3985 \section{Interaction energies, forces, and torques}
737     The main result of this paper is a set of expressions for the
738     energies, forces and torques (up to quadrupole-quadrupole order) that
739     work for both the Taylor-shifted and Gradient-shifted approximations.
740     These expressions were derived using a set of generic radial
741     functions. Without using the shifting approximations mentioned above,
742     some of these radial functions would be identical, and the expressions
743     coalesce into the familiar forms for unmodified multipole-multipole
744     interactions. Table \ref{tab:tableenergy} maps between the generic
745     functions and the radial functions derived for both the Taylor-shifted
746     and Gradient-shifted methods. The energy equations are written in
747     terms of lab-frame representations of the dipoles, quadrupoles, and
748     the unit vector connecting the two objects,
749 gezelter 3906
750     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
751     %
752     %
753     % u ca cb
754     %
755 gezelter 3983 \begin{align}
756     U_{C_{\bf a}C_{\bf b}}(r)=&
757 gezelter 3985 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
758 gezelter 3983 \\
759 gezelter 3906 %
760     % u ca db
761     %
762 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
763 gezelter 3985 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
764 gezelter 3906 \label{uchdip}
765 gezelter 3983 \\
766 gezelter 3906 %
767     % u ca qb
768     %
769 gezelter 3985 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
770     v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
771     \hat{r} \right) v_{22}(r) \Bigr]
772 gezelter 3906 \label{uchquad}
773 gezelter 3983 \\
774 gezelter 3906 %
775     % u da cb
776     %
777 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
778     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
779     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
780     %\\
781 gezelter 3906 %
782     % u da db
783     %
784 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
785 gezelter 3985 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
786 gezelter 3906 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
787     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
788     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
789     v_{22}(r) \Bigr]
790     \label{udipdip}
791 gezelter 3983 \\
792 gezelter 3906 %
793     % u da qb
794     %
795     \begin{split}
796     % 1
797 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
798 gezelter 3985 -\Bigl[
799 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
800     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
801     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
802     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
803     % 2
804 gezelter 3985 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
805 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
806     \label{udipquad}
807     \end{split}
808 gezelter 3983 \\
809 gezelter 3906 %
810     % u qa cb
811     %
812 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
813     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
814     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
815     %\label{uquadch}
816     %\\
817 gezelter 3906 %
818     % u qa db
819     %
820 gezelter 3983 %\begin{split}
821 gezelter 3906 %1
822 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
823     %\frac{1}{4\pi \epsilon_0} \Bigl[
824     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
825     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
826     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
827     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
828 gezelter 3906 % 2
829 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
830     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
831     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
832     %\label{uquaddip}
833     %\end{split}
834     %\\
835 gezelter 3906 %
836     % u qa qb
837     %
838     \begin{split}
839     %1
840 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
841 gezelter 3985 \Bigl[
842 gezelter 3906 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
843 gezelter 3989 +2
844     \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
845 gezelter 3906 \\
846     % 2
847 gezelter 3985 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
848 gezelter 3906 \left( \hat{r} \cdot
849     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
850     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
851     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
852     \cdot \hat{r} \right) +4 (\hat{r} \cdot
853     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
854     \Bigr] v_{42}(r)
855     \\
856     % 4
857 gezelter 3985 &+
858 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
859     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
860     \label{uquadquad}
861     \end{split}
862 gezelter 3983 \end{align}
863 gezelter 3985 %
864 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
865     with those on site $\mathbf{a}$ can be obtained by swapping indices
866     along with the sign of the intersite vector, $\hat{r}$.
867 gezelter 3906
868     %
869     %
870     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
871     %
872    
873 gezelter 3985 \begin{sidewaystable}
874     \caption{\label{tab:tableenergy}Radial functions used in the energy
875     and torque equations. The $f, g, h, s, t, \mathrm{and} u$
876 gezelter 4179 functions used in this table are defined in Appendices B and C.
877     Gradient shifted (GSF) functions are constructed using the shifted
878     potential (SP) functions.}
879 gezelter 4177 \begin{tabular}{|c|c|l|l|l|} \hline
880     Generic&Bare Coulomb&Taylor-Shifted (TSF)&Shifted Potential (SP)&Gradient-Shifted (GSF)
881 gezelter 3906 \\ \hline
882     %
883     %
884     %
885     %Ch-Ch&
886     $v_{01}(r)$ &
887     $\frac{1}{r}$ &
888     $f_0(r)$ &
889 gezelter 4177 $f(r)-f(r_c)$ &
890     SP $-(r-r_c)g(r_c)$
891 gezelter 3906 \\
892     %
893     %
894     %
895     %Ch-Di&
896     $v_{11}(r)$ &
897     $-\frac{1}{r^2}$ &
898     $g_1(r)$ &
899 gezelter 4177 $g(r)-g(r_c)$ &
900     SP $-(r-r_c)h(r_c)$ \\
901 gezelter 3906 %
902     %
903     %
904     %Ch-Qu/Di-Di&
905     $v_{21}(r)$ &
906     $-\frac{1}{r^3} $ &
907     $\frac{g_2(r)}{r} $ &
908 gezelter 4177 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c}$ &
909 gezelter 4179 SP $-(r-r_c) \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
910     %
911     %
912     %
913 gezelter 3906 $v_{22}(r)$ &
914     $\frac{3}{r^3} $ &
915     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
916 gezelter 4179 $\left(-\frac{g(r)}{r}+h(r) \right) -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$
917     & SP $-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
918 gezelter 3906 %
919     %
920     %
921     %Di-Qu &
922     $v_{31}(r)$ &
923     $\frac{3}{r^4} $ &
924     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
925 gezelter 4179 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r}\right)-\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right)$
926     & SP $-(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
927 gezelter 3906 %
928 gezelter 4179 %
929     %
930 gezelter 3906 $v_{32}(r)$ &
931     $-\frac{15}{r^4} $ &
932     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
933 gezelter 4179 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)$&
934     SP $-(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}\right.$ \\
935     &&& $~~~-\left(\frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c)\right)$ &
936     $\phantom{SP-(r-r_c)}\left.-\frac{3s(r_c)}{r_c}+t(r_c) \right)$\\
937 gezelter 3906 %
938     %
939     %
940     %Qu-Qu&
941     $v_{41}(r)$ &
942     $\frac{3}{r^5} $ &
943     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
944 gezelter 4179 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)- \left(-\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ &
945     SP $-(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
946 gezelter 3906 \\
947     % 2
948     $v_{42}(r)$ &
949     $- \frac{15}{r^5} $ &
950     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
951 gezelter 4179 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)$ &
952     SP$-(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}\right.$ \\
953     &&& $~~~-\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ &
954     $\phantom{SP-(r-r_c)}\left. -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$\\
955 gezelter 3906 % 3
956 gezelter 4179 %
957     %
958 gezelter 3906 $v_{43}(r)$ &
959     $ \frac{105}{r^5} $ &
960     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
961 gezelter 4179 $ \left(-\frac{15g(r)}{r^3} +\frac{15h(r)}{r^2}-\frac{6s(r)}{r}+t(r)\right) $ &
962     SP $-(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}\right.$\\
963     &&& $~~~-\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c}+ t(r_c)\right)$ &
964     $\phantom{SP-(r-r_c)}\left.+\frac{21s(r_c)}{r_c^2}-\frac{6t(r_c)}{r_c}+u(r_c) \right)$\\
965 gezelter 4177 \hline
966 gezelter 3906 \end{tabular}
967 gezelter 3985 \end{sidewaystable}
968 gezelter 3906 %
969     %
970     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
971     %
972    
973 gezelter 3985 \begin{sidewaystable}
974 gezelter 4179 \caption{\label{tab:tableFORCE}Radial functions used in the force
975     equations. Gradient shifted (GSF) functions are constructed using the shifted
976     potential (SP) functions. Some of these functions are simple
977     modifications of the functions found in table \ref{tab:tableenergy}}
978     \begin{tabular}{|c|c|l|l|l|} \hline
979     Function&Definition&Taylor-Shifted (TSF)& Shifted Potential (SP)
980     &Gradient-Shifted (GSF)
981 gezelter 3906 \\ \hline
982     %
983     %
984     %
985     $w_a(r)$&
986 gezelter 3985 $\frac{d v_{01}}{dr}$&
987     $g_0(r)$&
988 gezelter 4179 $g(r)$&
989     SP $-g(r_c)$ \\
990 gezelter 3906 %
991     %
992     $w_b(r)$ &
993 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
994     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
995 gezelter 4179 $h(r) - \frac{v_{11}(r)}{r} $ &
996     SP $- h(r_c)$ \\
997 gezelter 3906 %
998     $w_c(r)$ &
999 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
1000     $\frac{g_1(r)}{r} $ &
1001 gezelter 4179 $\frac{v_{11}(r)}{r}$&
1002 gezelter 3985 $\frac{v_{11}(r)}{r}$\\
1003 gezelter 3906 %
1004     %
1005     $w_d(r)$&
1006 gezelter 3985 $\frac{d v_{21}}{dr}$&
1007     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
1008 gezelter 4179 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)$ &
1009     SP $-\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
1010 gezelter 3906 %
1011     $w_e(r)$ &
1012 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
1013     $\frac{v_{22}(r)}{r}$ &
1014 gezelter 4179 $\frac{v_{22}(r)}{r}$ &
1015 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
1016     %
1017     %
1018     $w_f(r)$&
1019 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
1020     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
1021 gezelter 4179 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) -\frac{2v_{22}(r)}{r}$&
1022     SP $- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
1023 gezelter 3906 %
1024     $w_g(r)$&
1025 gezelter 3985 $\frac{v_{31}(r)}{r}$&
1026     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
1027 gezelter 4179 $\frac{v_{31}(r)}{r}$&
1028 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
1029     %
1030     $w_h(r)$ &
1031 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
1032     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1033 gezelter 4179 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) -\frac{v_{31}(r)}{r}$ &
1034     SP $ - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1035 gezelter 3906 % 2
1036     $w_i(r)$ &
1037 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
1038     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1039 gezelter 4179 $\frac{v_{32}(r)}{r}$&
1040 gezelter 3985 $\frac{v_{32}(r)}{r}$\\
1041 gezelter 3906 %
1042     $w_j(r)$ &
1043 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
1044     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
1045 gezelter 4179 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) -\frac{3v_{32}}{r}$ &
1046     SP $-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
1047     -\frac{3s(r_c)}{r_c} +t(r_c) \right)$ \\
1048 gezelter 3906 %
1049     $w_k(r)$ &
1050 gezelter 3985 $\frac{d v_{41}}{dr} $ &
1051     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1052 gezelter 4179 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}
1053     \right)$ &
1054     SP $-\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
1055 gezelter 3906 %
1056     $w_l(r)$ &
1057 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
1058     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1059 gezelter 4179 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2}
1060     +\frac{t(r)}{r} \right) -\frac{2v_{42}(r)}{r}$&
1061     SP$-\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)$\\
1062 gezelter 3906 %
1063     $w_m(r)$ &
1064 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
1065 gezelter 4179 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} \right.$ &
1066     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2}\right.$ &
1067     SP $- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}\right.$ \\
1068     && $~~~\left.+ \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$
1069     & $~~~\left. -\frac{6t(r)}{r} +u(r) \right) -\frac{4v_{43}(r)}{r}$ &
1070     $\phantom{SP-} \left.+\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
1071 gezelter 3906 %
1072     $w_n(r)$ &
1073 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
1074     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1075 gezelter 4179 $\frac{v_{42}(r)}{r}$&
1076 gezelter 3985 $\frac{v_{42}(r)}{r}$\\
1077 gezelter 3906 %
1078     $w_o(r)$ &
1079 gezelter 3985 $\frac{v_{43}(r)}{r}$&
1080     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1081 gezelter 4179 $\frac{v_{43}(r)}{r}$&
1082 gezelter 3985 $\frac{v_{43}(r)}{r}$ \\ \hline
1083 gezelter 3906 %
1084    
1085     \end{tabular}
1086 gezelter 3985 \end{sidewaystable}
1087 gezelter 3906 %
1088     %
1089     %
1090    
1091     \subsection{Forces}
1092 gezelter 3985 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1093     $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1094     a simple charge-charge interaction, these forces will point along the
1095     $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1096     \mathbf{r}_a $. Thus
1097 gezelter 3906 %
1098     \begin{equation}
1099     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1100     \quad \text{and} \quad F_{\bf b \alpha}
1101     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
1102     \end{equation}
1103     %
1104 gezelter 3985 We list below the force equations written in terms of lab-frame
1105     coordinates. The radial functions used in the two methods are listed
1106     in Table \ref{tab:tableFORCE}
1107 gezelter 3906 %
1108 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1109 gezelter 3906 %
1110     % **************************************************************************
1111     % f ca cb
1112     %
1113 gezelter 3985 \begin{align}
1114     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1115     C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1116 gezelter 3906 %
1117     %
1118     %
1119 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1120     C_{\bf a} \Bigl[
1121 gezelter 3906 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1122     w_b(r) \hat{r}
1123 gezelter 3985 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1124 gezelter 3906 %
1125     %
1126     %
1127 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1128     C_{\bf a } \Bigr[
1129 gezelter 3906 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1130     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1131 gezelter 3985 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1132     \right) w_f(r) \hat{r} \Bigr] \\
1133 gezelter 3906 %
1134     %
1135     %
1136 gezelter 3985 % \begin{equation}
1137     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1138     % -C_{\bf{b}} \Bigl[
1139     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1140     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1141     % \end{equation}
1142 gezelter 3906 %
1143     %
1144     %
1145 gezelter 3985 \begin{split}
1146     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1147 gezelter 3906 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1148     + \left( \mathbf{D}_{\mathbf {a}}
1149     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1150 gezelter 3985 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1151 gezelter 3906 % 2
1152 gezelter 3985 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1153     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1154     \end{split}\\
1155 gezelter 3906 %
1156     %
1157     %
1158     \begin{split}
1159 gezelter 3985 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1160 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1161     +2 \mathbf{D}_{\mathbf{a}} \cdot
1162     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1163 gezelter 3985 - \Bigl[
1164 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1165     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1166     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1167     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1168     % 3
1169 gezelter 3985 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1170 gezelter 3906 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1171     w_i(r)
1172     % 4
1173 gezelter 3985 -
1174 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1175 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1176 gezelter 3906 %
1177     %
1178 gezelter 3985 % \begin{equation}
1179     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1180     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1181     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1182     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1183     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1184     % \end{equation}
1185     % %
1186     % \begin{equation}
1187     % \begin{split}
1188     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1189     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1190     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1191     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1192     % % 2
1193     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1194     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1195     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1196     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1197     % % 3
1198     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1199     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1200     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1201     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1202     % % 4
1203     % +\frac{1}{4\pi \epsilon_0}
1204     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1205     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1206     % \end{split}
1207     % \end{equation}
1208 gezelter 3906 %
1209     %
1210     %
1211     \begin{split}
1212 gezelter 3985 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1213     \Bigl[
1214 gezelter 3989 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1215     + 2 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1216 gezelter 3906 % 2
1217 gezelter 3985 &+ \Bigl[
1218 gezelter 3906 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1219     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1220     % 3
1221     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1222     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1223     % 4
1224 gezelter 3985 &+ \Bigl[
1225 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1226     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1227     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1228     % 5
1229     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1230     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1231     %
1232 gezelter 3985 &+ \Bigl[
1233 gezelter 3906 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1234     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1235     %6
1236     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1237     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1238     % 7
1239 gezelter 3985 &+
1240 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1241 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1242     \end{align}
1243     Note that the forces for higher multipoles on site $\mathbf{a}$
1244     interacting with those of lower order on site $\mathbf{b}$ can be
1245     obtained by swapping indices in the expressions above.
1246    
1247 gezelter 3906 %
1248 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1249 gezelter 3906 %
1250     \subsection{Torques}
1251 gezelter 3989
1252 gezelter 3906 %
1253 gezelter 3985 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1254     methods are given in space-frame coordinates:
1255 gezelter 3906 %
1256     %
1257 gezelter 3985 \begin{align}
1258     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1259     C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1260 gezelter 3906 %
1261     %
1262     %
1263 gezelter 3985 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1264     2C_{\bf a}
1265     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1266 gezelter 3906 %
1267     %
1268     %
1269 gezelter 3985 % \begin{equation}
1270     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1271     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1272     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1273     % \end{equation}
1274 gezelter 3906 %
1275     %
1276     %
1277 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1278     \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1279 gezelter 3906 % 2
1280 gezelter 3985 -
1281 gezelter 3906 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1282 gezelter 3985 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1283 gezelter 3906 %
1284     %
1285     %
1286 gezelter 3985 % \begin{equation}
1287     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1288     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1289     % % 2
1290     % +\frac{1}{4\pi \epsilon_0}
1291     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1292     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1293     % \end{equation}
1294 gezelter 3906 %
1295     %
1296     %
1297 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1298     \Bigl[
1299 gezelter 3906 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1300     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1301     +2 \mathbf{D}_{\mathbf{a}} \times
1302     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1303     \Bigr] v_{31}(r)
1304     % 3
1305 gezelter 3985 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1306     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1307 gezelter 3906 %
1308     %
1309     %
1310 gezelter 3985 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1311     \Bigl[
1312 gezelter 3906 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1313     \hat{r}
1314     -2 \mathbf{D}_{\mathbf{a}} \times
1315     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1316     \Bigr] v_{31}(r)
1317     % 2
1318 gezelter 3985 +
1319 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1320 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1321 gezelter 3906 %
1322     %
1323     %
1324 gezelter 3985 % \begin{equation}
1325     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1326     % \frac{1}{4\pi \epsilon_0} \Bigl[
1327     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1328     % +2 \mathbf{D}_{\mathbf{b}} \times
1329     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1330     % \Bigr] v_{31}(r)
1331     % % 3
1332     % - \frac{2}{4\pi \epsilon_0}
1333     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1334     % (\hat{r} \cdot \mathbf
1335     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1336     % \end{equation}
1337 gezelter 3906 %
1338     %
1339     %
1340 gezelter 3985 % \begin{equation}
1341     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1342     % \frac{1}{4\pi \epsilon_0} \Bigl[
1343     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1344     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1345     % +2 \mathbf{D}_{\mathbf{b}} \times
1346     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1347     % % 2
1348     % +\frac{1}{4\pi \epsilon_0}
1349     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1350     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1351     % \end{equation}
1352 gezelter 3906 %
1353     %
1354     %
1355     \begin{split}
1356 gezelter 3985 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1357     -4
1358 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1359     v_{41}(r) \\
1360     % 2
1361 gezelter 3985 &+
1362 gezelter 3906 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1363     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1364     +4 \hat{r} \times
1365     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1366     % 3
1367     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1368     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1369     % 4
1370 gezelter 3985 &+ 2
1371 gezelter 3906 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1372 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1373 gezelter 3906 %
1374     %
1375     %
1376     \begin{split}
1377     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1378 gezelter 3985 &4
1379 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1380     % 2
1381 gezelter 3985 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1382 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1383     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1384     \mathbf{Q}_{{\mathbf b}} ) \times
1385     \hat{r}
1386     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1387     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1388     \Bigr] v_{42}(r) \\
1389     % 4
1390 gezelter 3985 &+2
1391 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1392 gezelter 3985 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1393     \end{align}
1394     %
1395     Here, we have defined the matrix cross product in an identical form
1396     as in Ref. \onlinecite{Smith98}:
1397     \begin{equation}
1398     \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1399     \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1400     -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1401     \right]
1402 gezelter 4179 \label{eq:matrixCross}
1403 gezelter 3906 \end{equation}
1404 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1405     permuations of the matrix indices.
1406 gezelter 3980
1407 gezelter 3985 All of the radial functions required for torques are identical with
1408     the radial functions previously computed for the interaction energies.
1409     These are tabulated for both shifted force methods in table
1410     \ref{tab:tableenergy}. The torques for higher multipoles on site
1411     $\mathbf{a}$ interacting with those of lower order on site
1412     $\mathbf{b}$ can be obtained by swapping indices in the expressions
1413     above.
1414    
1415 gezelter 3980 \section{Comparison to known multipolar energies}
1416    
1417     To understand how these new real-space multipole methods behave in
1418     computer simulations, it is vital to test against established methods
1419     for computing electrostatic interactions in periodic systems, and to
1420     evaluate the size and sources of any errors that arise from the
1421 gezelter 3990 real-space cutoffs. In this paper we test both TSF and GSF
1422     electrostatics against analytical methods for computing the energies
1423     of ordered multipolar arrays. In the following paper, we test the new
1424     methods against the multipolar Ewald sum for computing the energies,
1425     forces and torques for a wide range of typical condensed-phase
1426     (disordered) systems.
1427 gezelter 3980
1428     Because long-range electrostatic effects can be significant in
1429     crystalline materials, ordered multipolar arrays present one of the
1430     biggest challenges for real-space cutoff methods. The dipolar
1431     analogues to the Madelung constants were first worked out by Sauer,
1432     who computed the energies of ordered dipole arrays of zero
1433     magnetization and obtained a number of these constants.\cite{Sauer}
1434     This theory was developed more completely by Luttinger and
1435 gezelter 3986 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1436 gezelter 3990 and other periodic structures.
1437 gezelter 3986
1438 gezelter 3990 To test the new electrostatic methods, we have constructed very large,
1439     $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1440     Ref. \onlinecite{LT}. These structures include ``A'' lattices with
1441     nearest neighbor chains of antiparallel dipoles, as well as ``B''
1442     lattices with nearest neighbor strings of antiparallel dipoles if the
1443     dipoles are contained in a plane perpendicular to the dipole direction
1444     that passes through the dipole. We have also studied the minimum
1445 gezelter 3980 energy structure for the BCC lattice that was found by Luttinger \&
1446 gezelter 4179 Tisza. The total electrostatic energy density for any of the arrays
1447     is given by:
1448 gezelter 3980 \begin{equation}
1449     E = C N^2 \mu^2
1450     \end{equation}
1451 gezelter 3990 where $C$ is the energy constant (equivalent to the Madelung
1452     constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1453     the strength of the dipole. Energy constants (converged to 1 part in
1454     $10^9$) are given in the supplemental information.
1455 gezelter 3980
1456 gezelter 4172 \begin{figure}
1457     \includegraphics[width=\linewidth]{Dipoles_rCutNew.pdf}
1458     \caption{Convergence of the lattice energy constants as a function of
1459     cutoff radius (normalized by the lattice constant, $a$) for the new
1460     real-space methods. Three dipolar crystal structures were sampled,
1461     and the analytic energy constants for the three lattices are
1462     indicated with grey dashed lines. The left panel shows results for
1463     the undamped kernel ($1/r$), while the damped error function kernel,
1464     $B_0(r)$ was used in the right panel.}
1465     \label{fig:Dipoles_rCut}
1466     \end{figure}
1467 mlamichh 4163
1468 gezelter 4172 \begin{figure}
1469     \includegraphics[width=\linewidth]{Dipoles_alphaNew.pdf}
1470     \caption{Convergence to the lattice energy constants as a function of
1471     the reduced damping parameter ($\alpha^* = \alpha a$) for the
1472     different real-space methods in the same three dipolar crystals in
1473     Figure \ref{fig:Dipoles_rCut}. The left panel shows results for a
1474     relatively small cutoff radius ($r_c = 4.5 a$) while a larger cutoff
1475     radius ($r_c = 6 a$) was used in the right panel. }
1476     \label{fig:Dipoles_alpha}
1477 mlamichh 4163 \end{figure}
1478 gezelter 4172
1479 gezelter 3990 For the purposes of testing the energy expressions and the
1480     self-neutralization schemes, the primary quantity of interest is the
1481     analytic energy constant for the perfect arrays. Convergence to these
1482     constants are shown as a function of both the cutoff radius, $r_c$,
1483 gezelter 4174 and the damping parameter, $\alpha$ in Figs.\ref{fig:Dipoles_rCut}
1484 gezelter 4172 and \ref{fig:Dipoles_alpha}. We have simultaneously tested a hard
1485     cutoff (where the kernel is simply truncated at the cutoff radius), as
1486     well as a shifted potential (SP) form which includes a
1487 gezelter 3990 potential-shifting and self-interaction term, but does not shift the
1488     forces and torques smoothly at the cutoff radius. The SP method is
1489     essentially an extension of the original Wolf method for multipoles.
1490 gezelter 3986
1491 gezelter 4174 The hard cutoff exhibits oscillations around the analytic energy
1492 gezelter 3988 constants, and converges to incorrect energies when the complementary
1493 gezelter 4179 error function damping kernel is used. The shifted potential (SP)
1494     converges to the correct energy smoothly by $r_c = 4.5 a$ even for the
1495     undamped case. This indicates that the shifting and the correction
1496     provided by the self term are required for obtaining accurate energies.
1497     The Taylor-shifted force (TSF) approximation appears to perturb the
1498     potential too much inside the cutoff region to provide accurate
1499     measures of the energy constants. GSF is a compromise, converging to
1500     the correct energies within $r_c = 6 a$.
1501 gezelter 4174
1502 gezelter 3986 {\it Quadrupolar} analogues to the Madelung constants were first
1503     worked out by Nagai and Nakamura who computed the energies of selected
1504     quadrupole arrays based on extensions to the Luttinger and Tisza
1505 gezelter 4174 approach.\cite{Nagai01081960,Nagai01091963}
1506 gezelter 3980
1507     In analogy to the dipolar arrays, the total electrostatic energy for
1508     the quadrupolar arrays is:
1509     \begin{equation}
1510 gezelter 3996 E = C N \frac{3\bar{Q}^2}{4a^5}
1511 gezelter 3980 \end{equation}
1512 gezelter 3996 where $a$ is the lattice parameter, and $\bar{Q}$ is the effective
1513     quadrupole moment,
1514     \begin{equation}
1515 gezelter 4098 \bar{Q}^2 = 2 \left(3 Q : Q - (\text{Tr} Q)^2 \right)
1516 gezelter 3996 \end{equation}
1517     for the primitive quadrupole as defined in Eq. \ref{eq:quadrupole}.
1518     (For the traceless quadrupole tensor, $\Theta = 3 Q - \text{Tr} Q$,
1519 gezelter 4098 the effective moment, $\bar{Q}^2 = \frac{2}{3} \Theta : \Theta$.)
1520 gezelter 3980
1521 gezelter 4174 To test the new electrostatic methods for quadrupoles, we have
1522     constructed very large, $N=$ 8,000~(sc), 16,000~(bcc), and
1523     32,000~(fcc) arrays of linear quadrupoles in the orientations
1524     described in Ref. \onlinecite{Nagai01081960}. We have compared the
1525 gezelter 4179 energy constants for these low-energy configurations for linear
1526     quadrupoles. Convergence to these constants are shown as a function of
1527     both the cutoff radius, $r_c$, and the damping parameter, $\alpha$ in
1528     Figs.~\ref{fig:Quadrupoles_rCut} and \ref{fig:Quadrupoles_alpha}.
1529 gezelter 4174
1530 gezelter 4172 \begin{figure}
1531 gezelter 4173 \includegraphics[width=\linewidth]{Quadrupoles_rcutConvergence.pdf}
1532     \caption{Convergence of the lattice energy constants as a function of
1533     cutoff radius (normalized by the lattice constant, $a$) for the new
1534     real-space methods. Three quadrupolar crystal structures were
1535     sampled, and the analytic energy constants for the three lattices
1536     are indicated with grey dashed lines. The left panel shows results
1537     for the undamped kernel ($1/r$), while the damped error function
1538     kernel, $B_0(r)$ was used in the right panel.}
1539 gezelter 4174 \label{fig:Quadrupoles_rCut}
1540 gezelter 4172 \end{figure}
1541    
1542    
1543     \begin{figure}[!htbp]
1544 gezelter 4174 \includegraphics[width=\linewidth]{Quadrupoles_newAlpha.pdf}
1545     \caption{Convergence to the lattice energy constants as a function of
1546     the reduced damping parameter ($\alpha^* = \alpha a$) for the
1547     different real-space methods in the same three quadrupolar crystals
1548     in Figure \ref{fig:Quadrupoles_rCut}. The left panel shows
1549     results for a relatively small cutoff radius ($r_c = 4.5 a$) while a
1550     larger cutoff radius ($r_c = 6 a$) was used in the right panel. }
1551     \label{fig:Quadrupoles_alpha}
1552 gezelter 4172 \end{figure}
1553    
1554 gezelter 4174 Again, we find that the hard cutoff exhibits oscillations around the
1555 gezelter 4179 analytic energy constants. The shifted potential (SP) approximation
1556     converges to the correct energy smoothly by $r_c = 3 a$ even for the
1557     undamped case. The Taylor-shifted force (TSF) approximation again
1558     appears to perturb the potential too much inside the cutoff region to
1559     provide accurate measures of the energy constants. GSF again provides
1560     a compromise between the two methods -- energies are converged by $r_c
1561     = 4.5 a$, and the approximation is not as perturbative at short range
1562     as TSF.
1563 gezelter 4172
1564 gezelter 4179 It is also useful to understand the convergence to the lattice energy
1565     constants as a function of the reduced damping parameter ($\alpha^* =
1566     \alpha a$) for the different real-space methods.
1567     Figures. \ref{fig:Dipoles_alpha} and \ref{fig:Quadrupoles_alpha} show
1568     this comparison for the dipolar and quadrupolar lattices,
1569     respectively. All of the methods (except for TSF) have excellent
1570     behavior for the undamped or weakly-damped cases. All of the methods
1571     can be forced to converge by increasing the value of $\alpha$, which
1572     effectively shortens the overall range of the potential, but which
1573     equalizing the truncation effects on the different orientational
1574     contributions. In the second paper in the series, we discuss how
1575     large values of $\alpha$ can perturb the force and torque vectors, but
1576     both weakly-damped or over-damped electrostatics appear to generate
1577     reasonable values for the total electrostatic energies under both the
1578     SP and GSF approximations.
1579 gezelter 4174
1580 gezelter 3985 \section{Conclusion}
1581 gezelter 4174 We have presented three efficient real-space methods for computing the
1582 gezelter 3985 interactions between point multipoles. These methods have the benefit
1583     of smoothly truncating the energies, forces, and torques at the cutoff
1584     radius, making them attractive for both molecular dynamics (MD) and
1585     Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1586     (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1587     correct lattice energies for ordered dipolar and quadrupolar arrays,
1588     while the Taylor-Shifted Force (TSF) is too severe an approximation to
1589 gezelter 4174 provide accurate convergence to lattice energies.
1590 gezelter 3980
1591 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1592     lattice energy constants with reasonably small cutoff radii. The only
1593     exception we have observed is for crystals which exhibit a bulk
1594     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1595     In this particular case, the multipole neutralization scheme can
1596     interfere with the correct computation of the energies. We note that
1597     the energies for these arrangements are typically much larger than for
1598     crystals with net-zero moments, so this is not expected to be an issue
1599     in most simulations.
1600 gezelter 3980
1601 gezelter 4179 The techniques used here to derive the force, torque and energy
1602     expressions can be extended to higher order multipoles, although some
1603     of the objects (e.g. the matrix cross product in
1604     Eq. \ref{eq:matrixCross}) will need to be generalized for higher-rank
1605     tensors. We also note that the definitions of the multipoles used
1606     here are in a primitive form, and these need some care when comparing
1607     with experiment or other computational techniques.
1608    
1609 gezelter 3985 In large systems, these new methods can be made to scale approximately
1610     linearly with system size, and detailed comparisons with the Ewald sum
1611     for a wide range of chemical environments follows in the second paper.
1612 gezelter 3980
1613 gezelter 3906 \begin{acknowledgments}
1614 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1615     Fennell. Support for this project was provided by the National
1616 gezelter 4172 Science Foundation under grant CHE-1362211. Computational time was
1617 gezelter 3985 provided by the Center for Research Computing (CRC) at the
1618     University of Notre Dame.
1619 gezelter 3906 \end{acknowledgments}
1620    
1621 gezelter 3984 \newpage
1622 gezelter 3906 \appendix
1623    
1624 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1625 gezelter 3985 \label{SmithFunc}
1626 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1627     formulas given in his appendix.\cite{Smith98} The first function
1628     $B_0(r)$ is defined by
1629 gezelter 3906 %
1630     \begin{equation}
1631     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1632     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1633     \end{equation}
1634     %
1635     The first derivative of this function is
1636     %
1637     \begin{equation}
1638     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1639     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1640     \end{equation}
1641     %
1642 gezelter 3984 which can be used to define a function $B_1(r)$:
1643 gezelter 3906 %
1644     \begin{equation}
1645     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1646     \end{equation}
1647     %
1648 gezelter 3984 In general, the recurrence relation,
1649 gezelter 3906 \begin{equation}
1650     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1651     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1652     \text{e}^{-{\alpha}^2r^2}
1653 gezelter 3984 \right] ,
1654 gezelter 3906 \end{equation}
1655 gezelter 3984 is very useful for building up higher derivatives. Using these
1656     formulas, we find:
1657 gezelter 3906 %
1658 gezelter 3984 \begin{align}
1659     \frac{dB_0}{dr}=&-rB_1(r) \\
1660     \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1661     \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1662     \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1663     \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1664     \end{align}
1665 gezelter 3906 %
1666 gezelter 3984 As noted by Smith, it is possible to approximate the $B_l(r)$
1667     functions,
1668 gezelter 3906 %
1669     \begin{equation}
1670     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1671     +\text{O}(r) .
1672     \end{equation}
1673 gezelter 3984 \newpage
1674     \section{The $r$-dependent factors for TSF electrostatics}
1675 gezelter 3906
1676     Using the shifted damped functions $f_n(r)$ defined by:
1677     %
1678     \begin{equation}
1679 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1680 gezelter 3906 \end{equation}
1681     %
1682 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1683     this Appendix, we provide formulas for successive derivatives of this
1684     function. (If there is no damping, then $B_0(r)$ is replaced by
1685     $1/r$.) First, we find:
1686 gezelter 3906 %
1687     \begin{equation}
1688     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1689     \end{equation}
1690     %
1691 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1692     function, and we define higher-order derivatives as follows:
1693 gezelter 3906 %
1694 gezelter 3984 \begin{align}
1695     g_n(r)=& \frac{d f_n}{d r} =
1696     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1697     h_n(r)=& \frac{d^2f_n}{d r^2} =
1698     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1699     s_n(r)=& \frac{d^3f_n}{d r^3} =
1700     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1701     t_n(r)=& \frac{d^4f_n}{d r^4} =
1702     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1703     u_n(r)=& \frac{d^5f_n}{d r^5} =
1704     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1705     \end{align}
1706 gezelter 3906 %
1707 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1708 gezelter 3906 %
1709     \begin{equation}
1710 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1711 gezelter 3906 \end{equation}
1712 gezelter 3989 % The functions
1713     % needed are listed schematically below:
1714     % %
1715     % \begin{eqnarray}
1716     % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1717     % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1718     % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1719     % s_2 \quad s_3 \quad &s_4 \nonumber \\
1720     % t_3 \quad &t_4 \nonumber \\
1721     % &u_4 \nonumber .
1722     % \end{eqnarray}
1723 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1724 gezelter 3989 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1725     functions, we find
1726 gezelter 3906 %
1727 gezelter 3984 \begin{align}
1728     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1729     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1730     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1731 gezelter 3989 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1732 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1733     \delta_{ \beta \gamma} r_\alpha \right)
1734 gezelter 3989 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1735     & + r_\alpha r_\beta r_\gamma
1736 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1737 gezelter 3989 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1738     r_\gamma \partial r_\delta} =&
1739 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1740     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1741     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1742     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1743 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1744     + \text{5 permutations}
1745 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1746     \right) \nonumber \\
1747 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1748 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1749 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1750 gezelter 3906 \frac{\partial^5 f_n}
1751 gezelter 3989 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1752     r_\delta \partial r_\epsilon} =&
1753 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1754 gezelter 3984 + \text{14 permutations} \right)
1755 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1756 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1757     + \text{9 permutations}
1758 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1759     \right) \nonumber \\
1760 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1761 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1762 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1763     \end{align}
1764 gezelter 3906 %
1765     %
1766     %
1767 gezelter 3984 \newpage
1768     \section{The $r$-dependent factors for GSF electrostatics}
1769 gezelter 3906
1770 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1771     rather the individual terms in the multipole interaction energies.
1772 gezelter 4179 For damped charges, this still brings into the algebra multiple
1773 gezelter 3984 derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1774 gezelter 3989 we generalize the notation of the previous appendix. For either
1775     $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1776 gezelter 3906 %
1777 gezelter 3984 \begin{align}
1778 gezelter 4179 g(r) &= \frac{df}{d r} && &&=-\frac{1}{r^2}
1779     &&\mathrm{or~~~} -rB_1(r) \\
1780     h(r) &= \frac{dg}{d r} &&= \frac{d^2f}{d r^2} &&= \frac{2}{r^3} &&\mathrm{or~~~}-B_1(r) + r^2 B_2(r) \\
1781     s(r) &= \frac{dh}{d r} &&= \frac{d^3f}{d r^3} &&=-\frac{6}{r^4}&&\mathrm{or~~~}3rB_2(r) - r^3 B_3(r)\\
1782     t(r) &= \frac{ds}{d r} &&= \frac{d^4f}{d r^4} &&= \frac{24}{r^5} &&\mathrm{or~~~} 3
1783     B_2(r) - 6r^2 B_3(r) + r^4 B_4(r) \\
1784     u(r) &= \frac{dt}{d r} &&= \frac{d^5f}{d r^5} &&=-\frac{120}{r^6} &&\mathrm{or~~~} -15
1785     r B_3(r) + 10 r^3B_4(r) -r^5B_5(r).
1786 gezelter 3984 \end{align}
1787 gezelter 3906 %
1788 gezelter 4179 For undamped charges, Table I lists these derivatives under the Bare
1789     Coulomb column. Equations \ref{eq:b9} to \ref{eq:b13} are still
1790 gezelter 3989 correct for GSF electrostatics if the subscript $n$ is eliminated.
1791 gezelter 3906
1792 gezelter 4172 \newpage
1793    
1794 gezelter 3980 \bibliography{multipole}
1795    
1796 gezelter 3906 \end{document}
1797     %
1798     % ****** End of file multipole.tex ******