ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 4189
Committed: Mon Jun 16 12:33:42 2014 UTC (10 years ago) by gezelter
Content type: application/x-tex
File size: 72621 byte(s)
Log Message:
Ready for submission

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26 gezelter 4172 % reprint,%
27 gezelter 3906 %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 4172
39 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44 gezelter 3988 %\preprint{AIP/123-QED}
45 gezelter 3906
46 gezelter 3988 \title{Real space alternatives to the Ewald
47 gezelter 4174 Sum. I. Shifted electrostatics for multipoles}
48 gezelter 3906
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52    
53     \author{J. Daniel Gezelter}
54     \email{gezelter@nd.edu.}
55     \affiliation{Department of Chemistry and Biochemistry, University
56     of Notre Dame, Notre Dame, IN 46556}
57    
58     \author{Kathie E. Newman}
59     \affiliation{Department of Physics, University
60     of Notre Dame, Notre Dame, IN 46556}
61    
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \begin{abstract}
67 gezelter 3980 We have extended the original damped-shifted force (DSF)
68 gezelter 4179 electrostatic kernel and have been able to derive three new
69 gezelter 3980 electrostatic potentials for higher-order multipoles that are based
70 gezelter 4179 on truncated Taylor expansions around the cutoff radius. These
71     include a shifted potential (SP) that generalizes the Wolf method
72     for point multipoles, and Taylor-shifted force (TSF) and
73     gradient-shifted force (GSF) potentials that are both
74     generalizations of DSF electrostatics for multipoles. We find that
75     each of the distinct orientational contributions requires a separate
76     radial function to ensure that pairwise energies, forces and torques
77     all vanish at the cutoff radius. In this paper, we present energy,
78     force, and torque expressions for the new models, and compare these
79     real-space interaction models to exact results for ordered arrays of
80     multipoles. We find that the GSF and SP methods converge rapidly to
81     the correct lattice energies for ordered dipolar and quadrupolar
82     arrays, while the Taylor-Shifted Force (TSF) is too severe an
83     approximation to provide accurate convergence to lattice energies.
84     Because real-space methods can be made to scale linearly with system
85 gezelter 4183 size, SP and GSF are attractive options for large Monte
86     Carlo and molecular dynamics simulations, respectively.
87 gezelter 3906 \end{abstract}
88    
89 gezelter 3988 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
90 gezelter 3906 % Classification Scheme.
91 gezelter 3988 %\keywords{Suggested keywords}%Use showkeys class option if keyword
92 gezelter 3906 %display desired
93     \maketitle
94    
95     \section{Introduction}
96 gezelter 3982 There has been increasing interest in real-space methods for
97     calculating electrostatic interactions in computer simulations of
98     condensed molecular
99 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
100     The simplest of these techniques was developed by Wolf {\it et al.}
101     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
102 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
103     simple damped shifted force (DSF) modification to Wolf's method could
104     give nearly quantitative agreement with smooth particle mesh Ewald
105     (SPME)\cite{Essmann95} configurational energy differences as well as
106     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
107 gezelter 3906
108 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
109     surprisingly good, particularly for systems with uniform charge
110     density. Additionally, dielectric constants obtained using DSF and
111 gezelter 3986 similar methods where the force vanishes at $r_{c}$ are
112 gezelter 3980 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
113     related methods have now been widely investigated,\cite{Hansen:2012uq}
114 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
115     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
116     DSF electrostatics provides a compromise between the computational
117     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
118     treatments.
119 gezelter 3906
120 gezelter 3980 One common feature of many coarse-graining approaches, which treat
121     entire molecular subsystems as a single rigid body, is simplification
122     of the electrostatic interactions between these bodies so that fewer
123     site-site interactions are required to compute configurational
124 gezelter 3986 energies. To do this, the interactions between coarse-grained sites
125     are typically taken to be point
126     multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
127 gezelter 3906
128 gezelter 3986 Water, in particular, has been modeled recently with point multipoles
129     up to octupolar
130     order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
131     maximum efficiency, these models require the use of an approximate
132     multipole expansion as the exact multipole expansion can become quite
133     expensive (particularly when handled via the Ewald
134     sum).\cite{Ichiye:2006qy} Point multipoles and multipole
135     polarizability have also been utilized in the AMOEBA water model and
136 gezelter 3980 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
137 gezelter 3906
138 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
139     dynamics. Multipolar interactions are inherently short-ranged, and
140     should not need the relatively expensive Ewald treatment. However,
141     real-space cutoff methods are normally applied in an orientation-blind
142     fashion so multipoles which leave and then re-enter a cutoff sphere in
143     a different orientation can cause energy discontinuities.
144 gezelter 3906
145 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
146 gezelter 4183 kernel to point multipoles. We describe three distinct real-space
147     interaction models for higher-order multipoles based on truncated
148 gezelter 3982 Taylor expansions that are carried out at the cutoff radius. We are
149 gezelter 4183 calling these models {\bf Taylor-shifted} (TSF), {\bf
150     gradient-shifted} (GSF) and {\bf shifted potential} (SP)
151 gezelter 3982 electrostatics. Because of differences in the initial assumptions,
152 gezelter 4183 the two methods yield related, but distinct expressions for energies,
153     forces, and torques.
154 gezelter 3906
155 gezelter 3982 In this paper we outline the new methodology and give functional forms
156     for the energies, forces, and torques up to quadrupole-quadrupole
157     order. We also compare the new methods to analytic energy constants
158 gezelter 3986 for periodic arrays of point multipoles. In the following paper, we
159 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
160     simulation enviornments.
161 gezelter 3982
162 gezelter 3980 \section{Methodology}
163 gezelter 3986 An efficient real-space electrostatic method involves the use of a
164     pair-wise functional form,
165     \begin{equation}
166 gezelter 4175 U = \sum_i \sum_{j>i} U_\mathrm{pair}(\mathbf{r}_{ij}, \Omega_i, \Omega_j) +
167     \sum_i U_i^\mathrm{self}
168 gezelter 3986 \end{equation}
169     that is short-ranged and easily truncated at a cutoff radius,
170     \begin{equation}
171 gezelter 4175 U_\mathrm{pair}(\mathbf{r}_{ij},\Omega_i, \Omega_j) = \left\{
172 gezelter 3986 \begin{array}{ll}
173 gezelter 4175 U_\mathrm{approx} (\mathbf{r}_{ij}, \Omega_i, \Omega_j) & \quad \left| \mathbf{r}_{ij} \right| \le r_c \\
174 gezelter 4098 0 & \quad \left| \mathbf{r}_{ij} \right| > r_c ,
175 gezelter 3986 \end{array}
176     \right.
177     \end{equation}
178 gezelter 3989 along with an easily computed self-interaction term ($\sum_i
179 gezelter 4175 U_i^\mathrm{self}$) which scales linearly with the number of
180 gezelter 3986 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
181 gezelter 4098 coordinates of the two sites, and $\mathbf{r}_{ij}$ is the vector
182     between the two sites. The computational efficiency, energy
183 gezelter 3986 conservation, and even some physical properties of a simulation can
184 gezelter 4175 depend dramatically on how the $U_\mathrm{approx}$ function behaves at
185 gezelter 3986 the cutoff radius. The goal of any approximation method should be to
186     mimic the real behavior of the electrostatic interactions as closely
187     as possible without sacrificing the near-linear scaling of a cutoff
188     method.
189 gezelter 3906
190 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
191     The DSF and Wolf methods operate by neutralizing the total charge
192     contained within the cutoff sphere surrounding each particle. This is
193     accomplished by shifting the potential functions to generate image
194     charges on the surface of the cutoff sphere for each pair interaction
195 gezelter 4098 computed within $r_c$. Damping using a complementary error function is
196     applied to the potential to accelerate convergence. The interaction
197     for a pair of charges ($C_i$ and $C_j$) in the DSF method,
198 gezelter 3980 \begin{equation*}
199 gezelter 4175 U_\mathrm{DSF}(r_{ij}) = C_i C_j \Biggr{[}
200 gezelter 3980 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
201 gezelter 3986 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
202 gezelter 3980 + \frac{2\alpha}{\pi^{1/2}}
203 gezelter 3986 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
204     \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
205 gezelter 3980 \label{eq:DSFPot}
206     \end{equation*}
207 gezelter 4098 where $\alpha$ is the adjustable damping parameter. Note that in this
208     potential and in all electrostatic quantities that follow, the
209     standard $1/4 \pi \epsilon_{0}$ has been omitted for clarity.
210 gezelter 3980
211     To insure net charge neutrality within each cutoff sphere, an
212     additional ``self'' term is added to the potential. This term is
213     constant (as long as the charges and cutoff radius do not change), and
214     exists outside the normal pair-loop for molecular simulations. It can
215     be thought of as a contribution from a charge opposite in sign, but
216     equal in magnitude, to the central charge, which has been spread out
217     over the surface of the cutoff sphere. A portion of the self term is
218     identical to the self term in the Ewald summation, and comes from the
219     utilization of the complimentary error function for electrostatic
220 gezelter 3986 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
221     extend the Wolf self-neutralization method to zero out the dipole and
222     higher order multipoles contained within the cutoff
223 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
224 gezelter 3982
225 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
226     multipoles by insuring net charge-neutrality and net-zero moments
227     within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
228     central dipolar site $\mathbf{D}_i$ is interacting with point dipole
229     $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
230     self-neutralization scheme for point multipoles involves projecting
231     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
232     sphere. There are also significant modifications made to make the
233     forces and torques go smoothly to zero at the cutoff distance.
234 gezelter 3982
235 gezelter 4172 \begin{figure}
236 gezelter 4189 \includegraphics[width=3in]{SM.eps}
237 gezelter 4172 \caption{Reversed multipoles are projected onto the surface of the
238     cutoff sphere. The forces, torques, and potential are then smoothly
239     shifted to zero as the sites leave the cutoff region.}
240     \label{fig:shiftedMultipoles}
241     \end{figure}
242 gezelter 3980
243 gezelter 3986 As in the point-charge approach, there is an additional contribution
244     from self-neutralization of site $i$. The self term for multipoles is
245 gezelter 3982 described in section \ref{sec:selfTerm}.
246 gezelter 3906
247 gezelter 3982 \subsection{The multipole expansion}
248    
249 gezelter 3980 Consider two discrete rigid collections of point charges, denoted as
250 gezelter 3982 $\bf a$ and $\bf b$. In the following, we assume that the two objects
251     interact via electrostatics only and describe those interactions in
252     terms of a standard multipole expansion. Putting the origin of the
253     coordinate system at the center of mass of $\bf a$, we use vectors
254 gezelter 3980 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
255     a$. Then the electrostatic potential of object $\bf a$ at
256     $\mathbf{r}$ is given by
257 gezelter 3906 \begin{equation}
258 gezelter 4175 \phi_a(\mathbf r) =
259 gezelter 3906 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
260     \end{equation}
261 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
262     notation. Here Greek indices are used to indicate space coordinates
263     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
264 gezelter 4098 labeling specific charges in $\bf a$ and $\bf b$ respectively. The
265 gezelter 3982 Taylor expansion,
266 gezelter 3906 \begin{equation}
267     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
268     \left( 1
269     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
270     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
271     \right)
272 gezelter 3982 \frac{1}{r} ,
273 gezelter 3906 \end{equation}
274 gezelter 3982 can then be used to express the electrostatic potential on $\bf a$ in
275     terms of multipole operators,
276 gezelter 3906 \begin{equation}
277 gezelter 4175 \phi_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
278 gezelter 3906 \end{equation}
279     where
280     \begin{equation}
281     \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
282     + Q_{{\bf a}\alpha\beta}
283     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
284     \end{equation}
285 gezelter 3980 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
286     given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
287 gezelter 3982 a}\alpha\beta}$, respectively. These are the primitive multipoles
288     which can be expressed as a distribution of charges,
289     \begin{align}
290 gezelter 3996 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
291     D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
292     Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
293     r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
294 gezelter 3982 \end{align}
295     Note that the definition of the primitive quadrupole here differs from
296     the standard traceless form, and contains an additional Taylor-series
297 gezelter 3996 based factor of $1/2$. We are essentially treating the mass
298     distribution with higher priority; the moment of inertia tensor,
299     $\overleftrightarrow{\mathsf I}$, is diagonalized to obtain body-fixed
300     axes, and the charge distribution may result in a quadrupole tensor
301     that is not necessarily diagonal in the body frame. Additional
302     reasons for utilizing the primitive quadrupole are discussed in
303     section \ref{sec:damped}.
304 gezelter 3906
305     It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
306 gezelter 4179 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $), the interaction energy is given by
307 gezelter 3906 \begin{equation}
308 gezelter 3982 U_{\bf{ab}}(r)
309 gezelter 3985 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
310 gezelter 3982 \end{equation}
311     This can also be expanded as a Taylor series in $r$. Using a notation
312     similar to before to define the multipoles on object {\bf b},
313     \begin{equation}
314 gezelter 3906 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
315     + Q_{{\bf b}\alpha\beta}
316     \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
317     \end{equation}
318 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
319 gezelter 3906 \begin{equation}
320 gezelter 3985 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
321 gezelter 3906 \end{equation}
322 gezelter 3982 This form has the benefit of separating out the energies of
323     interaction into contributions from the charge, dipole, and quadrupole
324 gezelter 4179 of $\bf a$ interacting with the same multipoles in $\bf b$.
325 gezelter 3906
326 gezelter 3982 \subsection{Damped Coulomb interactions}
327 gezelter 3996 \label{sec:damped}
328 gezelter 3982 In the standard multipole expansion, one typically uses the bare
329     Coulomb potential, with radial dependence $1/r$, as shown in
330     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
331     interaction, which results from replacing point charges with Gaussian
332     distributions of charge with width $\alpha$. In damped multipole
333     electrostatics, the kernel ($1/r$) of the expansion is replaced with
334     the function:
335 gezelter 3906 \begin{equation}
336     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
337     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
338     \end{equation}
339 gezelter 3982 We develop equations below using the function $f(r)$ to represent
340 gezelter 3986 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
341     bare or damped Coulomb kernels (or any other function) as long as
342     derivatives of these functions are known. Smith's convenient
343 gezelter 4179 functions $B_l(r)$, which are used for derivatives of the damped
344     kernel, are summarized in Appendix A. (N.B. there is one important
345     distinction between the two kernels, which is the behavior of
346     $\nabla^2 \frac{1}{r}$ compared with $\nabla^2 B_0(r)$. The former is
347     zero everywhere except for a delta function evaluated at the origin.
348     The latter also has delta function behavior, but is non-zero for $r
349     \neq 0$. Thus the standard justification for using a traceless
350 gezelter 3996 quadrupole tensor fails for the damped case.)
351 gezelter 3906
352 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
353     energy as well as forces and torques as $r\rightarrow r_c$. To
354     describe how this goal may be met, we use two examples, charge-charge
355 gezelter 3986 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
356     explain the idea.
357 gezelter 3906
358 gezelter 3984 \subsection{Shifted-force methods}
359 gezelter 3982 In the shifted-force approximation, the interaction energy for two
360     charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
361     written:
362 gezelter 3906 \begin{equation}
363 gezelter 3985 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
364 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
365     \right) .
366     \end{equation}
367 gezelter 3982 Two shifting terms appear in this equations, one from the
368 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
369     derivative to vanish at the cutoff radius.
370 gezelter 3982
371     Since one derivative of the interaction energy is needed for the
372     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
373     interaction energy, that is:
374 gezelter 3906 \begin{equation}
375     \frac{d\,}{dr}
376     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
377     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
378     \right) .
379     \end{equation}
380 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
381     are a number of ways to generalize this derivative shift for
382 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
383     higher-order Taylor series for $r$ near $r_c$, and the other based on
384     linear shift of the kernel gradients at the cutoff itself.
385 gezelter 3906
386 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
387 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
388     is based on a Taylor expansion containing the same number of
389     derivatives required for each force term to vanish at the cutoff. For
390     example, the quadrupole-quadrupole interaction energy requires four
391     derivatives of the kernel, and the force requires one additional
392 gezelter 3986 derivative. For quadrupole-quadrupole interactions, we therefore
393     require shifted energy expressions that include up to $(r-r_c)^5$ so
394     that all energies, forces, and torques are zero as $r \rightarrow
395     r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
396     from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
397     derivatives to be taken when deriving a given multipole energy. We
398     choose a function with guaranteed smooth derivatives -- a truncated
399     Taylor series of the function $f(r)$, e.g.,
400 gezelter 3906 %
401     \begin{equation}
402 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
403 gezelter 3906 \end{equation}
404     %
405     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
406     Thus, for $f(r)=1/r$, we find
407     %
408     \begin{equation}
409     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
410     \end{equation}
411     %
412 gezelter 3982 Continuing with the example of a charge $\bf a$ interacting with a
413     dipole $\bf b$, we write
414 gezelter 3906 %
415     \begin{equation}
416     U_{C_{\bf a}D_{\bf b}}(r)=
417 gezelter 3985 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
418     = C_{\bf a} D_{{\bf b}\alpha}
419 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
420     \end{equation}
421     %
422 gezelter 3984 The force that dipole $\bf b$ exerts on charge $\bf a$ is
423 gezelter 3906 %
424     \begin{equation}
425 gezelter 3985 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
426 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
427     \frac{r_\alpha r_\beta}{r^2}
428     \left( -\frac{1}{r} \frac {\partial} {\partial r}
429     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
430     \end{equation}
431     %
432 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
433 gezelter 3906 %
434     \begin{equation}
435     F_{C_{\bf a}D_{\bf b}\beta} =
436 gezelter 3985 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
437 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
438 gezelter 3985 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
439 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
440     \end{equation}
441     %
442     This expansion shows the expected $1/r^3$ dependence of the force.
443    
444 gezelter 3984 In general, we can write
445 gezelter 3906 %
446     \begin{equation}
447 gezelter 4098 U^{\text{TSF}}= (\text{prefactor}) (\text{derivatives}) f_n(r)
448 gezelter 3906 \label{generic}
449     \end{equation}
450     %
451 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
452     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
453     $n=4$ for quadrupole-quadrupole. For example, in
454     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
455     $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
456     $\partial^4/\partial r_\alpha \partial r_\beta \partial
457     r_\gamma \partial r_\delta$, with implied summation combining the
458 gezelter 4183 space indices. Appendix \ref{radialTSF} contains details on the
459     radial functions.
460 gezelter 3906
461 gezelter 3984 In the formulas presented in the tables below, the placeholder
462     function $f(r)$ is used to represent the electrostatic kernel (either
463     damped or undamped). The main functions that go into the force and
464 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
465     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
466     of the same index $n$. The algebra required to evaluate energies,
467     forces and torques is somewhat tedious, so only the final forms are
468 gezelter 3986 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
469 gezelter 3996 One of the principal findings of our work is that the individual
470     orientational contributions to the various multipole-multipole
471     interactions must be treated with distinct radial functions, but each
472     of these contributions is independently force shifted at the cutoff
473     radius.
474 gezelter 3906
475 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
476 gezelter 3985 The second, and conceptually simpler approach to force-shifting
477     maintains only the linear $(r-r_c)$ term in the truncated Taylor
478     expansion, and has a similar interaction energy for all multipole
479     orders:
480 gezelter 3906 \begin{equation}
481 gezelter 3996 U^{\text{GSF}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
482 gezelter 4183 U(r_c \hat{\mathbf{r}},\hat{\mathbf{a}}, \hat{\mathbf{b}}) - (r-r_c)
483     \hat{\mathbf{r}} \cdot \nabla U(r_c \hat{\mathbf{r}},\hat{\mathbf{a}}, \hat{\mathbf{b}}) \right]
484 gezelter 3985 \label{generic2}
485 gezelter 3906 \end{equation}
486 gezelter 4183 where $\hat{\mathbf{r}}$ is the unit vector pointing between the two
487     multipoles, and the sum describes a separate force-shifting that is
488     applied to each orientational contribution to the energy. Both the
489     potential and the gradient for force shifting are evaluated for an
490     image multipole projected onto the surface of the cutoff sphere (see
491     fig \ref{fig:shiftedMultipoles}). The image multipole retains the
492 gezelter 3996 orientation ($\hat{\mathbf{b}}$) of the interacting multipole. No
493 gezelter 3990 higher order terms $(r-r_c)^n$ appear. The primary difference between
494     the TSF and GSF methods is the stage at which the Taylor Series is
495     applied; in the Taylor-shifted approach, it is applied to the kernel
496     itself. In the Gradient-shifted approach, it is applied to individual
497 gezelter 4183 radial interaction terms in the multipole expansion. Energies from
498 gezelter 3990 this method thus have the general form:
499 gezelter 3906 \begin{equation}
500 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
501     \label{generic3}
502 gezelter 3906 \end{equation}
503    
504 gezelter 3986 Functional forms for both methods (TSF and GSF) can both be summarized
505 gezelter 4181 using the form of Eq.~\ref{generic3}). The basic forms for the
506 gezelter 3985 energy, force, and torque expressions are tabulated for both shifting
507 gezelter 3986 approaches below -- for each separate orientational contribution, only
508 gezelter 3985 the radial factors differ between the two methods.
509 gezelter 3906
510 gezelter 4179 \subsection{Generalization of the Wolf shifted potential (SP)}
511     It is also possible to formulate an extension of the Wolf approach for
512     multipoles by simply projecting the image multipole onto the surface
513     of the cutoff sphere, and including the interactions with the central
514     multipole and the image. This effectively shifts the pair potential
515     to zero at the cutoff radius,
516     \begin{equation}
517     U^{\text{SP}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
518 gezelter 4183 U(r_c \hat{\mathbf{r}},\hat{\mathbf{a}}, \hat{\mathbf{b}}) \right]
519 gezelter 4179 \label{eq:SP}
520     \end{equation}
521     independent of the orientations of the two multipoles. The sum again
522     describes separate potential shifting that is applied to each
523     orientational contribution to the energy.
524    
525     The shifted potential (SP) method is a simple truncation of the GSF
526     method for each orientational contribution, leaving out the $(r-r_c)$
527     terms that multiply the gradient. Functional forms for the
528     shifted-potential (SP) method can also be summarized using the form of
529 gezelter 4181 Eq.~\ref{generic3}. The energy, force, and torque expressions are
530 gezelter 4179 tabulated below for all three methods. As in the GSF and TSF methods,
531     for each separate orientational contribution, only the radial factors
532     differ between the SP, GSF, and TSF methods.
533    
534    
535 gezelter 3906 \subsection{\label{sec:level2}Body and space axes}
536 gezelter 3989 Although objects $\bf a$ and $\bf b$ rotate during a molecular
537     dynamics (MD) simulation, their multipole tensors remain fixed in
538     body-frame coordinates. While deriving force and torque expressions,
539     it is therefore convenient to write the energies, forces, and torques
540     in intermediate forms involving the vectors of the rotation matrices.
541     We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
542     $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
543 gezelter 4179 In a typical simulation, the initial axes are obtained by
544 gezelter 3989 diagonalizing the moment of inertia tensors for the objects. (N.B.,
545     the body axes are generally {\it not} the same as those for which the
546     quadrupole moment is diagonal.) The rotation matrices are then
547     propagated during the simulation.
548 gezelter 3906
549 gezelter 3989 The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
550 gezelter 3985 expressed using these unit vectors:
551 gezelter 3906 \begin{eqnarray}
552     \hat{\mathbf {a}} =
553     \begin{pmatrix}
554     \hat{a}_1 \\
555     \hat{a}_2 \\
556     \hat{a}_3
557 gezelter 3989 \end{pmatrix}, \qquad
558 gezelter 3906 \hat{\mathbf {b}} =
559     \begin{pmatrix}
560     \hat{b}_1 \\
561     \hat{b}_2 \\
562     \hat{b}_3
563     \end{pmatrix}
564     \end{eqnarray}
565     %
566 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
567 gezelter 3989 coordinates.
568    
569     Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
570     {\em et al.},\cite{Price:1984fk} showed that if the interaction
571     energies are written explicitly in terms of $\hat{r}$ and the body
572     axes ($\hat{a}_m$, $\hat{b}_n$) :
573 gezelter 3906 %
574 gezelter 3985 \begin{equation}
575 gezelter 3989 U(r, \{\hat{a}_m \cdot \hat{r} \},
576     \{\hat{b}_n\cdot \hat{r} \},
577     \{\hat{a}_m \cdot \hat{b}_n \}) .
578     \label{ugeneral}
579     \end{equation}
580     %
581     the forces come out relatively cleanly,
582     %
583     \begin{equation}
584     \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
585     = \frac{\partial U}{\partial r} \hat{r}
586     + \sum_m \left[
587     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
588     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
589     + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
590     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
591     \right] \label{forceequation}.
592     \end{equation}
593    
594     The torques can also be found in a relatively similar
595     manner,
596     %
597     \begin{eqnarray}
598     \mathbf{\tau}_{\bf a} =
599     \sum_m
600     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
601     ( \hat{r} \times \hat{a}_m )
602     -\sum_{mn}
603     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
604     (\hat{a}_m \times \hat{b}_n) \\
605     %
606     \mathbf{\tau}_{\bf b} =
607     \sum_m
608     \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
609     ( \hat{r} \times \hat{b}_m)
610     +\sum_{mn}
611     \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
612     (\hat{a}_m \times \hat{b}_n) .
613     \end{eqnarray}
614    
615 gezelter 4179 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $
616 gezelter 3989 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
617     We also made use of the identities,
618     %
619     \begin{align}
620     \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
621     =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
622     \right) \\
623     \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
624     =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
625 gezelter 4179 \right).
626 gezelter 3989 \end{align}
627    
628     Many of the multipole contractions required can be written in one of
629     three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
630     and $\hat{b}_n$. In the torque expressions, it is useful to have the
631     angular-dependent terms available in all three fashions, e.g. for the
632     dipole-dipole contraction:
633     %
634     \begin{equation}
635 gezelter 3906 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
636 gezelter 3985 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
637 gezelter 4179 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}.
638 gezelter 3985 \end{equation}
639 gezelter 3906 %
640 gezelter 3985 The first two forms are written using space coordinates. The first
641     form is standard in the chemistry literature, while the second is
642     expressed using implied summation notation. The third form shows
643     explicit sums over body indices and the dot products now indicate
644     contractions using space indices.
645 gezelter 3906
646 gezelter 3989 In computing our force and torque expressions, we carried out most of
647     the work in body coordinates, and have transformed the expressions
648     back to space-frame coordinates, which are reported below. Interested
649     readers may consult the supplemental information for this paper for
650     the intermediate body-frame expressions.
651 gezelter 3906
652 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
653    
654 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
655     summation~\cite{Wolf99} and the damped shifted force (DSF)
656 gezelter 4098 extension~\cite{Fennell:2006zl} also include self-interactions that
657 gezelter 3985 are handled separately from the pairwise interactions between
658     sites. The self-term is normally calculated via a single loop over all
659     sites in the system, and is relatively cheap to evaluate. The
660     self-interaction has contributions from two sources.
661    
662     First, the neutralization procedure within the cutoff radius requires
663     a contribution from a charge opposite in sign, but equal in magnitude,
664     to the central charge, which has been spread out over the surface of
665     the cutoff sphere. For a system of undamped charges, the total
666     self-term is
667 gezelter 3980 \begin{equation}
668 gezelter 4179 U_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}.
669 gezelter 3980 \label{eq:selfTerm}
670     \end{equation}
671 gezelter 3985
672     Second, charge damping with the complementary error function is a
673     partial analogy to the Ewald procedure which splits the interaction
674     into real and reciprocal space sums. The real space sum is retained
675     in the Wolf and DSF methods. The reciprocal space sum is first
676     minimized by folding the largest contribution (the self-interaction)
677     into the self-interaction from charge neutralization of the damped
678     potential. The remainder of the reciprocal space portion is then
679     discarded (as this contributes the largest computational cost and
680     complexity to the Ewald sum). For a system containing only damped
681     charges, the complete self-interaction can be written as
682 gezelter 3980 \begin{equation}
683 gezelter 4175 U_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
684 gezelter 3980 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
685     C_{\bf a}^{2}.
686     \label{eq:dampSelfTerm}
687     \end{equation}
688    
689     The extension of DSF electrostatics to point multipoles requires
690 gezelter 4183 treatment of the self-neutralization \textit{and} reciprocal
691 gezelter 3980 contributions to the self-interaction for higher order multipoles. In
692     this section we give formulae for these interactions up to quadrupolar
693     order.
694    
695     The self-neutralization term is computed by taking the {\it
696     non-shifted} kernel for each interaction, placing a multipole of
697     equal magnitude (but opposite in polarization) on the surface of the
698     cutoff sphere, and averaging over the surface of the cutoff sphere.
699     Because the self term is carried out as a single sum over sites, the
700     reciprocal-space portion is identical to half of the self-term
701 gezelter 4179 obtained by Smith, and also by Aguado and Madden for the application
702     of the Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a
703     given site which posesses a charge, dipole, and quadrupole, both types
704     of contribution are given in table \ref{tab:tableSelf}.
705 gezelter 3980
706     \begin{table*}
707     \caption{\label{tab:tableSelf} Self-interaction contributions for
708     site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
709     $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
710     \begin{ruledtabular}
711     \begin{tabular}{lccc}
712     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
713     Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
714     Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
715     \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
716 gezelter 3989 Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
717 gezelter 3980 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
718     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
719     Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
720     h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
721     \end{tabular}
722     \end{ruledtabular}
723     \end{table*}
724    
725     For sites which simultaneously contain charges and quadrupoles, the
726     self-interaction includes a cross-interaction between these two
727     multipole orders. Symmetry prevents the charge-dipole and
728     dipole-quadrupole interactions from contributing to the
729     self-interaction. The functions that go into the self-neutralization
730 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
731     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
732     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
733     have been evaluated at the cutoff distance. For undamped
734     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
735     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
736     on. Appendix \ref{SmithFunc} contains recursion relations that allow
737     rapid evaluation of these derivatives.
738 gezelter 3980
739 gezelter 3985 \section{Interaction energies, forces, and torques}
740     The main result of this paper is a set of expressions for the
741     energies, forces and torques (up to quadrupole-quadrupole order) that
742 gezelter 4183 work for the Taylor-shifted, gradient-shifted, and shifted potential
743     approximations. These expressions were derived using a set of generic
744     radial functions. Without using the shifting approximations mentioned
745     above, some of these radial functions would be identical, and the
746     expressions coalesce into the familiar forms for unmodified
747     multipole-multipole interactions. Table \ref{tab:tableenergy} maps
748     between the generic functions and the radial functions derived for the
749     three methods. The energy equations are written in terms of lab-frame
750     representations of the dipoles, quadrupoles, and the unit vector
751     connecting the two objects,
752 gezelter 3906
753     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
754     %
755     %
756     % u ca cb
757     %
758 gezelter 3983 \begin{align}
759     U_{C_{\bf a}C_{\bf b}}(r)=&
760 gezelter 3985 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
761 gezelter 3983 \\
762 gezelter 3906 %
763     % u ca db
764     %
765 gezelter 3983 U_{C_{\bf a}D_{\bf b}}(r)=&
766 gezelter 3985 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
767 gezelter 3906 \label{uchdip}
768 gezelter 3983 \\
769 gezelter 3906 %
770     % u ca qb
771     %
772 gezelter 3985 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
773     v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
774     \hat{r} \right) v_{22}(r) \Bigr]
775 gezelter 3906 \label{uchquad}
776 gezelter 3983 \\
777 gezelter 3906 %
778     % u da cb
779     %
780 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
781     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
782     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
783     %\\
784 gezelter 3906 %
785     % u da db
786     %
787 gezelter 3983 U_{D_{\bf a}D_{\bf b}}(r)=&
788 gezelter 3985 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
789 gezelter 3906 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
790     +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
791     \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
792     v_{22}(r) \Bigr]
793     \label{udipdip}
794 gezelter 3983 \\
795 gezelter 3906 %
796     % u da qb
797     %
798     \begin{split}
799     % 1
800 gezelter 3983 U_{D_{\bf a}Q_{\bf b}}(r) =&
801 gezelter 3985 -\Bigl[
802 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
803     \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
804     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
805     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
806     % 2
807 gezelter 3985 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
808 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
809     \label{udipquad}
810     \end{split}
811 gezelter 3983 \\
812 gezelter 3906 %
813     % u qa cb
814     %
815 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
816     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
817     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
818     %\label{uquadch}
819     %\\
820 gezelter 3906 %
821     % u qa db
822     %
823 gezelter 3983 %\begin{split}
824 gezelter 3906 %1
825 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
826     %\frac{1}{4\pi \epsilon_0} \Bigl[
827     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
828     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
829     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
830     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
831 gezelter 3906 % 2
832 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
833     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
834     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
835     %\label{uquaddip}
836     %\end{split}
837     %\\
838 gezelter 3906 %
839     % u qa qb
840     %
841     \begin{split}
842     %1
843 gezelter 3983 U_{Q_{\bf a}Q_{\bf b}}(r)=&
844 gezelter 3985 \Bigl[
845 gezelter 3906 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
846 gezelter 3989 +2
847     \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
848 gezelter 3906 \\
849     % 2
850 gezelter 3985 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
851 gezelter 3906 \left( \hat{r} \cdot
852     \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
853     +\text{Tr}\mathbf{Q}_{\mathbf{b}}
854     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
855     \cdot \hat{r} \right) +4 (\hat{r} \cdot
856     \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
857     \Bigr] v_{42}(r)
858     \\
859     % 4
860 gezelter 3985 &+
861 gezelter 3906 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
862     \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
863     \label{uquadquad}
864     \end{split}
865 gezelter 3983 \end{align}
866 gezelter 3985 %
867 gezelter 3983 Note that the energies of multipoles on site $\mathbf{b}$ interacting
868     with those on site $\mathbf{a}$ can be obtained by swapping indices
869     along with the sign of the intersite vector, $\hat{r}$.
870 gezelter 3906
871     %
872     %
873     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
874     %
875    
876 gezelter 3985 \begin{sidewaystable}
877     \caption{\label{tab:tableenergy}Radial functions used in the energy
878 gezelter 4183 and torque equations. The $f, g, h, s, t, \mathrm{and~} u$
879     functions used in this table are defined in Appendices
880     \ref{radialTSF} and \ref{radialGSF}. The gradient shifted (GSF)
881     functions include the shifted potential (SP)
882     contributions (\textit{cf.} Eqs. \ref{generic2} and
883     \ref{eq:SP}).}
884 gezelter 4177 \begin{tabular}{|c|c|l|l|l|} \hline
885     Generic&Bare Coulomb&Taylor-Shifted (TSF)&Shifted Potential (SP)&Gradient-Shifted (GSF)
886 gezelter 3906 \\ \hline
887     %
888     %
889     %
890     %Ch-Ch&
891     $v_{01}(r)$ &
892     $\frac{1}{r}$ &
893     $f_0(r)$ &
894 gezelter 4177 $f(r)-f(r_c)$ &
895     SP $-(r-r_c)g(r_c)$
896 gezelter 3906 \\
897     %
898     %
899     %
900     %Ch-Di&
901     $v_{11}(r)$ &
902     $-\frac{1}{r^2}$ &
903     $g_1(r)$ &
904 gezelter 4177 $g(r)-g(r_c)$ &
905     SP $-(r-r_c)h(r_c)$ \\
906 gezelter 3906 %
907     %
908     %
909     %Ch-Qu/Di-Di&
910     $v_{21}(r)$ &
911     $-\frac{1}{r^3} $ &
912     $\frac{g_2(r)}{r} $ &
913 gezelter 4177 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c}$ &
914 gezelter 4179 SP $-(r-r_c) \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
915     %
916     %
917     %
918 gezelter 3906 $v_{22}(r)$ &
919     $\frac{3}{r^3} $ &
920     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
921 gezelter 4179 $\left(-\frac{g(r)}{r}+h(r) \right) -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$
922     & SP $-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
923 gezelter 3906 %
924     %
925     %
926     %Di-Qu &
927     $v_{31}(r)$ &
928     $\frac{3}{r^4} $ &
929     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
930 gezelter 4179 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r}\right)-\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right)$
931     & SP $-(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
932 gezelter 3906 %
933 gezelter 4179 %
934     %
935 gezelter 3906 $v_{32}(r)$ &
936     $-\frac{15}{r^4} $ &
937     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
938 gezelter 4179 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)$&
939     SP $-(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}\right.$ \\
940     &&& $~~~-\left(\frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c)\right)$ &
941     $\phantom{SP-(r-r_c)}\left.-\frac{3s(r_c)}{r_c}+t(r_c) \right)$\\
942 gezelter 3906 %
943     %
944     %
945     %Qu-Qu&
946     $v_{41}(r)$ &
947     $\frac{3}{r^5} $ &
948     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
949 gezelter 4179 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)- \left(-\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ &
950     SP $-(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
951 gezelter 3906 \\
952     % 2
953     $v_{42}(r)$ &
954     $- \frac{15}{r^5} $ &
955     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
956 gezelter 4179 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)$ &
957     SP$-(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}\right.$ \\
958     &&& $~~~-\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ &
959     $\phantom{SP-(r-r_c)}\left. -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$\\
960 gezelter 3906 % 3
961 gezelter 4179 %
962     %
963 gezelter 3906 $v_{43}(r)$ &
964     $ \frac{105}{r^5} $ &
965     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
966 gezelter 4179 $ \left(-\frac{15g(r)}{r^3} +\frac{15h(r)}{r^2}-\frac{6s(r)}{r}+t(r)\right) $ &
967     SP $-(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}\right.$\\
968     &&& $~~~-\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c}+ t(r_c)\right)$ &
969     $\phantom{SP-(r-r_c)}\left.+\frac{21s(r_c)}{r_c^2}-\frac{6t(r_c)}{r_c}+u(r_c) \right)$\\
970 gezelter 4177 \hline
971 gezelter 3906 \end{tabular}
972 gezelter 3985 \end{sidewaystable}
973 gezelter 3906 %
974     %
975     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
976     %
977    
978 gezelter 3985 \begin{sidewaystable}
979 gezelter 4179 \caption{\label{tab:tableFORCE}Radial functions used in the force
980     equations. Gradient shifted (GSF) functions are constructed using the shifted
981     potential (SP) functions. Some of these functions are simple
982     modifications of the functions found in table \ref{tab:tableenergy}}
983     \begin{tabular}{|c|c|l|l|l|} \hline
984     Function&Definition&Taylor-Shifted (TSF)& Shifted Potential (SP)
985     &Gradient-Shifted (GSF)
986 gezelter 3906 \\ \hline
987     %
988     %
989     %
990     $w_a(r)$&
991 gezelter 3985 $\frac{d v_{01}}{dr}$&
992     $g_0(r)$&
993 gezelter 4179 $g(r)$&
994     SP $-g(r_c)$ \\
995 gezelter 3906 %
996     %
997     $w_b(r)$ &
998 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
999     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
1000 gezelter 4179 $h(r) - \frac{v_{11}(r)}{r} $ &
1001     SP $- h(r_c)$ \\
1002 gezelter 3906 %
1003     $w_c(r)$ &
1004 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
1005     $\frac{g_1(r)}{r} $ &
1006 gezelter 4179 $\frac{v_{11}(r)}{r}$&
1007 gezelter 3985 $\frac{v_{11}(r)}{r}$\\
1008 gezelter 3906 %
1009     %
1010     $w_d(r)$&
1011 gezelter 3985 $\frac{d v_{21}}{dr}$&
1012     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
1013 gezelter 4179 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)$ &
1014     SP $-\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
1015 gezelter 3906 %
1016     $w_e(r)$ &
1017 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
1018     $\frac{v_{22}(r)}{r}$ &
1019 gezelter 4179 $\frac{v_{22}(r)}{r}$ &
1020 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
1021     %
1022     %
1023     $w_f(r)$&
1024 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
1025     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
1026 gezelter 4179 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) -\frac{2v_{22}(r)}{r}$&
1027     SP $- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
1028 gezelter 3906 %
1029     $w_g(r)$&
1030 gezelter 3985 $\frac{v_{31}(r)}{r}$&
1031     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
1032 gezelter 4179 $\frac{v_{31}(r)}{r}$&
1033 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
1034     %
1035     $w_h(r)$ &
1036 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
1037     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1038 gezelter 4179 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) -\frac{v_{31}(r)}{r}$ &
1039     SP $ - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1040 gezelter 3906 % 2
1041     $w_i(r)$ &
1042 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
1043     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1044 gezelter 4179 $\frac{v_{32}(r)}{r}$&
1045 gezelter 3985 $\frac{v_{32}(r)}{r}$\\
1046 gezelter 3906 %
1047     $w_j(r)$ &
1048 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
1049     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
1050 gezelter 4179 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) -\frac{3v_{32}}{r}$ &
1051     SP $-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
1052     -\frac{3s(r_c)}{r_c} +t(r_c) \right)$ \\
1053 gezelter 3906 %
1054     $w_k(r)$ &
1055 gezelter 3985 $\frac{d v_{41}}{dr} $ &
1056     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1057 gezelter 4179 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}
1058     \right)$ &
1059     SP $-\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
1060 gezelter 3906 %
1061     $w_l(r)$ &
1062 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
1063     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1064 gezelter 4179 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2}
1065     +\frac{t(r)}{r} \right) -\frac{2v_{42}(r)}{r}$&
1066     SP$-\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)$\\
1067 gezelter 3906 %
1068     $w_m(r)$ &
1069 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
1070 gezelter 4179 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} \right.$ &
1071     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2}\right.$ &
1072     SP $- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}\right.$ \\
1073     && $~~~\left.+ \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$
1074     & $~~~\left. -\frac{6t(r)}{r} +u(r) \right) -\frac{4v_{43}(r)}{r}$ &
1075     $\phantom{SP-} \left.+\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
1076 gezelter 3906 %
1077     $w_n(r)$ &
1078 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
1079     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1080 gezelter 4179 $\frac{v_{42}(r)}{r}$&
1081 gezelter 3985 $\frac{v_{42}(r)}{r}$\\
1082 gezelter 3906 %
1083     $w_o(r)$ &
1084 gezelter 3985 $\frac{v_{43}(r)}{r}$&
1085     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1086 gezelter 4179 $\frac{v_{43}(r)}{r}$&
1087 gezelter 3985 $\frac{v_{43}(r)}{r}$ \\ \hline
1088 gezelter 3906 %
1089    
1090     \end{tabular}
1091 gezelter 3985 \end{sidewaystable}
1092 gezelter 3906 %
1093     %
1094     %
1095    
1096     \subsection{Forces}
1097 gezelter 3985 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1098     $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1099     a simple charge-charge interaction, these forces will point along the
1100     $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1101     \mathbf{r}_a $. Thus
1102 gezelter 3906 %
1103     \begin{equation}
1104     F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1105     \quad \text{and} \quad F_{\bf b \alpha}
1106     = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
1107     \end{equation}
1108     %
1109 gezelter 3985 We list below the force equations written in terms of lab-frame
1110 gezelter 4183 coordinates. The radial functions used in the three methods are listed
1111 gezelter 3985 in Table \ref{tab:tableFORCE}
1112 gezelter 3906 %
1113 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1114 gezelter 3906 %
1115     % **************************************************************************
1116     % f ca cb
1117     %
1118 gezelter 3985 \begin{align}
1119     \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1120     C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1121 gezelter 3906 %
1122     %
1123     %
1124 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1125     C_{\bf a} \Bigl[
1126 gezelter 3906 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1127     w_b(r) \hat{r}
1128 gezelter 3985 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1129 gezelter 3906 %
1130     %
1131     %
1132 gezelter 3985 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1133     C_{\bf a } \Bigr[
1134 gezelter 3906 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1135     + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1136 gezelter 3985 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1137     \right) w_f(r) \hat{r} \Bigr] \\
1138 gezelter 3906 %
1139     %
1140     %
1141 gezelter 3985 % \begin{equation}
1142     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1143     % -C_{\bf{b}} \Bigl[
1144     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1145     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1146     % \end{equation}
1147 gezelter 3906 %
1148     %
1149     %
1150 gezelter 3985 \begin{split}
1151     \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1152 gezelter 3906 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1153     + \left( \mathbf{D}_{\mathbf {a}}
1154     \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1155 gezelter 3985 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1156 gezelter 3906 % 2
1157 gezelter 3985 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1158     \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1159     \end{split}\\
1160 gezelter 3906 %
1161     %
1162     %
1163     \begin{split}
1164 gezelter 3985 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1165 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1166     +2 \mathbf{D}_{\mathbf{a}} \cdot
1167     \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1168 gezelter 3985 - \Bigl[
1169 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1170     \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1171     +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1172     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1173     % 3
1174 gezelter 3985 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1175 gezelter 3906 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1176     w_i(r)
1177     % 4
1178 gezelter 3985 -
1179 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1180 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1181 gezelter 3906 %
1182     %
1183 gezelter 3985 % \begin{equation}
1184     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1185     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1186     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1187     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1188     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1189     % \end{equation}
1190     % %
1191     % \begin{equation}
1192     % \begin{split}
1193     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1194     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1195     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1196     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1197     % % 2
1198     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1199     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1200     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1201     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1202     % % 3
1203     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1204     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1205     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1206     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1207     % % 4
1208     % +\frac{1}{4\pi \epsilon_0}
1209     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1210     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1211     % \end{split}
1212     % \end{equation}
1213 gezelter 3906 %
1214     %
1215     %
1216     \begin{split}
1217 gezelter 3985 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1218     \Bigl[
1219 gezelter 3989 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1220     + 2 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1221 gezelter 3906 % 2
1222 gezelter 3985 &+ \Bigl[
1223 gezelter 3906 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1224     + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1225     % 3
1226     +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1227     + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1228     % 4
1229 gezelter 3985 &+ \Bigl[
1230 gezelter 3906 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1231     + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1232     (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1233     % 5
1234     +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1235     \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1236     %
1237 gezelter 3985 &+ \Bigl[
1238 gezelter 3906 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1239     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1240     %6
1241     +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1242     (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1243     % 7
1244 gezelter 3985 &+
1245 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1246 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1247     \end{align}
1248     Note that the forces for higher multipoles on site $\mathbf{a}$
1249     interacting with those of lower order on site $\mathbf{b}$ can be
1250     obtained by swapping indices in the expressions above.
1251    
1252 gezelter 3906 %
1253 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1254 gezelter 3906 %
1255     \subsection{Torques}
1256 gezelter 3989
1257 gezelter 3906 %
1258 gezelter 4183 The torques for the three methods are given in space-frame
1259     coordinates:
1260 gezelter 3906 %
1261     %
1262 gezelter 3985 \begin{align}
1263     \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1264     C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1265 gezelter 3906 %
1266     %
1267     %
1268 gezelter 3985 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1269     2C_{\bf a}
1270     \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1271 gezelter 3906 %
1272     %
1273     %
1274 gezelter 3985 % \begin{equation}
1275     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1276     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1277     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1278     % \end{equation}
1279 gezelter 3906 %
1280     %
1281     %
1282 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1283     \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1284 gezelter 3906 % 2
1285 gezelter 3985 -
1286 gezelter 3906 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1287 gezelter 3985 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1288 gezelter 3906 %
1289     %
1290     %
1291 gezelter 3985 % \begin{equation}
1292     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1293     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1294     % % 2
1295     % +\frac{1}{4\pi \epsilon_0}
1296     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1297     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1298     % \end{equation}
1299 gezelter 3906 %
1300     %
1301     %
1302 gezelter 3985 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1303     \Bigl[
1304 gezelter 3906 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1305     (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1306     +2 \mathbf{D}_{\mathbf{a}} \times
1307     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1308     \Bigr] v_{31}(r)
1309     % 3
1310 gezelter 3985 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1311     (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1312 gezelter 3906 %
1313     %
1314     %
1315 gezelter 3985 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1316     \Bigl[
1317 gezelter 3906 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1318     \hat{r}
1319     -2 \mathbf{D}_{\mathbf{a}} \times
1320     (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1321     \Bigr] v_{31}(r)
1322     % 2
1323 gezelter 3985 +
1324 gezelter 3906 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1325 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1326 gezelter 3906 %
1327     %
1328     %
1329 gezelter 3985 % \begin{equation}
1330     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1331     % \frac{1}{4\pi \epsilon_0} \Bigl[
1332     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1333     % +2 \mathbf{D}_{\mathbf{b}} \times
1334     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1335     % \Bigr] v_{31}(r)
1336     % % 3
1337     % - \frac{2}{4\pi \epsilon_0}
1338     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1339     % (\hat{r} \cdot \mathbf
1340     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1341     % \end{equation}
1342 gezelter 3906 %
1343     %
1344     %
1345 gezelter 3985 % \begin{equation}
1346     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1347     % \frac{1}{4\pi \epsilon_0} \Bigl[
1348     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1349     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1350     % +2 \mathbf{D}_{\mathbf{b}} \times
1351     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1352     % % 2
1353     % +\frac{1}{4\pi \epsilon_0}
1354     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1355     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1356     % \end{equation}
1357 gezelter 3906 %
1358     %
1359     %
1360     \begin{split}
1361 gezelter 3985 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1362     -4
1363 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1364     v_{41}(r) \\
1365     % 2
1366 gezelter 3985 &+
1367 gezelter 3906 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1368     (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1369     +4 \hat{r} \times
1370     ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1371     % 3
1372     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1373     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1374     % 4
1375 gezelter 3985 &+ 2
1376 gezelter 3906 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1377 gezelter 3985 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1378 gezelter 3906 %
1379     %
1380     %
1381     \begin{split}
1382     \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1383 gezelter 3985 &4
1384 gezelter 3906 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1385     % 2
1386 gezelter 3985 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1387 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1388     -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1389     \mathbf{Q}_{{\mathbf b}} ) \times
1390     \hat{r}
1391     +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1392     ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1393     \Bigr] v_{42}(r) \\
1394     % 4
1395 gezelter 3985 &+2
1396 gezelter 3906 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1397 gezelter 3985 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1398     \end{align}
1399     %
1400     Here, we have defined the matrix cross product in an identical form
1401     as in Ref. \onlinecite{Smith98}:
1402     \begin{equation}
1403     \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1404     \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1405     -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1406     \right]
1407 gezelter 4179 \label{eq:matrixCross}
1408 gezelter 3906 \end{equation}
1409 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1410     permuations of the matrix indices.
1411 gezelter 3980
1412 gezelter 3985 All of the radial functions required for torques are identical with
1413     the radial functions previously computed for the interaction energies.
1414 gezelter 4183 These are tabulated for all three methods in table
1415 gezelter 3985 \ref{tab:tableenergy}. The torques for higher multipoles on site
1416     $\mathbf{a}$ interacting with those of lower order on site
1417     $\mathbf{b}$ can be obtained by swapping indices in the expressions
1418     above.
1419    
1420 gezelter 3980 \section{Comparison to known multipolar energies}
1421    
1422     To understand how these new real-space multipole methods behave in
1423     computer simulations, it is vital to test against established methods
1424     for computing electrostatic interactions in periodic systems, and to
1425     evaluate the size and sources of any errors that arise from the
1426 gezelter 4183 real-space cutoffs. In this paper we test SP, TSF, and GSF
1427 gezelter 3990 electrostatics against analytical methods for computing the energies
1428     of ordered multipolar arrays. In the following paper, we test the new
1429     methods against the multipolar Ewald sum for computing the energies,
1430     forces and torques for a wide range of typical condensed-phase
1431     (disordered) systems.
1432 gezelter 3980
1433     Because long-range electrostatic effects can be significant in
1434     crystalline materials, ordered multipolar arrays present one of the
1435     biggest challenges for real-space cutoff methods. The dipolar
1436     analogues to the Madelung constants were first worked out by Sauer,
1437     who computed the energies of ordered dipole arrays of zero
1438     magnetization and obtained a number of these constants.\cite{Sauer}
1439     This theory was developed more completely by Luttinger and
1440 gezelter 3986 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1441 gezelter 3990 and other periodic structures.
1442 gezelter 3986
1443 gezelter 3990 To test the new electrostatic methods, we have constructed very large,
1444     $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1445     Ref. \onlinecite{LT}. These structures include ``A'' lattices with
1446     nearest neighbor chains of antiparallel dipoles, as well as ``B''
1447     lattices with nearest neighbor strings of antiparallel dipoles if the
1448     dipoles are contained in a plane perpendicular to the dipole direction
1449     that passes through the dipole. We have also studied the minimum
1450 gezelter 3980 energy structure for the BCC lattice that was found by Luttinger \&
1451 gezelter 4179 Tisza. The total electrostatic energy density for any of the arrays
1452     is given by:
1453 gezelter 3980 \begin{equation}
1454     E = C N^2 \mu^2
1455     \end{equation}
1456 gezelter 3990 where $C$ is the energy constant (equivalent to the Madelung
1457     constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1458     the strength of the dipole. Energy constants (converged to 1 part in
1459     $10^9$) are given in the supplemental information.
1460 gezelter 3980
1461 gezelter 4172 \begin{figure}
1462 gezelter 4189 \includegraphics[width=\linewidth]{Dipoles_rCutNew.eps}
1463 gezelter 4172 \caption{Convergence of the lattice energy constants as a function of
1464     cutoff radius (normalized by the lattice constant, $a$) for the new
1465     real-space methods. Three dipolar crystal structures were sampled,
1466     and the analytic energy constants for the three lattices are
1467     indicated with grey dashed lines. The left panel shows results for
1468     the undamped kernel ($1/r$), while the damped error function kernel,
1469     $B_0(r)$ was used in the right panel.}
1470     \label{fig:Dipoles_rCut}
1471     \end{figure}
1472 mlamichh 4163
1473 gezelter 4172 \begin{figure}
1474 gezelter 4189 \includegraphics[width=\linewidth]{Dipoles_alphaNew.eps}
1475 gezelter 4172 \caption{Convergence to the lattice energy constants as a function of
1476     the reduced damping parameter ($\alpha^* = \alpha a$) for the
1477     different real-space methods in the same three dipolar crystals in
1478     Figure \ref{fig:Dipoles_rCut}. The left panel shows results for a
1479     relatively small cutoff radius ($r_c = 4.5 a$) while a larger cutoff
1480     radius ($r_c = 6 a$) was used in the right panel. }
1481     \label{fig:Dipoles_alpha}
1482 mlamichh 4163 \end{figure}
1483 gezelter 4172
1484 gezelter 3990 For the purposes of testing the energy expressions and the
1485     self-neutralization schemes, the primary quantity of interest is the
1486     analytic energy constant for the perfect arrays. Convergence to these
1487     constants are shown as a function of both the cutoff radius, $r_c$,
1488 gezelter 4174 and the damping parameter, $\alpha$ in Figs.\ref{fig:Dipoles_rCut}
1489 gezelter 4172 and \ref{fig:Dipoles_alpha}. We have simultaneously tested a hard
1490 gezelter 4183 cutoff (where the kernel is simply truncated at the cutoff radius) in
1491     addition to the three new methods.
1492 gezelter 3986
1493 gezelter 4174 The hard cutoff exhibits oscillations around the analytic energy
1494 gezelter 3988 constants, and converges to incorrect energies when the complementary
1495 gezelter 4179 error function damping kernel is used. The shifted potential (SP)
1496     converges to the correct energy smoothly by $r_c = 4.5 a$ even for the
1497     undamped case. This indicates that the shifting and the correction
1498     provided by the self term are required for obtaining accurate energies.
1499     The Taylor-shifted force (TSF) approximation appears to perturb the
1500     potential too much inside the cutoff region to provide accurate
1501     measures of the energy constants. GSF is a compromise, converging to
1502     the correct energies within $r_c = 6 a$.
1503 gezelter 4174
1504 gezelter 3986 {\it Quadrupolar} analogues to the Madelung constants were first
1505     worked out by Nagai and Nakamura who computed the energies of selected
1506     quadrupole arrays based on extensions to the Luttinger and Tisza
1507 gezelter 4174 approach.\cite{Nagai01081960,Nagai01091963}
1508 gezelter 3980
1509     In analogy to the dipolar arrays, the total electrostatic energy for
1510     the quadrupolar arrays is:
1511     \begin{equation}
1512 gezelter 3996 E = C N \frac{3\bar{Q}^2}{4a^5}
1513 gezelter 3980 \end{equation}
1514 gezelter 3996 where $a$ is the lattice parameter, and $\bar{Q}$ is the effective
1515     quadrupole moment,
1516     \begin{equation}
1517 gezelter 4098 \bar{Q}^2 = 2 \left(3 Q : Q - (\text{Tr} Q)^2 \right)
1518 gezelter 3996 \end{equation}
1519     for the primitive quadrupole as defined in Eq. \ref{eq:quadrupole}.
1520     (For the traceless quadrupole tensor, $\Theta = 3 Q - \text{Tr} Q$,
1521 gezelter 4098 the effective moment, $\bar{Q}^2 = \frac{2}{3} \Theta : \Theta$.)
1522 gezelter 3980
1523 gezelter 4174 To test the new electrostatic methods for quadrupoles, we have
1524     constructed very large, $N=$ 8,000~(sc), 16,000~(bcc), and
1525     32,000~(fcc) arrays of linear quadrupoles in the orientations
1526     described in Ref. \onlinecite{Nagai01081960}. We have compared the
1527 gezelter 4179 energy constants for these low-energy configurations for linear
1528     quadrupoles. Convergence to these constants are shown as a function of
1529     both the cutoff radius, $r_c$, and the damping parameter, $\alpha$ in
1530     Figs.~\ref{fig:Quadrupoles_rCut} and \ref{fig:Quadrupoles_alpha}.
1531 gezelter 4174
1532 gezelter 4172 \begin{figure}
1533 gezelter 4189 \includegraphics[width=\linewidth]{Quadrupoles_rcutConvergence.eps}
1534 gezelter 4173 \caption{Convergence of the lattice energy constants as a function of
1535     cutoff radius (normalized by the lattice constant, $a$) for the new
1536     real-space methods. Three quadrupolar crystal structures were
1537     sampled, and the analytic energy constants for the three lattices
1538     are indicated with grey dashed lines. The left panel shows results
1539     for the undamped kernel ($1/r$), while the damped error function
1540     kernel, $B_0(r)$ was used in the right panel.}
1541 gezelter 4174 \label{fig:Quadrupoles_rCut}
1542 gezelter 4172 \end{figure}
1543    
1544    
1545 gezelter 4189 \begin{figure}
1546     \includegraphics[width=\linewidth]{Quadrupoles_newAlpha.eps}
1547 gezelter 4174 \caption{Convergence to the lattice energy constants as a function of
1548     the reduced damping parameter ($\alpha^* = \alpha a$) for the
1549     different real-space methods in the same three quadrupolar crystals
1550     in Figure \ref{fig:Quadrupoles_rCut}. The left panel shows
1551     results for a relatively small cutoff radius ($r_c = 4.5 a$) while a
1552     larger cutoff radius ($r_c = 6 a$) was used in the right panel. }
1553     \label{fig:Quadrupoles_alpha}
1554 gezelter 4172 \end{figure}
1555    
1556 gezelter 4174 Again, we find that the hard cutoff exhibits oscillations around the
1557 gezelter 4179 analytic energy constants. The shifted potential (SP) approximation
1558     converges to the correct energy smoothly by $r_c = 3 a$ even for the
1559     undamped case. The Taylor-shifted force (TSF) approximation again
1560     appears to perturb the potential too much inside the cutoff region to
1561     provide accurate measures of the energy constants. GSF again provides
1562     a compromise between the two methods -- energies are converged by $r_c
1563     = 4.5 a$, and the approximation is not as perturbative at short range
1564     as TSF.
1565 gezelter 4172
1566 gezelter 4179 It is also useful to understand the convergence to the lattice energy
1567     constants as a function of the reduced damping parameter ($\alpha^* =
1568     \alpha a$) for the different real-space methods.
1569     Figures. \ref{fig:Dipoles_alpha} and \ref{fig:Quadrupoles_alpha} show
1570     this comparison for the dipolar and quadrupolar lattices,
1571     respectively. All of the methods (except for TSF) have excellent
1572     behavior for the undamped or weakly-damped cases. All of the methods
1573     can be forced to converge by increasing the value of $\alpha$, which
1574 gezelter 4183 effectively shortens the overall range of the potential by equalizing
1575     the truncation effects on the different orientational contributions.
1576     In the second paper in the series, we discuss how large values of
1577     $\alpha$ can perturb the force and torque vectors, but both
1578     weakly-damped or over-damped electrostatics appear to generate
1579 gezelter 4179 reasonable values for the total electrostatic energies under both the
1580     SP and GSF approximations.
1581 gezelter 4174
1582 gezelter 3985 \section{Conclusion}
1583 gezelter 4174 We have presented three efficient real-space methods for computing the
1584 gezelter 4181 interactions between point multipoles. One of these (SP) is a
1585     multipolar generalization of Wolf's method that smoothly shifts
1586     electrostatic energies to zero at the cutoff radius. Two of these
1587     methods (GSF and TSF) also smoothly truncate the forces and torques
1588     (in addition to the energies) at the cutoff radius, making them
1589     attractive for both molecular dynamics and Monte Carlo simulations. We
1590     find that the Gradient-Shifted Force (GSF) and the Shifted-Potential
1591     (SP) methods converge rapidly to the correct lattice energies for
1592     ordered dipolar and quadrupolar arrays, while the Taylor-Shifted Force
1593     (TSF) is too severe an approximation to provide accurate convergence
1594     to lattice energies.
1595 gezelter 3980
1596 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1597     lattice energy constants with reasonably small cutoff radii. The only
1598     exception we have observed is for crystals which exhibit a bulk
1599     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1600     In this particular case, the multipole neutralization scheme can
1601     interfere with the correct computation of the energies. We note that
1602     the energies for these arrangements are typically much larger than for
1603     crystals with net-zero moments, so this is not expected to be an issue
1604     in most simulations.
1605 gezelter 3980
1606 gezelter 4179 The techniques used here to derive the force, torque and energy
1607     expressions can be extended to higher order multipoles, although some
1608     of the objects (e.g. the matrix cross product in
1609     Eq. \ref{eq:matrixCross}) will need to be generalized for higher-rank
1610     tensors. We also note that the definitions of the multipoles used
1611     here are in a primitive form, and these need some care when comparing
1612     with experiment or other computational techniques.
1613    
1614 gezelter 3985 In large systems, these new methods can be made to scale approximately
1615     linearly with system size, and detailed comparisons with the Ewald sum
1616     for a wide range of chemical environments follows in the second paper.
1617 gezelter 3980
1618 gezelter 3906 \begin{acknowledgments}
1619 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1620     Fennell. Support for this project was provided by the National
1621 gezelter 4172 Science Foundation under grant CHE-1362211. Computational time was
1622 gezelter 3985 provided by the Center for Research Computing (CRC) at the
1623     University of Notre Dame.
1624 gezelter 3906 \end{acknowledgments}
1625    
1626 gezelter 3984 \newpage
1627 gezelter 3906 \appendix
1628    
1629 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1630 gezelter 3985 \label{SmithFunc}
1631 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1632     formulas given in his appendix.\cite{Smith98} The first function
1633     $B_0(r)$ is defined by
1634 gezelter 3906 %
1635     \begin{equation}
1636     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1637     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1638     \end{equation}
1639     %
1640     The first derivative of this function is
1641     %
1642     \begin{equation}
1643     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1644     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1645     \end{equation}
1646     %
1647 gezelter 3984 which can be used to define a function $B_1(r)$:
1648 gezelter 3906 %
1649     \begin{equation}
1650     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1651     \end{equation}
1652     %
1653 gezelter 3984 In general, the recurrence relation,
1654 gezelter 3906 \begin{equation}
1655     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1656     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1657     \text{e}^{-{\alpha}^2r^2}
1658 gezelter 3984 \right] ,
1659 gezelter 3906 \end{equation}
1660 gezelter 4183 is very useful for building up higher derivatives. As noted by Smith,
1661     it is possible to approximate the $B_l(r)$ functions,
1662 gezelter 3906 %
1663     \begin{equation}
1664     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1665     +\text{O}(r) .
1666     \end{equation}
1667 gezelter 3984 \newpage
1668     \section{The $r$-dependent factors for TSF electrostatics}
1669 gezelter 4183 \label{radialTSF}
1670 gezelter 3906
1671     Using the shifted damped functions $f_n(r)$ defined by:
1672     %
1673     \begin{equation}
1674 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1675 gezelter 3906 \end{equation}
1676     %
1677 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1678     this Appendix, we provide formulas for successive derivatives of this
1679     function. (If there is no damping, then $B_0(r)$ is replaced by
1680     $1/r$.) First, we find:
1681 gezelter 3906 %
1682     \begin{equation}
1683     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1684     \end{equation}
1685     %
1686 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1687     function, and we define higher-order derivatives as follows:
1688 gezelter 3906 %
1689 gezelter 3984 \begin{align}
1690     g_n(r)=& \frac{d f_n}{d r} =
1691     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1692     h_n(r)=& \frac{d^2f_n}{d r^2} =
1693     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1694     s_n(r)=& \frac{d^3f_n}{d r^3} =
1695     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1696     t_n(r)=& \frac{d^4f_n}{d r^4} =
1697     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1698     u_n(r)=& \frac{d^5f_n}{d r^5} =
1699     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1700     \end{align}
1701 gezelter 3906 %
1702 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1703 gezelter 3906 %
1704     \begin{equation}
1705 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1706 gezelter 3906 \end{equation}
1707 gezelter 3989 % The functions
1708     % needed are listed schematically below:
1709     % %
1710     % \begin{eqnarray}
1711     % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1712     % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1713     % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1714     % s_2 \quad s_3 \quad &s_4 \nonumber \\
1715     % t_3 \quad &t_4 \nonumber \\
1716     % &u_4 \nonumber .
1717     % \end{eqnarray}
1718 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1719 gezelter 3989 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1720     functions, we find
1721 gezelter 3906 %
1722 gezelter 3984 \begin{align}
1723     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1724     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1725     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1726 gezelter 3989 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1727 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1728     \delta_{ \beta \gamma} r_\alpha \right)
1729 gezelter 3989 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1730     & + r_\alpha r_\beta r_\gamma
1731 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1732 gezelter 3989 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1733     r_\gamma \partial r_\delta} =&
1734 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1735     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1736     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1737     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1738 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1739     + \text{5 permutations}
1740 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1741     \right) \nonumber \\
1742 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1743 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1744 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1745 gezelter 3906 \frac{\partial^5 f_n}
1746 gezelter 3989 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1747     r_\delta \partial r_\epsilon} =&
1748 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1749 gezelter 3984 + \text{14 permutations} \right)
1750 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1751 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1752     + \text{9 permutations}
1753 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1754     \right) \nonumber \\
1755 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1756 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1757 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1758     \end{align}
1759 gezelter 3906 %
1760     %
1761     %
1762 gezelter 3984 \newpage
1763     \section{The $r$-dependent factors for GSF electrostatics}
1764 gezelter 4183 \label{radialGSF}
1765 gezelter 3906
1766 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1767 gezelter 4183 and the expansion is carried out on the individual terms in the
1768     multipole interaction energies. For damped charges, this still brings
1769     multiple derivatives of the Smith's $B_0(r)$ function into the
1770     algebra. To denote these terms, we generalize the notation of the
1771     previous appendix. For either $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$
1772     (damped),
1773 gezelter 3906 %
1774 gezelter 3984 \begin{align}
1775 gezelter 4179 g(r) &= \frac{df}{d r} && &&=-\frac{1}{r^2}
1776     &&\mathrm{or~~~} -rB_1(r) \\
1777     h(r) &= \frac{dg}{d r} &&= \frac{d^2f}{d r^2} &&= \frac{2}{r^3} &&\mathrm{or~~~}-B_1(r) + r^2 B_2(r) \\
1778     s(r) &= \frac{dh}{d r} &&= \frac{d^3f}{d r^3} &&=-\frac{6}{r^4}&&\mathrm{or~~~}3rB_2(r) - r^3 B_3(r)\\
1779     t(r) &= \frac{ds}{d r} &&= \frac{d^4f}{d r^4} &&= \frac{24}{r^5} &&\mathrm{or~~~} 3
1780     B_2(r) - 6r^2 B_3(r) + r^4 B_4(r) \\
1781     u(r) &= \frac{dt}{d r} &&= \frac{d^5f}{d r^5} &&=-\frac{120}{r^6} &&\mathrm{or~~~} -15
1782     r B_3(r) + 10 r^3B_4(r) -r^5B_5(r).
1783 gezelter 3984 \end{align}
1784 gezelter 3906 %
1785 gezelter 4179 For undamped charges, Table I lists these derivatives under the Bare
1786     Coulomb column. Equations \ref{eq:b9} to \ref{eq:b13} are still
1787 gezelter 3989 correct for GSF electrostatics if the subscript $n$ is eliminated.
1788 gezelter 3906
1789 gezelter 4172 \newpage
1790    
1791 gezelter 3980 \bibliography{multipole}
1792    
1793 gezelter 3906 \end{document}
1794     %
1795     % ****** End of file multipole.tex ******