ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 4199
Committed: Thu Jul 24 17:40:44 2014 UTC (10 years, 1 month ago) by gezelter
Content type: application/x-tex
File size: 72993 byte(s)
Log Message:
Final edits for resubmission

File Contents

# User Rev Content
1 gezelter 3906 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23 gezelter 3980 aip,jcp,
24 gezelter 3906 amsmath,amssymb,
25     preprint,%
26 gezelter 4172 % reprint,%
27 gezelter 3906 %author-year,%
28     %author-numerical,%
29 gezelter 3984 jcp]{revtex4-1}
30 gezelter 3906
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33 gezelter 3980 %\usepackage{bm}% bold math
34 gezelter 3982 \usepackage{times}
35 gezelter 3980 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37 gezelter 3985 \usepackage{rotating}
38 gezelter 4172
39 gezelter 3906 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40     %\linenumbers\relax % Commence numbering lines
41    
42     \begin{document}
43    
44 gezelter 3988 %\preprint{AIP/123-QED}
45 gezelter 3906
46 gezelter 4198 \title{Real space electrostatics for multipoles. I. Development of methods}
47 gezelter 3906
48     \author{Madan Lamichhane}
49     \affiliation{Department of Physics, University
50     of Notre Dame, Notre Dame, IN 46556}
51    
52     \author{J. Daniel Gezelter}
53     \email{gezelter@nd.edu.}
54     \affiliation{Department of Chemistry and Biochemistry, University
55     of Notre Dame, Notre Dame, IN 46556}
56    
57     \author{Kathie E. Newman}
58     \affiliation{Department of Physics, University
59     of Notre Dame, Notre Dame, IN 46556}
60    
61    
62     \date{\today}% It is always \today, today,
63     % but any date may be explicitly specified
64    
65     \begin{abstract}
66 gezelter 3980 We have extended the original damped-shifted force (DSF)
67 gezelter 4179 electrostatic kernel and have been able to derive three new
68 gezelter 3980 electrostatic potentials for higher-order multipoles that are based
69 gezelter 4179 on truncated Taylor expansions around the cutoff radius. These
70     include a shifted potential (SP) that generalizes the Wolf method
71     for point multipoles, and Taylor-shifted force (TSF) and
72     gradient-shifted force (GSF) potentials that are both
73     generalizations of DSF electrostatics for multipoles. We find that
74     each of the distinct orientational contributions requires a separate
75     radial function to ensure that pairwise energies, forces and torques
76     all vanish at the cutoff radius. In this paper, we present energy,
77     force, and torque expressions for the new models, and compare these
78     real-space interaction models to exact results for ordered arrays of
79     multipoles. We find that the GSF and SP methods converge rapidly to
80     the correct lattice energies for ordered dipolar and quadrupolar
81     arrays, while the Taylor-Shifted Force (TSF) is too severe an
82     approximation to provide accurate convergence to lattice energies.
83     Because real-space methods can be made to scale linearly with system
84 gezelter 4183 size, SP and GSF are attractive options for large Monte
85     Carlo and molecular dynamics simulations, respectively.
86 gezelter 3906 \end{abstract}
87    
88 gezelter 3988 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
89 gezelter 3906 % Classification Scheme.
90 gezelter 3988 %\keywords{Suggested keywords}%Use showkeys class option if keyword
91 gezelter 3906 %display desired
92     \maketitle
93    
94     \section{Introduction}
95 gezelter 3982 There has been increasing interest in real-space methods for
96     calculating electrostatic interactions in computer simulations of
97     condensed molecular
98 gezelter 3980 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
99     The simplest of these techniques was developed by Wolf {\it et al.}
100     in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
101 gezelter 3982 For systems of point charges, Fennell and Gezelter showed that a
102     simple damped shifted force (DSF) modification to Wolf's method could
103     give nearly quantitative agreement with smooth particle mesh Ewald
104     (SPME)\cite{Essmann95} configurational energy differences as well as
105     atomic force and molecular torque vectors.\cite{Fennell:2006zl}
106 gezelter 3906
107 gezelter 3980 The computational efficiency and the accuracy of the DSF method are
108     surprisingly good, particularly for systems with uniform charge
109     density. Additionally, dielectric constants obtained using DSF and
110 gezelter 3986 similar methods where the force vanishes at $r_{c}$ are
111 gezelter 3980 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
112     related methods have now been widely investigated,\cite{Hansen:2012uq}
113 gezelter 3985 and DSF is now used routinely in a diverse set of chemical
114     environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
115     DSF electrostatics provides a compromise between the computational
116     speed of real-space cutoffs and the accuracy of fully-periodic Ewald
117     treatments.
118 gezelter 3906
119 gezelter 3980 One common feature of many coarse-graining approaches, which treat
120     entire molecular subsystems as a single rigid body, is simplification
121     of the electrostatic interactions between these bodies so that fewer
122     site-site interactions are required to compute configurational
123 gezelter 3986 energies. To do this, the interactions between coarse-grained sites
124     are typically taken to be point
125     multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
126 gezelter 3906
127 gezelter 3986 Water, in particular, has been modeled recently with point multipoles
128     up to octupolar
129     order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
130     maximum efficiency, these models require the use of an approximate
131     multipole expansion as the exact multipole expansion can become quite
132     expensive (particularly when handled via the Ewald
133     sum).\cite{Ichiye:2006qy} Point multipoles and multipole
134     polarizability have also been utilized in the AMOEBA water model and
135 gezelter 3980 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
136 gezelter 3906
137 gezelter 3980 Higher-order multipoles present a peculiar issue for molecular
138     dynamics. Multipolar interactions are inherently short-ranged, and
139     should not need the relatively expensive Ewald treatment. However,
140     real-space cutoff methods are normally applied in an orientation-blind
141     fashion so multipoles which leave and then re-enter a cutoff sphere in
142     a different orientation can cause energy discontinuities.
143 gezelter 3906
144 gezelter 3980 This paper outlines an extension of the original DSF electrostatic
145 gezelter 4183 kernel to point multipoles. We describe three distinct real-space
146     interaction models for higher-order multipoles based on truncated
147 gezelter 3982 Taylor expansions that are carried out at the cutoff radius. We are
148 gezelter 4183 calling these models {\bf Taylor-shifted} (TSF), {\bf
149     gradient-shifted} (GSF) and {\bf shifted potential} (SP)
150 gezelter 3982 electrostatics. Because of differences in the initial assumptions,
151 gezelter 4198 the two methods yield related, but distinct expressions for energies,
152 gezelter 4183 forces, and torques.
153 gezelter 3906
154 gezelter 3982 In this paper we outline the new methodology and give functional forms
155     for the energies, forces, and torques up to quadrupole-quadrupole
156     order. We also compare the new methods to analytic energy constants
157 gezelter 3986 for periodic arrays of point multipoles. In the following paper, we
158 gezelter 3985 provide numerical comparisons to Ewald-based electrostatics in common
159     simulation enviornments.
160 gezelter 3982
161 gezelter 3980 \section{Methodology}
162 gezelter 3986 An efficient real-space electrostatic method involves the use of a
163     pair-wise functional form,
164     \begin{equation}
165 gezelter 4198 U = \sum_i \sum_{j>i} U_\mathrm{pair}(\mathbf{r}_{ij}, \mathsf{A}_i, \mathsf{B}_j) +
166 gezelter 4175 \sum_i U_i^\mathrm{self}
167 gezelter 3986 \end{equation}
168     that is short-ranged and easily truncated at a cutoff radius,
169     \begin{equation}
170 gezelter 4198 U_\mathrm{pair}(\mathbf{r}_{ij},\mathsf{A}_i, \mathsf{B}_j) = \left\{
171 gezelter 3986 \begin{array}{ll}
172 gezelter 4198 U_\mathrm{approx} (\mathbf{r}_{ij}, \mathsf{A}_i, \mathsf{B}_j) & \quad \left| \mathbf{r}_{ij} \right| \le r_c \\
173 gezelter 4098 0 & \quad \left| \mathbf{r}_{ij} \right| > r_c ,
174 gezelter 3986 \end{array}
175     \right.
176     \end{equation}
177 gezelter 3989 along with an easily computed self-interaction term ($\sum_i
178 gezelter 4175 U_i^\mathrm{self}$) which scales linearly with the number of
179 gezelter 4198 particles. Here $\mathsf{A}_i$ and $\mathsf{B}_j$ represent orientational
180     coordinates of the two sites (expressed as rotation matrices), and $\mathbf{r}_{ij}$ is the vector
181 gezelter 4098 between the two sites. The computational efficiency, energy
182 gezelter 3986 conservation, and even some physical properties of a simulation can
183 gezelter 4175 depend dramatically on how the $U_\mathrm{approx}$ function behaves at
184 gezelter 3986 the cutoff radius. The goal of any approximation method should be to
185     mimic the real behavior of the electrostatic interactions as closely
186     as possible without sacrificing the near-linear scaling of a cutoff
187     method.
188 gezelter 3906
189 gezelter 3980 \subsection{Self-neutralization, damping, and force-shifting}
190     The DSF and Wolf methods operate by neutralizing the total charge
191     contained within the cutoff sphere surrounding each particle. This is
192     accomplished by shifting the potential functions to generate image
193     charges on the surface of the cutoff sphere for each pair interaction
194 gezelter 4098 computed within $r_c$. Damping using a complementary error function is
195     applied to the potential to accelerate convergence. The interaction
196     for a pair of charges ($C_i$ and $C_j$) in the DSF method,
197 gezelter 3980 \begin{equation*}
198 gezelter 4175 U_\mathrm{DSF}(r_{ij}) = C_i C_j \Biggr{[}
199 gezelter 3980 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
200 gezelter 3986 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
201 gezelter 3980 + \frac{2\alpha}{\pi^{1/2}}
202 gezelter 3986 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
203     \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
204 gezelter 3980 \label{eq:DSFPot}
205     \end{equation*}
206 gezelter 4098 where $\alpha$ is the adjustable damping parameter. Note that in this
207     potential and in all electrostatic quantities that follow, the
208     standard $1/4 \pi \epsilon_{0}$ has been omitted for clarity.
209 gezelter 3980
210     To insure net charge neutrality within each cutoff sphere, an
211     additional ``self'' term is added to the potential. This term is
212     constant (as long as the charges and cutoff radius do not change), and
213     exists outside the normal pair-loop for molecular simulations. It can
214     be thought of as a contribution from a charge opposite in sign, but
215     equal in magnitude, to the central charge, which has been spread out
216     over the surface of the cutoff sphere. A portion of the self term is
217     identical to the self term in the Ewald summation, and comes from the
218     utilization of the complimentary error function for electrostatic
219 gezelter 3986 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
220     extend the Wolf self-neutralization method to zero out the dipole and
221     higher order multipoles contained within the cutoff
222 gezelter 3985 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
223 gezelter 3982
224 gezelter 3985 In this work, we extend the idea of self-neutralization for the point
225     multipoles by insuring net charge-neutrality and net-zero moments
226 gezelter 4198 within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, point dipole
227     $\mathbf{D}_i$ at the center site $i$ is interacting with point dipole
228     $\mathbf{D}_j$ and point quadrupole $\mathsf{Q}_k$. The
229 gezelter 3985 self-neutralization scheme for point multipoles involves projecting
230     opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
231     sphere. There are also significant modifications made to make the
232     forces and torques go smoothly to zero at the cutoff distance.
233 gezelter 3982
234 gezelter 4172 \begin{figure}
235 gezelter 4189 \includegraphics[width=3in]{SM.eps}
236 gezelter 4172 \caption{Reversed multipoles are projected onto the surface of the
237     cutoff sphere. The forces, torques, and potential are then smoothly
238     shifted to zero as the sites leave the cutoff region.}
239     \label{fig:shiftedMultipoles}
240     \end{figure}
241 gezelter 3980
242 gezelter 3986 As in the point-charge approach, there is an additional contribution
243     from self-neutralization of site $i$. The self term for multipoles is
244 gezelter 3982 described in section \ref{sec:selfTerm}.
245 gezelter 3906
246 gezelter 3982 \subsection{The multipole expansion}
247    
248 gezelter 4198 Consider two discrete rigid collections of point charges, denoted as objects
249     $a$ and $b$. In the following, we assume that the two objects
250 gezelter 3982 interact via electrostatics only and describe those interactions in
251     terms of a standard multipole expansion. Putting the origin of the
252 gezelter 4198 coordinate system at the center of mass of $a$, we use vectors
253     $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in
254     $a$. Then the electrostatic potential of object $a$ at
255 gezelter 3980 $\mathbf{r}$ is given by
256 gezelter 3906 \begin{equation}
257 gezelter 4175 \phi_a(\mathbf r) =
258 gezelter 4198 \sum_{k \, \text{in } a} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
259 gezelter 3906 \end{equation}
260 gezelter 3982 The Taylor expansion in $r$ can be written using an implied summation
261     notation. Here Greek indices are used to indicate space coordinates
262     ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
263 gezelter 4198 labeling specific sites for charges in $a$ and $b$ respectively. The
264 gezelter 3982 Taylor expansion,
265 gezelter 3906 \begin{equation}
266     \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
267     \left( 1
268     - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
269     + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
270     \right)
271 gezelter 3982 \frac{1}{r} ,
272 gezelter 3906 \end{equation}
273 gezelter 4198 can then be used to express the electrostatic potential on $a$ in
274 gezelter 3982 terms of multipole operators,
275 gezelter 3906 \begin{equation}
276 gezelter 4198 \phi_a(\mathbf{r}) =M_a \frac{1}{r}
277 gezelter 3906 \end{equation}
278     where
279     \begin{equation}
280 gezelter 4198 M_a = C_a - D_{a\alpha} \frac{\partial}{\partial r_{\alpha}}
281     + Q_{a\alpha\beta}
282 gezelter 3906 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
283     \end{equation}
284 gezelter 4198 Here, the point charge, dipole, and quadrupole for object $a$ are
285     given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively. These are the primitive multipoles
286 gezelter 3982 which can be expressed as a distribution of charges,
287     \begin{align}
288 gezelter 4198 C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
289     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
290     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
291 gezelter 3996 r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
292 gezelter 3982 \end{align}
293     Note that the definition of the primitive quadrupole here differs from
294     the standard traceless form, and contains an additional Taylor-series
295 gezelter 3996 based factor of $1/2$. We are essentially treating the mass
296     distribution with higher priority; the moment of inertia tensor,
297 gezelter 4198 $\mathsf I$, is diagonalized to obtain body-fixed
298 gezelter 3996 axes, and the charge distribution may result in a quadrupole tensor
299     that is not necessarily diagonal in the body frame. Additional
300     reasons for utilizing the primitive quadrupole are discussed in
301     section \ref{sec:damped}.
302 gezelter 3906
303 gezelter 4198 It is convenient to locate charges $q_j$ relative to the center of mass of $b$. Then with $\bf{r}$ pointing from
304     the center of mass of $a$ to the center of mass of $b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $), the interaction energy is given by
305 gezelter 3906 \begin{equation}
306 gezelter 4198 U_{ab}(r)
307     = M_a \sum_{j \, \text{in } b} \frac {q_j}{\vert \mathbf{r}+\mathbf{r}_j \vert} .
308 gezelter 3982 \end{equation}
309     This can also be expanded as a Taylor series in $r$. Using a notation
310 gezelter 4198 similar to before to define the multipoles in object $b$,
311 gezelter 3982 \begin{equation}
312 gezelter 4198 M_b = C_b + D_{b\alpha} \frac{\partial}{\partial r_{\alpha}}
313     + Q_{b\alpha\beta}
314 gezelter 3906 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
315     \end{equation}
316 gezelter 3982 we arrive at the multipole expression for the total interaction energy.
317 gezelter 3906 \begin{equation}
318 gezelter 4198 U_{ab}(r)=M_a M_b \frac{1}{r} \label{kernel}.
319 gezelter 3906 \end{equation}
320 gezelter 3982 This form has the benefit of separating out the energies of
321     interaction into contributions from the charge, dipole, and quadrupole
322 gezelter 4198 of $a$ interacting with the same types of multipoles in $b$.
323 gezelter 3906
324 gezelter 3982 \subsection{Damped Coulomb interactions}
325 gezelter 3996 \label{sec:damped}
326 gezelter 3982 In the standard multipole expansion, one typically uses the bare
327     Coulomb potential, with radial dependence $1/r$, as shown in
328     Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
329     interaction, which results from replacing point charges with Gaussian
330     distributions of charge with width $\alpha$. In damped multipole
331     electrostatics, the kernel ($1/r$) of the expansion is replaced with
332     the function:
333 gezelter 3906 \begin{equation}
334     B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
335     \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
336     \end{equation}
337 gezelter 3982 We develop equations below using the function $f(r)$ to represent
338 gezelter 3986 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
339     bare or damped Coulomb kernels (or any other function) as long as
340     derivatives of these functions are known. Smith's convenient
341 gezelter 4179 functions $B_l(r)$, which are used for derivatives of the damped
342     kernel, are summarized in Appendix A. (N.B. there is one important
343     distinction between the two kernels, which is the behavior of
344     $\nabla^2 \frac{1}{r}$ compared with $\nabla^2 B_0(r)$. The former is
345     zero everywhere except for a delta function evaluated at the origin.
346     The latter also has delta function behavior, but is non-zero for $r
347     \neq 0$. Thus the standard justification for using a traceless
348 gezelter 3996 quadrupole tensor fails for the damped case.)
349 gezelter 3906
350 gezelter 3982 The main goal of this work is to smoothly cut off the interaction
351     energy as well as forces and torques as $r\rightarrow r_c$. To
352     describe how this goal may be met, we use two examples, charge-charge
353 gezelter 3986 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
354     explain the idea.
355 gezelter 3906
356 gezelter 3984 \subsection{Shifted-force methods}
357 gezelter 3982 In the shifted-force approximation, the interaction energy for two
358 gezelter 4198 charges $C_a$ and $C_b$ separated by a distance $r$ is
359 gezelter 3982 written:
360 gezelter 3906 \begin{equation}
361 gezelter 4198 U_{C_aC_b}(r)= C_a C_b
362 gezelter 3906 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
363     \right) .
364     \end{equation}
365 gezelter 3982 Two shifting terms appear in this equations, one from the
366 gezelter 3984 neutralization procedure ($-1/r_c$), and one that causes the first
367     derivative to vanish at the cutoff radius.
368 gezelter 3982
369     Since one derivative of the interaction energy is needed for the
370     force, the minimal perturbation is a term linear in $(r-r_c)$ in the
371     interaction energy, that is:
372 gezelter 3906 \begin{equation}
373     \frac{d\,}{dr}
374     \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
375     \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
376     \right) .
377     \end{equation}
378 gezelter 3985 which clearly vanishes as the $r$ approaches the cutoff radius. There
379     are a number of ways to generalize this derivative shift for
380 gezelter 3984 higher-order multipoles. Below, we present two methods, one based on
381     higher-order Taylor series for $r$ near $r_c$, and the other based on
382     linear shift of the kernel gradients at the cutoff itself.
383 gezelter 3906
384 gezelter 3984 \subsection{Taylor-shifted force (TSF) electrostatics}
385 gezelter 3982 In the Taylor-shifted force (TSF) method, the procedure that we follow
386     is based on a Taylor expansion containing the same number of
387     derivatives required for each force term to vanish at the cutoff. For
388     example, the quadrupole-quadrupole interaction energy requires four
389     derivatives of the kernel, and the force requires one additional
390 gezelter 3986 derivative. For quadrupole-quadrupole interactions, we therefore
391     require shifted energy expressions that include up to $(r-r_c)^5$ so
392     that all energies, forces, and torques are zero as $r \rightarrow
393     r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
394     from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
395     derivatives to be taken when deriving a given multipole energy. We
396     choose a function with guaranteed smooth derivatives -- a truncated
397     Taylor series of the function $f(r)$, e.g.,
398 gezelter 3906 %
399     \begin{equation}
400 gezelter 3984 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
401 gezelter 3906 \end{equation}
402     %
403     The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
404     Thus, for $f(r)=1/r$, we find
405     %
406     \begin{equation}
407     f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
408     \end{equation}
409     %
410 gezelter 4198 Continuing with the example of a charge $a$ interacting with a
411     dipole $b$, we write
412 gezelter 3906 %
413     \begin{equation}
414 gezelter 4198 U_{C_a\mathbf{D}_b}(r)=
415     C_a D_{b\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
416     = C_a D_{b\alpha}
417 gezelter 3906 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
418     \end{equation}
419     %
420 gezelter 4198 The force that dipole $ b$ exerts on charge $a$ is
421 gezelter 3906 %
422     \begin{equation}
423 gezelter 4198 F_{C_a \mathbf{D}_b \beta} = C_a D_{b \alpha}
424 gezelter 3906 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
425     \frac{r_\alpha r_\beta}{r^2}
426     \left( -\frac{1}{r} \frac {\partial} {\partial r}
427     + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
428     \end{equation}
429     %
430 gezelter 3984 For undamped coulombic interactions, $f(r)=1/r$, we find
431 gezelter 3906 %
432     \begin{equation}
433 gezelter 4198 F_{C_a \mathbf{D}_b \beta} =
434     \frac{C_a D_{b\beta}}{r}
435 gezelter 3906 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
436 gezelter 4198 +C_a D_{b \alpha}r_\alpha r_\beta
437 gezelter 3906 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
438     \end{equation}
439     %
440     This expansion shows the expected $1/r^3$ dependence of the force.
441    
442 gezelter 3984 In general, we can write
443 gezelter 3906 %
444     \begin{equation}
445 gezelter 4098 U^{\text{TSF}}= (\text{prefactor}) (\text{derivatives}) f_n(r)
446 gezelter 3906 \label{generic}
447     \end{equation}
448     %
449 gezelter 3985 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
450     charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
451     $n=4$ for quadrupole-quadrupole. For example, in
452     quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
453 gezelter 4198 $Q_{a \alpha\beta}Q_{b \gamma\delta}$, the derivatives are
454 gezelter 3985 $\partial^4/\partial r_\alpha \partial r_\beta \partial
455     r_\gamma \partial r_\delta$, with implied summation combining the
456 gezelter 4183 space indices. Appendix \ref{radialTSF} contains details on the
457     radial functions.
458 gezelter 3906
459 gezelter 3984 In the formulas presented in the tables below, the placeholder
460     function $f(r)$ is used to represent the electrostatic kernel (either
461     damped or undamped). The main functions that go into the force and
462 gezelter 3985 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
463     successive derivatives of the shifted electrostatic kernel, $f_n(r)$
464     of the same index $n$. The algebra required to evaluate energies,
465     forces and torques is somewhat tedious, so only the final forms are
466 gezelter 3986 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
467 gezelter 3996 One of the principal findings of our work is that the individual
468     orientational contributions to the various multipole-multipole
469     interactions must be treated with distinct radial functions, but each
470     of these contributions is independently force shifted at the cutoff
471     radius.
472 gezelter 3906
473 gezelter 3982 \subsection{Gradient-shifted force (GSF) electrostatics}
474 gezelter 3985 The second, and conceptually simpler approach to force-shifting
475     maintains only the linear $(r-r_c)$ term in the truncated Taylor
476     expansion, and has a similar interaction energy for all multipole
477     orders:
478 gezelter 3906 \begin{equation}
479 gezelter 4198 U^{\text{GSF}} = \sum \left[ U(\mathbf{r}, \mathsf{A}, \mathsf{B}) -
480     U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) - (r-r_c)
481     \hat{\mathbf{r}} \cdot \nabla U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) \right]
482 gezelter 3985 \label{generic2}
483 gezelter 3906 \end{equation}
484 gezelter 4183 where $\hat{\mathbf{r}}$ is the unit vector pointing between the two
485     multipoles, and the sum describes a separate force-shifting that is
486     applied to each orientational contribution to the energy. Both the
487     potential and the gradient for force shifting are evaluated for an
488     image multipole projected onto the surface of the cutoff sphere (see
489     fig \ref{fig:shiftedMultipoles}). The image multipole retains the
490 gezelter 4198 orientation (rotation matrix $\mathsf{B}$) of the interacting multipole. No
491 gezelter 3990 higher order terms $(r-r_c)^n$ appear. The primary difference between
492     the TSF and GSF methods is the stage at which the Taylor Series is
493     applied; in the Taylor-shifted approach, it is applied to the kernel
494     itself. In the Gradient-shifted approach, it is applied to individual
495 gezelter 4183 radial interaction terms in the multipole expansion. Energies from
496 gezelter 3990 this method thus have the general form:
497 gezelter 3906 \begin{equation}
498 gezelter 3985 U= \sum (\text{angular factor}) (\text{radial factor}).
499     \label{generic3}
500 gezelter 3906 \end{equation}
501    
502 gezelter 3986 Functional forms for both methods (TSF and GSF) can both be summarized
503 gezelter 4198 using the form of Eq.~\ref{generic3}). The basic forms for the
504 gezelter 3985 energy, force, and torque expressions are tabulated for both shifting
505 gezelter 3986 approaches below -- for each separate orientational contribution, only
506 gezelter 3985 the radial factors differ between the two methods.
507 gezelter 3906
508 gezelter 4179 \subsection{Generalization of the Wolf shifted potential (SP)}
509     It is also possible to formulate an extension of the Wolf approach for
510     multipoles by simply projecting the image multipole onto the surface
511     of the cutoff sphere, and including the interactions with the central
512     multipole and the image. This effectively shifts the pair potential
513     to zero at the cutoff radius,
514     \begin{equation}
515 gezelter 4198 U^{\text{SP}} = \sum \left[ U(\mathbf{r}, \mathsf{A}, \mathsf{B}) -
516     U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) \right]
517 gezelter 4179 \label{eq:SP}
518     \end{equation}
519     independent of the orientations of the two multipoles. The sum again
520     describes separate potential shifting that is applied to each
521     orientational contribution to the energy.
522    
523     The shifted potential (SP) method is a simple truncation of the GSF
524     method for each orientational contribution, leaving out the $(r-r_c)$
525     terms that multiply the gradient. Functional forms for the
526     shifted-potential (SP) method can also be summarized using the form of
527 gezelter 4181 Eq.~\ref{generic3}. The energy, force, and torque expressions are
528 gezelter 4179 tabulated below for all three methods. As in the GSF and TSF methods,
529     for each separate orientational contribution, only the radial factors
530     differ between the SP, GSF, and TSF methods.
531    
532    
533 gezelter 3906 \subsection{\label{sec:level2}Body and space axes}
534 gezelter 4198 Although objects $a$ and $b$ rotate during a molecular
535 gezelter 3989 dynamics (MD) simulation, their multipole tensors remain fixed in
536     body-frame coordinates. While deriving force and torque expressions,
537     it is therefore convenient to write the energies, forces, and torques
538     in intermediate forms involving the vectors of the rotation matrices.
539 gezelter 4198 We denote body axes for objects $a$ and $b$ using unit vectors
540     $\hat{\mathbf{A}}_m$ and $\hat{\mathbf{B}}_m$, respectively, with the index $m=(123)$.
541 gezelter 4179 In a typical simulation, the initial axes are obtained by
542 gezelter 3989 diagonalizing the moment of inertia tensors for the objects. (N.B.,
543     the body axes are generally {\it not} the same as those for which the
544     quadrupole moment is diagonal.) The rotation matrices are then
545     propagated during the simulation.
546 gezelter 3906
547 gezelter 4198 The rotation matrices $\mathsf {A}$ and $\mathsf {B}$ can be
548 gezelter 3985 expressed using these unit vectors:
549 gezelter 3906 \begin{eqnarray}
550 gezelter 4198 \mathsf {A} =
551 gezelter 3906 \begin{pmatrix}
552 gezelter 4198 \hat{\mathbf{A}}_1 \\
553     \hat{\mathbf{A}}_2 \\
554     \hat{\mathbf{A}}_3
555 gezelter 3989 \end{pmatrix}, \qquad
556 gezelter 4198 \mathsf {B} =
557 gezelter 3906 \begin{pmatrix}
558 gezelter 4198 \hat{\mathbf{B}}_1 \\
559     \hat{\mathbf{B}}_2 \\
560     \hat{\mathbf{B}}_3
561 gezelter 3906 \end{pmatrix}
562     \end{eqnarray}
563     %
564 gezelter 3985 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
565 gezelter 3989 coordinates.
566    
567     Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
568     {\em et al.},\cite{Price:1984fk} showed that if the interaction
569 gezelter 4198 energies are written explicitly in terms of $\hat{\mathbf{r}}$ and the body
570     axes ($\hat{\mathbf{A}}_m$, $\hat{\mathbf{B}}_n$) :
571 gezelter 3906 %
572 gezelter 3985 \begin{equation}
573 gezelter 4198 U(r, \{\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}} \},
574     \{\hat{\mathbf{B}}_n\cdot \hat{\mathbf{r}} \},
575     \{\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n \}) .
576 gezelter 3989 \label{ugeneral}
577     \end{equation}
578     %
579     the forces come out relatively cleanly,
580     %
581     \begin{equation}
582 gezelter 4198 \mathbf{F}_a=-\mathbf{F}_b = \nabla U =
583     \frac{\partial U}{\partial \mathbf{r}}
584     = \frac{\partial U}{\partial r} \hat{\mathbf{r}}
585 gezelter 3989 + \sum_m \left[
586 gezelter 4198 \frac{\partial U}{\partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})}
587     \frac { \partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})}{\partial \mathbf{r}}
588     + \frac{\partial U}{\partial (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})}
589     \frac { \partial (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})}{\partial \mathbf{r}}
590 gezelter 3989 \right] \label{forceequation}.
591     \end{equation}
592    
593     The torques can also be found in a relatively similar
594     manner,
595     %
596     \begin{eqnarray}
597 gezelter 4198 \mathbf{\tau}_a =
598 gezelter 3989 \sum_m
599 gezelter 4198 \frac{\partial U}{\partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})}
600     ( \hat{\mathbf{r}} \times \hat{\mathbf{A}}_m )
601 gezelter 3989 -\sum_{mn}
602 gezelter 4198 \frac{\partial U}{\partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)}
603     (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) \\
604 gezelter 3989 %
605 gezelter 4198 \mathbf{\tau}_b =
606 gezelter 3989 \sum_m
607 gezelter 4198 \frac{\partial U}{\partial (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})}
608     ( \hat{\mathbf{r}} \times \hat{\mathbf{B}}_m)
609 gezelter 3989 +\sum_{mn}
610 gezelter 4198 \frac{\partial U}{\partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)}
611     (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) .
612 gezelter 3989 \end{eqnarray}
613    
614 gezelter 4179 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $
615 gezelter 3989 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
616     We also made use of the identities,
617     %
618     \begin{align}
619 gezelter 4198 \frac { \partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})}{\partial \mathbf{r}}
620     =& \frac{1}{r} \left( \hat{\mathbf{A}}_m - (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})\hat{\mathbf{r}}
621 gezelter 3989 \right) \\
622 gezelter 4198 \frac { \partial (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})}{\partial \mathbf{r}}
623     =& \frac{1}{r} \left( \hat{\mathbf{B}}_m - (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})\hat{\mathbf{r}}
624 gezelter 4179 \right).
625 gezelter 3989 \end{align}
626    
627     Many of the multipole contractions required can be written in one of
628 gezelter 4198 three equivalent forms using the unit vectors $\hat{\mathbf{r}}$, $\hat{\mathbf{A}}_m$,
629     and $\hat{\mathbf{B}}_n$. In the torque expressions, it is useful to have the
630 gezelter 3989 angular-dependent terms available in all three fashions, e.g. for the
631     dipole-dipole contraction:
632     %
633     \begin{equation}
634 gezelter 4198 \mathbf{D}_a \cdot \mathbf{D}_b
635     = D_{a \alpha} D_{b \alpha} =
636     \sum_{mn} D_{am} \hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n D_{bn}.
637 gezelter 3985 \end{equation}
638 gezelter 3906 %
639 gezelter 3985 The first two forms are written using space coordinates. The first
640     form is standard in the chemistry literature, while the second is
641     expressed using implied summation notation. The third form shows
642     explicit sums over body indices and the dot products now indicate
643     contractions using space indices.
644 gezelter 3906
645 gezelter 3989 In computing our force and torque expressions, we carried out most of
646     the work in body coordinates, and have transformed the expressions
647     back to space-frame coordinates, which are reported below. Interested
648     readers may consult the supplemental information for this paper for
649 gezelter 4199 the intermediate body-frame expressions.\cite{supplemental}
650 gezelter 3906
651 gezelter 3982 \subsection{The Self-Interaction \label{sec:selfTerm}}
652    
653 gezelter 3985 In addition to cutoff-sphere neutralization, the Wolf
654     summation~\cite{Wolf99} and the damped shifted force (DSF)
655 gezelter 4098 extension~\cite{Fennell:2006zl} also include self-interactions that
656 gezelter 3985 are handled separately from the pairwise interactions between
657     sites. The self-term is normally calculated via a single loop over all
658     sites in the system, and is relatively cheap to evaluate. The
659     self-interaction has contributions from two sources.
660    
661     First, the neutralization procedure within the cutoff radius requires
662     a contribution from a charge opposite in sign, but equal in magnitude,
663     to the central charge, which has been spread out over the surface of
664     the cutoff sphere. For a system of undamped charges, the total
665     self-term is
666 gezelter 3980 \begin{equation}
667 gezelter 4198 U_\textrm{self} = - \frac{1}{r_c} \sum_{a=1}^N C_a^{2}.
668 gezelter 3980 \label{eq:selfTerm}
669     \end{equation}
670 gezelter 3985
671     Second, charge damping with the complementary error function is a
672     partial analogy to the Ewald procedure which splits the interaction
673     into real and reciprocal space sums. The real space sum is retained
674     in the Wolf and DSF methods. The reciprocal space sum is first
675     minimized by folding the largest contribution (the self-interaction)
676     into the self-interaction from charge neutralization of the damped
677     potential. The remainder of the reciprocal space portion is then
678     discarded (as this contributes the largest computational cost and
679     complexity to the Ewald sum). For a system containing only damped
680     charges, the complete self-interaction can be written as
681 gezelter 3980 \begin{equation}
682 gezelter 4175 U_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
683 gezelter 4198 \frac{\alpha}{\sqrt{\pi}} \right)
684     \sum_{a=1}^N
685     C_a^{2}.
686 gezelter 3980 \label{eq:dampSelfTerm}
687     \end{equation}
688    
689     The extension of DSF electrostatics to point multipoles requires
690 gezelter 4183 treatment of the self-neutralization \textit{and} reciprocal
691 gezelter 3980 contributions to the self-interaction for higher order multipoles. In
692     this section we give formulae for these interactions up to quadrupolar
693     order.
694    
695     The self-neutralization term is computed by taking the {\it
696     non-shifted} kernel for each interaction, placing a multipole of
697     equal magnitude (but opposite in polarization) on the surface of the
698     cutoff sphere, and averaging over the surface of the cutoff sphere.
699     Because the self term is carried out as a single sum over sites, the
700     reciprocal-space portion is identical to half of the self-term
701 gezelter 4179 obtained by Smith, and also by Aguado and Madden for the application
702     of the Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a
703     given site which posesses a charge, dipole, and quadrupole, both types
704     of contribution are given in table \ref{tab:tableSelf}.
705 gezelter 3980
706     \begin{table*}
707     \caption{\label{tab:tableSelf} Self-interaction contributions for
708 gezelter 4198 site ($a$) that has a charge $(C_a)$, dipole
709     $(\mathbf{D}_a)$, and quadrupole $(\mathsf{Q}_a)$}.
710 gezelter 3980 \begin{ruledtabular}
711     \begin{tabular}{lccc}
712     Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
713 gezelter 4198 Charge & $C_a^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
714     Dipole & $|\mathbf{D}_a|^2$ & $\frac{1}{3} \left( h(r_c) +
715 gezelter 3980 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
716 gezelter 4198 Quadrupole & $2 \mathsf{Q}_a:\mathsf{Q}_a + \text{Tr}(\mathsf{Q}_a)^2$ &
717 gezelter 3980 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
718     $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
719 gezelter 4198 Charge-Quadrupole & $-2 C_a \text{Tr}(\mathsf{Q}_a)$ & $\frac{1}{3} \left(
720 gezelter 3980 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
721     \end{tabular}
722     \end{ruledtabular}
723     \end{table*}
724    
725     For sites which simultaneously contain charges and quadrupoles, the
726     self-interaction includes a cross-interaction between these two
727     multipole orders. Symmetry prevents the charge-dipole and
728     dipole-quadrupole interactions from contributing to the
729     self-interaction. The functions that go into the self-neutralization
730 gezelter 3985 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
731     derivatives of the electrostatic kernel, $f(r)$ (either the undamped
732     $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
733     have been evaluated at the cutoff distance. For undamped
734     interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
735     damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
736     on. Appendix \ref{SmithFunc} contains recursion relations that allow
737     rapid evaluation of these derivatives.
738 gezelter 3980
739 gezelter 3985 \section{Interaction energies, forces, and torques}
740     The main result of this paper is a set of expressions for the
741     energies, forces and torques (up to quadrupole-quadrupole order) that
742 gezelter 4183 work for the Taylor-shifted, gradient-shifted, and shifted potential
743     approximations. These expressions were derived using a set of generic
744     radial functions. Without using the shifting approximations mentioned
745     above, some of these radial functions would be identical, and the
746     expressions coalesce into the familiar forms for unmodified
747     multipole-multipole interactions. Table \ref{tab:tableenergy} maps
748     between the generic functions and the radial functions derived for the
749     three methods. The energy equations are written in terms of lab-frame
750     representations of the dipoles, quadrupoles, and the unit vector
751     connecting the two objects,
752 gezelter 3906
753     % Energy in space coordinate form ----------------------------------------------------------------------------------------------
754     %
755     %
756     % u ca cb
757     %
758 gezelter 3983 \begin{align}
759 gezelter 4198 U_{C_a C_b}(r)=&
760     C_a C_b v_{01}(r) \label{uchch}
761 gezelter 3983 \\
762 gezelter 3906 %
763     % u ca db
764     %
765 gezelter 4198 U_{C_a \mathbf{D}_b}(r)=&
766     C_a \left( \mathbf{D}_b \cdot \hat{\mathbf{r}} \right) v_{11}(r)
767 gezelter 3906 \label{uchdip}
768 gezelter 3983 \\
769 gezelter 3906 %
770     % u ca qb
771     %
772 gezelter 4198 U_{C_a \mathsf{Q}_b}(r)=& C_a \Bigl[ \text{Tr}\mathsf{Q}_b
773     v_{21}(r) + \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot
774     \hat{\mathbf{r}} \right) v_{22}(r) \Bigr]
775 gezelter 3906 \label{uchquad}
776 gezelter 3983 \\
777 gezelter 3906 %
778     % u da cb
779     %
780 gezelter 3983 %U_{D_{\bf a}C_{\bf b}}(r)=&
781     %-\frac{C_{\bf b}}{4\pi \epsilon_0}
782     %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
783     %\\
784 gezelter 3906 %
785     % u da db
786     %
787 gezelter 4198 U_{\mathbf{D}_a \mathbf{D}_b}(r)=&
788     -\Bigr[ \left( \mathbf{D}_a \cdot
789     \mathbf{D}_b \right) v_{21}(r)
790     +\left( \mathbf{D}_a \cdot \hat{\mathbf{r}} \right)
791     \left( \mathbf{D}_b \cdot \hat{\mathbf{r}} \right)
792 gezelter 3906 v_{22}(r) \Bigr]
793     \label{udipdip}
794 gezelter 3983 \\
795 gezelter 3906 %
796     % u da qb
797     %
798     \begin{split}
799     % 1
800 gezelter 4198 U_{\mathbf{D}_a \mathsf{Q}_b}(r) =&
801 gezelter 3985 -\Bigl[
802 gezelter 4198 \text{Tr}\mathsf{Q}_b
803     \left( \mathbf{D}_a \cdot \hat{\mathbf{r}} \right)
804     +2 ( \mathbf{D}_a \cdot
805     \mathsf{Q}_b \cdot \hat{\mathbf{r}} ) \Bigr] v_{31}(r) \\
806 gezelter 3906 % 2
807 gezelter 4198 &- \left( \mathbf{D}_a \cdot \hat{\mathbf{r}} \right)
808     \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}} \right) v_{32}(r)
809 gezelter 3906 \label{udipquad}
810     \end{split}
811 gezelter 3983 \\
812 gezelter 3906 %
813     % u qa cb
814     %
815 gezelter 3983 %U_{Q_{\bf a}C_{\bf b}}(r)=&
816     %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
817     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
818     %\label{uquadch}
819     %\\
820 gezelter 3906 %
821     % u qa db
822     %
823 gezelter 3983 %\begin{split}
824 gezelter 3906 %1
825 gezelter 3983 %U_{Q_{\bf a}D_{\bf b}}(r)=&
826     %\frac{1}{4\pi \epsilon_0} \Bigl[
827     %\text{Tr}\mathbf{Q}_{\mathbf{a}}
828     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
829     %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
830     %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
831 gezelter 3906 % 2
832 gezelter 3983 %&+\frac{1}{4\pi \epsilon_0}
833     %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
834     %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
835     %\label{uquaddip}
836     %\end{split}
837     %\\
838 gezelter 3906 %
839     % u qa qb
840     %
841     \begin{split}
842     %1
843 gezelter 4198 U_{\mathsf{Q}_a \mathsf{Q}_b}(r)=&
844 gezelter 3985 \Bigl[
845 gezelter 4198 \text{Tr} \mathsf{Q}_a \text{Tr} \mathsf{Q}_b
846 gezelter 3989 +2
847 gezelter 4198 \mathsf{Q}_a : \mathsf{Q}_b \Bigr] v_{41}(r)
848 gezelter 3906 \\
849     % 2
850 gezelter 4198 &+\Bigl[ \text{Tr}\mathsf{Q}_a
851     \left( \hat{\mathbf{r}} \cdot
852     \mathsf{Q}_b \cdot \hat{\mathbf{r}} \right)
853     +\text{Tr}\mathsf{Q}_b
854     \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_a
855     \cdot \hat{\mathbf{r}} \right) +4 (\hat{\mathbf{r}} \cdot
856     \mathsf{Q}_a \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
857 gezelter 3906 \Bigr] v_{42}(r)
858     \\
859     % 4
860 gezelter 3985 &+
861 gezelter 4198 \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}} \right)
862     \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}} \right) v_{43}(r).
863 gezelter 3906 \label{uquadquad}
864     \end{split}
865 gezelter 3983 \end{align}
866 gezelter 3985 %
867 gezelter 4198 Note that the energies of multipoles on site $b$ interacting
868     with those on site $a$ can be obtained by swapping indices
869     along with the sign of the intersite vector, $\hat{\mathbf{r}}$.
870 gezelter 3906
871     %
872     %
873     % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
874     %
875    
876 gezelter 3985 \begin{sidewaystable}
877     \caption{\label{tab:tableenergy}Radial functions used in the energy
878 gezelter 4183 and torque equations. The $f, g, h, s, t, \mathrm{and~} u$
879     functions used in this table are defined in Appendices
880     \ref{radialTSF} and \ref{radialGSF}. The gradient shifted (GSF)
881     functions include the shifted potential (SP)
882     contributions (\textit{cf.} Eqs. \ref{generic2} and
883     \ref{eq:SP}).}
884 gezelter 4177 \begin{tabular}{|c|c|l|l|l|} \hline
885     Generic&Bare Coulomb&Taylor-Shifted (TSF)&Shifted Potential (SP)&Gradient-Shifted (GSF)
886 gezelter 3906 \\ \hline
887     %
888     %
889     %
890     %Ch-Ch&
891     $v_{01}(r)$ &
892     $\frac{1}{r}$ &
893     $f_0(r)$ &
894 gezelter 4177 $f(r)-f(r_c)$ &
895     SP $-(r-r_c)g(r_c)$
896 gezelter 3906 \\
897     %
898     %
899     %
900     %Ch-Di&
901     $v_{11}(r)$ &
902     $-\frac{1}{r^2}$ &
903     $g_1(r)$ &
904 gezelter 4177 $g(r)-g(r_c)$ &
905     SP $-(r-r_c)h(r_c)$ \\
906 gezelter 3906 %
907     %
908     %
909     %Ch-Qu/Di-Di&
910     $v_{21}(r)$ &
911     $-\frac{1}{r^3} $ &
912     $\frac{g_2(r)}{r} $ &
913 gezelter 4177 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c}$ &
914 gezelter 4179 SP $-(r-r_c) \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
915     %
916     %
917     %
918 gezelter 3906 $v_{22}(r)$ &
919     $\frac{3}{r^3} $ &
920     $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
921 gezelter 4179 $\left(-\frac{g(r)}{r}+h(r) \right) -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$
922     & SP $-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
923 gezelter 3906 %
924     %
925     %
926     %Di-Qu &
927     $v_{31}(r)$ &
928     $\frac{3}{r^4} $ &
929     $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
930 gezelter 4179 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r}\right)-\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right)$
931     & SP $-(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
932 gezelter 3906 %
933 gezelter 4179 %
934     %
935 gezelter 3906 $v_{32}(r)$ &
936     $-\frac{15}{r^4} $ &
937     $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
938 gezelter 4179 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)$&
939     SP $-(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}\right.$ \\
940     &&& $~~~-\left(\frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c)\right)$ &
941     $\phantom{SP-(r-r_c)}\left.-\frac{3s(r_c)}{r_c}+t(r_c) \right)$\\
942 gezelter 3906 %
943     %
944     %
945     %Qu-Qu&
946     $v_{41}(r)$ &
947     $\frac{3}{r^5} $ &
948     $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
949 gezelter 4179 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)- \left(-\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ &
950     SP $-(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
951 gezelter 3906 \\
952     % 2
953     $v_{42}(r)$ &
954     $- \frac{15}{r^5} $ &
955     $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
956 gezelter 4179 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)$ &
957     SP$-(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}\right.$ \\
958     &&& $~~~-\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ &
959     $\phantom{SP-(r-r_c)}\left. -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$\\
960 gezelter 3906 % 3
961 gezelter 4179 %
962     %
963 gezelter 3906 $v_{43}(r)$ &
964     $ \frac{105}{r^5} $ &
965     $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
966 gezelter 4179 $ \left(-\frac{15g(r)}{r^3} +\frac{15h(r)}{r^2}-\frac{6s(r)}{r}+t(r)\right) $ &
967     SP $-(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}\right.$\\
968     &&& $~~~-\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c}+ t(r_c)\right)$ &
969     $\phantom{SP-(r-r_c)}\left.+\frac{21s(r_c)}{r_c^2}-\frac{6t(r_c)}{r_c}+u(r_c) \right)$\\
970 gezelter 4177 \hline
971 gezelter 3906 \end{tabular}
972 gezelter 3985 \end{sidewaystable}
973 gezelter 3906 %
974     %
975     % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
976     %
977    
978 gezelter 3985 \begin{sidewaystable}
979 gezelter 4179 \caption{\label{tab:tableFORCE}Radial functions used in the force
980     equations. Gradient shifted (GSF) functions are constructed using the shifted
981     potential (SP) functions. Some of these functions are simple
982     modifications of the functions found in table \ref{tab:tableenergy}}
983     \begin{tabular}{|c|c|l|l|l|} \hline
984     Function&Definition&Taylor-Shifted (TSF)& Shifted Potential (SP)
985     &Gradient-Shifted (GSF)
986 gezelter 3906 \\ \hline
987     %
988     %
989     %
990     $w_a(r)$&
991 gezelter 3985 $\frac{d v_{01}}{dr}$&
992     $g_0(r)$&
993 gezelter 4179 $g(r)$&
994     SP $-g(r_c)$ \\
995 gezelter 3906 %
996     %
997     $w_b(r)$ &
998 gezelter 3985 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
999     $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
1000 gezelter 4179 $h(r) - \frac{v_{11}(r)}{r} $ &
1001     SP $- h(r_c)$ \\
1002 gezelter 3906 %
1003     $w_c(r)$ &
1004 gezelter 3985 $\frac{v_{11}(r)}{r}$ &
1005     $\frac{g_1(r)}{r} $ &
1006 gezelter 4179 $\frac{v_{11}(r)}{r}$&
1007 gezelter 3985 $\frac{v_{11}(r)}{r}$\\
1008 gezelter 3906 %
1009     %
1010     $w_d(r)$&
1011 gezelter 3985 $\frac{d v_{21}}{dr}$&
1012     $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
1013 gezelter 4179 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)$ &
1014     SP $-\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
1015 gezelter 3906 %
1016     $w_e(r)$ &
1017 gezelter 3985 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
1018     $\frac{v_{22}(r)}{r}$ &
1019 gezelter 4179 $\frac{v_{22}(r)}{r}$ &
1020 gezelter 3906 $\frac{v_{22}(r)}{r}$ \\
1021     %
1022     %
1023     $w_f(r)$&
1024 gezelter 3985 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
1025     $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
1026 gezelter 4179 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) -\frac{2v_{22}(r)}{r}$&
1027     SP $- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
1028 gezelter 3906 %
1029     $w_g(r)$&
1030 gezelter 3985 $\frac{v_{31}(r)}{r}$&
1031     $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
1032 gezelter 4179 $\frac{v_{31}(r)}{r}$&
1033 gezelter 3906 $\frac{v_{31}(r)}{r}$\\
1034     %
1035     $w_h(r)$ &
1036 gezelter 3985 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
1037     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1038 gezelter 4179 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) -\frac{v_{31}(r)}{r}$ &
1039     SP $ - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1040 gezelter 3906 % 2
1041     $w_i(r)$ &
1042 gezelter 3985 $\frac{v_{32}(r)}{r}$ &
1043     $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1044 gezelter 4179 $\frac{v_{32}(r)}{r}$&
1045 gezelter 3985 $\frac{v_{32}(r)}{r}$\\
1046 gezelter 3906 %
1047     $w_j(r)$ &
1048 gezelter 3985 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
1049     $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
1050 gezelter 4179 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) -\frac{3v_{32}}{r}$ &
1051     SP $-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
1052     -\frac{3s(r_c)}{r_c} +t(r_c) \right)$ \\
1053 gezelter 3906 %
1054     $w_k(r)$ &
1055 gezelter 3985 $\frac{d v_{41}}{dr} $ &
1056     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1057 gezelter 4179 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}
1058     \right)$ &
1059     SP $-\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
1060 gezelter 3906 %
1061     $w_l(r)$ &
1062 gezelter 3985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
1063     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1064 gezelter 4179 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2}
1065     +\frac{t(r)}{r} \right) -\frac{2v_{42}(r)}{r}$&
1066     SP$-\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)$\\
1067 gezelter 3906 %
1068     $w_m(r)$ &
1069 gezelter 3985 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
1070 gezelter 4179 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} \right.$ &
1071     $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2}\right.$ &
1072     SP $- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}\right.$ \\
1073     && $~~~\left.+ \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$
1074     & $~~~\left. -\frac{6t(r)}{r} +u(r) \right) -\frac{4v_{43}(r)}{r}$ &
1075     $\phantom{SP-} \left.+\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
1076 gezelter 3906 %
1077     $w_n(r)$ &
1078 gezelter 3985 $\frac{v_{42}(r)}{r}$ &
1079     $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1080 gezelter 4179 $\frac{v_{42}(r)}{r}$&
1081 gezelter 3985 $\frac{v_{42}(r)}{r}$\\
1082 gezelter 3906 %
1083     $w_o(r)$ &
1084 gezelter 3985 $\frac{v_{43}(r)}{r}$&
1085     $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1086 gezelter 4179 $\frac{v_{43}(r)}{r}$&
1087 gezelter 3985 $\frac{v_{43}(r)}{r}$ \\ \hline
1088 gezelter 3906 %
1089    
1090     \end{tabular}
1091 gezelter 3985 \end{sidewaystable}
1092 gezelter 3906 %
1093     %
1094     %
1095    
1096     \subsection{Forces}
1097 gezelter 4198 The force on object $a$, $\mathbf{F}_a$, due to object
1098     $b$ is the negative of the force on $b$ due to $a$. For
1099 gezelter 3985 a simple charge-charge interaction, these forces will point along the
1100 gezelter 4198 $\pm \hat{\mathbf{r}}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1101 gezelter 3985 \mathbf{r}_a $. Thus
1102 gezelter 3906 %
1103     \begin{equation}
1104 gezelter 4198 F_{a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_a C_b}}{\partial r}
1105     \quad \text{and} \quad F_{b \alpha}
1106     = - \hat{r}_\alpha \frac{\partial U_{C_a C_b}} {\partial r} .
1107 gezelter 3906 \end{equation}
1108     %
1109 gezelter 3985 We list below the force equations written in terms of lab-frame
1110 gezelter 4183 coordinates. The radial functions used in the three methods are listed
1111 gezelter 3985 in Table \ref{tab:tableFORCE}
1112 gezelter 3906 %
1113 gezelter 3985 %SPACE COORDINATES FORCE EQUATIONS
1114 gezelter 3906 %
1115     % **************************************************************************
1116     % f ca cb
1117     %
1118 gezelter 3985 \begin{align}
1119 gezelter 4198 \mathbf{F}_{a {C_a} {C_b}} =&
1120     C_a C_b w_a(r) \hat{\mathbf{r}} \\
1121 gezelter 3906 %
1122     %
1123     %
1124 gezelter 4198 \mathbf{F}_{a {C_a} {\mathbf{D}_b} } =&
1125     C_a \Bigl[
1126     \left( \hat{\mathbf{r}} \cdot \mathbf{D}_b \right)
1127     w_b(r) \hat{\mathbf{r}}
1128     + \mathbf{D}_b w_c(r) \Bigr] \\
1129 gezelter 3906 %
1130     %
1131     %
1132 gezelter 4198 \mathbf{F}_{a {C_a} {\mathsf{Q}_b}} =&
1133     C_a \Bigr[
1134     \text{Tr}\mathsf{Q}_b w_d(r) \hat{\mathbf{r}}
1135     + 2 \mathsf{Q}_b \cdot \hat{\mathbf{r}} w_e(r)
1136     + \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}
1137     \right) w_f(r) \hat{\mathbf{r}} \Bigr] \\
1138 gezelter 3906 %
1139     %
1140     %
1141 gezelter 3985 % \begin{equation}
1142     % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1143     % -C_{\bf{b}} \Bigl[
1144     % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1145     % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1146     % \end{equation}
1147 gezelter 3906 %
1148     %
1149     %
1150 gezelter 3985 \begin{split}
1151 gezelter 4198 \mathbf{F}_{a \mathbf{D}_a \mathbf{D}_b} =&
1152     - \mathbf{D}_a \cdot \mathbf{D}_b w_d(r) \hat{\mathbf{r}}
1153     + \left( \mathbf{D}_a
1154     \left( \mathbf{D}_b \cdot \hat{\mathbf{r}} \right)
1155     + \mathbf{D}_b \left( \mathbf{D}_a \cdot \hat{\mathbf{r}} \right) \right) w_e(r)\\
1156 gezelter 3906 % 2
1157 gezelter 4198 & - \left( \hat{\mathbf{r}} \cdot \mathbf{D}_a \right)
1158     \left( \hat{\mathbf{r}} \cdot \mathbf{D}_b \right) w_f(r) \hat{\mathbf{r}}
1159 gezelter 3985 \end{split}\\
1160 gezelter 3906 %
1161     %
1162     %
1163     \begin{split}
1164 gezelter 4198 \mathbf{F}_{a \mathbf{D}_a \mathsf{Q}_b} =& - \Bigl[
1165     \text{Tr}\mathsf{Q}_b \mathbf{ D}_a
1166     +2 \mathbf{D}_a \cdot
1167     \mathsf{Q}_b \Bigr] w_g(r)
1168 gezelter 3985 - \Bigl[
1169 gezelter 4198 \text{Tr}\mathsf{Q}_b
1170     \left( \hat{\mathbf{r}} \cdot \mathbf{D}_a \right)
1171     +2 ( \mathbf{D}_a \cdot
1172     \mathsf{Q}_b \cdot \hat{\mathbf{r}}) \Bigr] w_h(r) \hat{\mathbf{r}} \\
1173 gezelter 3906 % 3
1174 gezelter 4198 & - \Bigl[\mathbf{ D}_a (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1175     +2 (\hat{\mathbf{r}} \cdot \mathbf{D}_a ) (\hat{\mathbf{r}} \cdot \mathsf{Q}_b ) \Bigr]
1176 gezelter 3906 w_i(r)
1177     % 4
1178 gezelter 3985 -
1179 gezelter 4198 (\hat{\mathbf{r}} \cdot \mathbf{D}_a )
1180     (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}) w_j(r) \hat{\mathbf{r}} \end{split} \\
1181 gezelter 3906 %
1182     %
1183 gezelter 3985 % \begin{equation}
1184     % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1185     % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1186     % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1187     % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1188     % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1189     % \end{equation}
1190     % %
1191     % \begin{equation}
1192     % \begin{split}
1193     % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1194     % &\frac{1}{4\pi \epsilon_0} \Bigl[
1195     % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1196     % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1197     % % 2
1198     % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1199     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1200     % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1201     % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1202     % % 3
1203     % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1204     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1205     % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1206     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1207     % % 4
1208     % +\frac{1}{4\pi \epsilon_0}
1209     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1210     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1211     % \end{split}
1212     % \end{equation}
1213 gezelter 3906 %
1214     %
1215     %
1216     \begin{split}
1217 gezelter 4198 \mathbf{F}_{a \mathsf{Q}_a \mathsf{Q}_b} =&
1218 gezelter 3985 \Bigl[
1219 gezelter 4198 \text{Tr}\mathsf{Q}_a \text{Tr}\mathsf{Q}_b
1220     + 2 \mathsf{Q}_a : \mathsf{Q}_b \Bigr] w_k(r) \hat{\mathbf{r}} \\
1221 gezelter 3906 % 2
1222 gezelter 3985 &+ \Bigl[
1223 gezelter 4198 2\text{Tr}\mathsf{Q}_b (\hat{\mathbf{r}} \cdot \mathsf{Q}_a )
1224     + 2\text{Tr}\mathsf{Q}_a (\hat{\mathbf{r}} \cdot \mathsf{Q}_b )
1225 gezelter 3906 % 3
1226 gezelter 4198 +4 (\mathsf{Q}_a \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1227     + 4(\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \mathsf{Q}_b) \Bigr] w_n(r) \\
1228 gezelter 3906 % 4
1229 gezelter 3985 &+ \Bigl[
1230 gezelter 4198 \text{Tr}\mathsf{Q}_a (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1231     + \text{Tr}\mathsf{Q}_b
1232     (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1233 gezelter 3906 % 5
1234 gezelter 4198 +4 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot
1235     \mathsf{Q}_b \cdot \hat{\mathbf{r}}) \Bigr] w_l(r) \hat{\mathbf{r}} \\
1236 gezelter 3906 %
1237 gezelter 3985 &+ \Bigl[
1238 gezelter 4198 + 2 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a )
1239     (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1240 gezelter 3906 %6
1241 gezelter 4198 +2 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1242     (\hat{\mathbf{r}} \cdot \mathsf{Q}_b ) \Bigr] w_o(r) \\
1243 gezelter 3906 % 7
1244 gezelter 3985 &+
1245 gezelter 4198 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1246     (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}) w_m(r) \hat{\mathbf{r}} \end{split}
1247 gezelter 3985 \end{align}
1248 gezelter 4198 Note that the forces for higher multipoles on site $a$
1249     interacting with those of lower order on site $b$ can be
1250 gezelter 3985 obtained by swapping indices in the expressions above.
1251    
1252 gezelter 3906 %
1253 gezelter 3985 % Torques SECTION -----------------------------------------------------------------------------------------
1254 gezelter 3906 %
1255     \subsection{Torques}
1256 gezelter 3989
1257 gezelter 3906 %
1258 gezelter 4183 The torques for the three methods are given in space-frame
1259     coordinates:
1260 gezelter 3906 %
1261     %
1262 gezelter 3985 \begin{align}
1263 gezelter 4198 \mathbf{\tau}_{b C_a \mathbf{D}_b} =&
1264     C_a (\hat{\mathbf{r}} \times \mathbf{D}_b) v_{11}(r) \\
1265 gezelter 3906 %
1266     %
1267     %
1268 gezelter 4198 \mathbf{\tau}_{b C_a \mathsf{Q}_b} =&
1269     2C_a
1270     \hat{\mathbf{r}} \times ( \mathsf{Q}_b \cdot \hat{\mathbf{r}}) v_{22}(r) \\
1271 gezelter 3906 %
1272     %
1273     %
1274 gezelter 3985 % \begin{equation}
1275     % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1276     % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1277     % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1278     % \end{equation}
1279 gezelter 3906 %
1280     %
1281     %
1282 gezelter 4198 \mathbf{\tau}_{a \mathbf{D}_a \mathbf{D}_b} =&
1283     \mathbf{D}_a \times \mathbf{D}_b v_{21}(r)
1284 gezelter 3906 % 2
1285 gezelter 3985 -
1286 gezelter 4198 (\hat{\mathbf{r}} \times \mathbf{D}_a )
1287     (\hat{\mathbf{r}} \cdot \mathbf{D}_b ) v_{22}(r)\\
1288 gezelter 3906 %
1289     %
1290     %
1291 gezelter 3985 % \begin{equation}
1292     % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1293     % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1294     % % 2
1295     % +\frac{1}{4\pi \epsilon_0}
1296     % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1297     % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1298     % \end{equation}
1299 gezelter 3906 %
1300     %
1301     %
1302 gezelter 4198 \mathbf{\tau}_{a \mathbf{D}_a \mathsf{Q}_b} =&
1303 gezelter 3985 \Bigl[
1304 gezelter 4198 -\text{Tr}\mathsf{Q}_b
1305     (\hat{\mathbf{r}} \times \mathbf{D}_a )
1306     +2 \mathbf{D}_a \times
1307     (\mathsf{Q}_b \cdot \hat{\mathbf{r}})
1308 gezelter 3906 \Bigr] v_{31}(r)
1309     % 3
1310 gezelter 4198 - (\hat{\mathbf{r}} \times \mathbf{D}_a )
1311     (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}) v_{32}(r)\\
1312 gezelter 3906 %
1313     %
1314     %
1315 gezelter 4198 \mathbf{\tau}_{b \mathbf{D}_a \mathsf{Q}_b} =&
1316 gezelter 3985 \Bigl[
1317 gezelter 4198 +2 ( \mathbf{D}_a \cdot \mathsf{Q}_b ) \times
1318     \hat{\mathbf{r}}
1319     -2 \mathbf{D}_a \times
1320     (\mathsf{Q}_b \cdot \hat{\mathbf{r}})
1321 gezelter 3906 \Bigr] v_{31}(r)
1322     % 2
1323 gezelter 3985 +
1324 gezelter 4198 (\hat{\mathbf{r}} \cdot \mathbf{D}_a)
1325     (\hat{\mathbf{r}} \cdot \mathsf{Q}_b) \times \hat{\mathbf{r}} v_{32}(r)\\
1326 gezelter 3906 %
1327     %
1328     %
1329 gezelter 3985 % \begin{equation}
1330     % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1331     % \frac{1}{4\pi \epsilon_0} \Bigl[
1332     % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1333     % +2 \mathbf{D}_{\mathbf{b}} \times
1334     % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1335     % \Bigr] v_{31}(r)
1336     % % 3
1337     % - \frac{2}{4\pi \epsilon_0}
1338     % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1339     % (\hat{r} \cdot \mathbf
1340     % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1341     % \end{equation}
1342 gezelter 3906 %
1343     %
1344     %
1345 gezelter 3985 % \begin{equation}
1346     % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1347     % \frac{1}{4\pi \epsilon_0} \Bigl[
1348     % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1349     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1350     % +2 \mathbf{D}_{\mathbf{b}} \times
1351     % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1352     % % 2
1353     % +\frac{1}{4\pi \epsilon_0}
1354     % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1355     % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1356     % \end{equation}
1357 gezelter 3906 %
1358     %
1359     %
1360     \begin{split}
1361 gezelter 4198 \mathbf{\tau}_{a \mathsf{Q}_a \mathsf{Q}_b} =&
1362 gezelter 3985 -4
1363 gezelter 4198 \mathsf{Q}_a \times \mathsf{Q}_b
1364 gezelter 3906 v_{41}(r) \\
1365     % 2
1366 gezelter 3985 &+
1367 gezelter 4198 \Bigl[-2\text{Tr}\mathsf{Q}_b
1368     (\hat{\mathbf{r}} \cdot \mathsf{Q}_a ) \times \hat{\mathbf{r}}
1369     +4 \hat{\mathbf{r}} \times
1370     ( \mathsf{Q}_a \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1371 gezelter 3906 % 3
1372 gezelter 4198 -4 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a )\times
1373     ( \mathsf{Q}_b \cdot \hat{\mathbf{r}} ) \Bigr] v_{42}(r) \\
1374 gezelter 3906 % 4
1375 gezelter 3985 &+ 2
1376 gezelter 4198 \hat{\mathbf{r}} \times ( \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1377     (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}) v_{43}(r) \end{split}\\
1378 gezelter 3906 %
1379     %
1380     %
1381     \begin{split}
1382 gezelter 4198 \mathbf{\tau}_{b \mathsf{Q}_a \mathsf{Q}_b} =
1383 gezelter 3985 &4
1384 gezelter 4198 \mathsf{Q}_a \times \mathsf{Q}_b v_{41}(r) \\
1385 gezelter 3906 % 2
1386 gezelter 4198 &+ \Bigl[- 2\text{Tr}\mathsf{Q}_a
1387     (\hat{\mathbf{r}} \cdot \mathsf{Q}_b ) \times \hat{\mathbf{r}}
1388     -4 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot
1389     \mathsf{Q}_b ) \times
1390     \hat{\mathbf{r}}
1391     +4 ( \hat{\mathbf{r}} \cdot \mathsf{Q}_a ) \times
1392     ( \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1393 gezelter 3906 \Bigr] v_{42}(r) \\
1394     % 4
1395 gezelter 3985 &+2
1396 gezelter 4198 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1397     \hat{\mathbf{r}} \times ( \mathsf{Q}_b \cdot \hat{\mathbf{r}}) v_{43}(r)\end{split}
1398 gezelter 3985 \end{align}
1399     %
1400     Here, we have defined the matrix cross product in an identical form
1401     as in Ref. \onlinecite{Smith98}:
1402     \begin{equation}
1403 gezelter 4198 \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
1404     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
1405     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
1406 gezelter 3985 \right]
1407 gezelter 4179 \label{eq:matrixCross}
1408 gezelter 3906 \end{equation}
1409 gezelter 3985 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1410     permuations of the matrix indices.
1411 gezelter 3980
1412 gezelter 3985 All of the radial functions required for torques are identical with
1413     the radial functions previously computed for the interaction energies.
1414 gezelter 4183 These are tabulated for all three methods in table
1415 gezelter 3985 \ref{tab:tableenergy}. The torques for higher multipoles on site
1416 gezelter 4198 $a$ interacting with those of lower order on site
1417     $b$ can be obtained by swapping indices in the expressions
1418 gezelter 3985 above.
1419    
1420 gezelter 3980 \section{Comparison to known multipolar energies}
1421    
1422     To understand how these new real-space multipole methods behave in
1423     computer simulations, it is vital to test against established methods
1424     for computing electrostatic interactions in periodic systems, and to
1425     evaluate the size and sources of any errors that arise from the
1426 gezelter 4183 real-space cutoffs. In this paper we test SP, TSF, and GSF
1427 gezelter 3990 electrostatics against analytical methods for computing the energies
1428     of ordered multipolar arrays. In the following paper, we test the new
1429     methods against the multipolar Ewald sum for computing the energies,
1430     forces and torques for a wide range of typical condensed-phase
1431     (disordered) systems.
1432 gezelter 3980
1433     Because long-range electrostatic effects can be significant in
1434     crystalline materials, ordered multipolar arrays present one of the
1435     biggest challenges for real-space cutoff methods. The dipolar
1436     analogues to the Madelung constants were first worked out by Sauer,
1437     who computed the energies of ordered dipole arrays of zero
1438     magnetization and obtained a number of these constants.\cite{Sauer}
1439     This theory was developed more completely by Luttinger and
1440 gezelter 3986 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1441 gezelter 3990 and other periodic structures.
1442 gezelter 3986
1443 gezelter 3990 To test the new electrostatic methods, we have constructed very large,
1444     $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1445     Ref. \onlinecite{LT}. These structures include ``A'' lattices with
1446     nearest neighbor chains of antiparallel dipoles, as well as ``B''
1447     lattices with nearest neighbor strings of antiparallel dipoles if the
1448     dipoles are contained in a plane perpendicular to the dipole direction
1449     that passes through the dipole. We have also studied the minimum
1450 gezelter 3980 energy structure for the BCC lattice that was found by Luttinger \&
1451 gezelter 4179 Tisza. The total electrostatic energy density for any of the arrays
1452     is given by:
1453 gezelter 3980 \begin{equation}
1454     E = C N^2 \mu^2
1455     \end{equation}
1456 gezelter 3990 where $C$ is the energy constant (equivalent to the Madelung
1457     constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1458     the strength of the dipole. Energy constants (converged to 1 part in
1459 gezelter 4199 $10^9$) are given in the supplemental information.\cite{supplemental}
1460 gezelter 3980
1461 gezelter 4172 \begin{figure}
1462 gezelter 4198 \includegraphics[width=\linewidth]{Dipoles_rcut_threeAlpha.eps}
1463 gezelter 4172 \caption{Convergence of the lattice energy constants as a function of
1464     cutoff radius (normalized by the lattice constant, $a$) for the new
1465     real-space methods. Three dipolar crystal structures were sampled,
1466     and the analytic energy constants for the three lattices are
1467     indicated with grey dashed lines. The left panel shows results for
1468 gezelter 4198 the undamped kernel ($1/r$), while the damped kernel, $B_0(r)$ was
1469     used in the center and right panels.}
1470 gezelter 4172 \label{fig:Dipoles_rCut}
1471     \end{figure}
1472 mlamichh 4163
1473 gezelter 3990 For the purposes of testing the energy expressions and the
1474     self-neutralization schemes, the primary quantity of interest is the
1475     analytic energy constant for the perfect arrays. Convergence to these
1476 gezelter 4198 constants are shown as a function of the cutoff radius, $r_c$, for
1477     three different values of the damping coefficient, $\alpha$ in
1478     Fig.\ref{fig:Dipoles_rCut}. We have simultaneously tested a hard
1479 gezelter 4183 cutoff (where the kernel is simply truncated at the cutoff radius) in
1480     addition to the three new methods.
1481 gezelter 3986
1482 gezelter 4174 The hard cutoff exhibits oscillations around the analytic energy
1483 gezelter 3988 constants, and converges to incorrect energies when the complementary
1484 gezelter 4179 error function damping kernel is used. The shifted potential (SP)
1485     converges to the correct energy smoothly by $r_c = 4.5 a$ even for the
1486 gezelter 4198 undamped case. This indicates that the shifting and the correction
1487     provided by the self term are required for obtaining accurate
1488     energies. The Taylor-shifted force (TSF) approximation appears to
1489     perturb the potential too much inside the cutoff region to provide
1490     accurate measures of the energy constants. GSF is a compromise,
1491     converging to the correct energies within $r_c = 6 a$.
1492 gezelter 4174
1493 gezelter 3986 {\it Quadrupolar} analogues to the Madelung constants were first
1494     worked out by Nagai and Nakamura who computed the energies of selected
1495     quadrupole arrays based on extensions to the Luttinger and Tisza
1496 gezelter 4174 approach.\cite{Nagai01081960,Nagai01091963}
1497 gezelter 3980
1498     In analogy to the dipolar arrays, the total electrostatic energy for
1499     the quadrupolar arrays is:
1500     \begin{equation}
1501 gezelter 3996 E = C N \frac{3\bar{Q}^2}{4a^5}
1502 gezelter 3980 \end{equation}
1503 gezelter 3996 where $a$ is the lattice parameter, and $\bar{Q}$ is the effective
1504     quadrupole moment,
1505     \begin{equation}
1506 gezelter 4198 \bar{Q}^2 = 2 \left(3 \mathsf{Q} : \mathsf{Q} - (\text{Tr} \mathsf{Q})^2 \right)
1507 gezelter 3996 \end{equation}
1508     for the primitive quadrupole as defined in Eq. \ref{eq:quadrupole}.
1509 gezelter 4198 (For the traceless quadrupole tensor, $\mathsf{\Theta} = 3 \mathsf{Q} - \text{Tr} \mathsf{Q}$,
1510     the effective moment, $\bar{Q}^2 = \frac{2}{3} \mathsf{\Theta} : \mathsf{\Theta}$.)
1511 gezelter 3980
1512 gezelter 4174 To test the new electrostatic methods for quadrupoles, we have
1513     constructed very large, $N=$ 8,000~(sc), 16,000~(bcc), and
1514     32,000~(fcc) arrays of linear quadrupoles in the orientations
1515     described in Ref. \onlinecite{Nagai01081960}. We have compared the
1516 gezelter 4179 energy constants for these low-energy configurations for linear
1517     quadrupoles. Convergence to these constants are shown as a function of
1518 gezelter 4198 the cutoff radius, $r_c$, for three different values of the damping
1519     parameter, $\alpha$ in Fig.~\ref{fig:Quadrupoles_rCut}.
1520 gezelter 4174
1521 gezelter 4172 \begin{figure}
1522 gezelter 4198 \includegraphics[width=\linewidth]{Quadrupoles_rcut_threeAlpha.eps}
1523 gezelter 4173 \caption{Convergence of the lattice energy constants as a function of
1524     cutoff radius (normalized by the lattice constant, $a$) for the new
1525 gezelter 4198 real-space methods. Three quadrupolar crystal structures were
1526 gezelter 4173 sampled, and the analytic energy constants for the three lattices
1527 gezelter 4198 are indicated with grey dashed lines. The left panel shows results
1528     for the undamped kernel ($1/r$), while the damped kernel, $B_0(r)$
1529     was used in the center and right panels. Note that for quadrupoles,
1530     $\alpha^* = 0.4$ overdamps contributions from repulsive orientations
1531     in the perfect crystal.}
1532 gezelter 4174 \label{fig:Quadrupoles_rCut}
1533 gezelter 4172 \end{figure}
1534    
1535 gezelter 4174 Again, we find that the hard cutoff exhibits oscillations around the
1536 gezelter 4179 analytic energy constants. The shifted potential (SP) approximation
1537     converges to the correct energy smoothly by $r_c = 3 a$ even for the
1538     undamped case. The Taylor-shifted force (TSF) approximation again
1539     appears to perturb the potential too much inside the cutoff region to
1540     provide accurate measures of the energy constants. GSF again provides
1541     a compromise between the two methods -- energies are converged by $r_c
1542     = 4.5 a$, and the approximation is not as perturbative at short range
1543     as TSF.
1544 gezelter 4172
1545 gezelter 4198 It is also useful to understand the behavior of the lattice energy
1546     constants for different values of the reduced damping parameter
1547     ($\alpha^* = \alpha a$) for the real-space methods. All of the methods
1548     (except for TSF) have excellent behavior for the undamped or
1549 gezelter 4199 weakly-damped cases. Overdamping can cause problems in perfect
1550     crystals for the quadrupoles in particular ({\it cf.} the right panel
1551     in Fig. \ref{fig:Quadrupoles_rCut}). In the perfect crystals, only a
1552     few orientations are being sampled. E.g. in the simple cubic (SC)
1553     lattice of linear quadrupoles aligned in the 111 direction, the
1554     nearest-neighbor quadrupoles only sample 3 distinct orientations
1555     relative to the vector between the sites. The damping alters the
1556     radial function for the direct quadrupolar contraction, $v_{41}(r)$,
1557     differently than the radial functions for the terms involving the
1558     product of the separation vector with the quadrupoles, $v_{42}(r)$ and
1559     $v_{43}(r)$. Because these terms are altered by different amounts by
1560     the complementary error function damping, the effect of damping is
1561     non-spherical for multipoles, and the balance between attractive and
1562     repulsive interactions in the crystal is therefore altered
1563     significantly in overdamped situations.
1564 gezelter 4198
1565 gezelter 4183 In the second paper in the series, we discuss how large values of
1566 gezelter 4198 $\alpha$ can perturb the force and torque vectors, but weakly-damped
1567     electrostatics appear to generate reasonable values for the total
1568     electrostatic energies under both the SP and GSF approximations. We
1569     also discuss the effects that $\alpha$ can have on convergence to the
1570     average electrostatic energies in liquids (which sample a much wider
1571     range of local orientations).
1572 gezelter 4174
1573 gezelter 3985 \section{Conclusion}
1574 gezelter 4174 We have presented three efficient real-space methods for computing the
1575 gezelter 4181 interactions between point multipoles. One of these (SP) is a
1576     multipolar generalization of Wolf's method that smoothly shifts
1577 gezelter 4198 electrostatic energies to zero at the cutoff radius. Two of these
1578 gezelter 4181 methods (GSF and TSF) also smoothly truncate the forces and torques
1579     (in addition to the energies) at the cutoff radius, making them
1580     attractive for both molecular dynamics and Monte Carlo simulations. We
1581     find that the Gradient-Shifted Force (GSF) and the Shifted-Potential
1582     (SP) methods converge rapidly to the correct lattice energies for
1583     ordered dipolar and quadrupolar arrays, while the Taylor-Shifted Force
1584 gezelter 4199 (TSF) is too severe an approximation to provide convergence to lattice
1585     energies within reasonable cutoff radii.
1586 gezelter 3980
1587 gezelter 4199 Although the TSF method appears to perform poorly for the analytical
1588     energy constants, the structure of the radial functions used in the
1589     force and torque expressions in the other two methods would not have
1590     been revealed without first developing the TSF approach. TSF also
1591     generates a set of electrostatic kernels that have multiple
1592     derivatives that vanish at the cutoff radius, a property that is
1593     valuable in estimating dielectric constants using the conducting
1594     boundary fluctuation formula.\cite{Izvekov:2008wo}
1595 gezelter 4198
1596 gezelter 3985 In most cases, GSF can obtain nearly quantitative agreement with the
1597     lattice energy constants with reasonably small cutoff radii. The only
1598     exception we have observed is for crystals which exhibit a bulk
1599     macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1600     In this particular case, the multipole neutralization scheme can
1601     interfere with the correct computation of the energies. We note that
1602     the energies for these arrangements are typically much larger than for
1603     crystals with net-zero moments, so this is not expected to be an issue
1604     in most simulations.
1605 gezelter 3980
1606 gezelter 4199 Relatively weak damping is sufficient to converge to the analytical
1607     energy constants within moderately short cutoff distances. Because
1608     overdamping can present additional issues with higher order
1609     multipoles, our results indicate that the damping coefficient should
1610     be taken as small as possible, and that the {\it undamped} GSF and SP
1611     methods may be the best choice in crystalline systems.
1612    
1613 gezelter 4179 The techniques used here to derive the force, torque and energy
1614     expressions can be extended to higher order multipoles, although some
1615     of the objects (e.g. the matrix cross product in
1616     Eq. \ref{eq:matrixCross}) will need to be generalized for higher-rank
1617     tensors. We also note that the definitions of the multipoles used
1618     here are in a primitive form, and these need some care when comparing
1619     with experiment or other computational techniques.
1620    
1621 gezelter 3985 In large systems, these new methods can be made to scale approximately
1622     linearly with system size, and detailed comparisons with the Ewald sum
1623     for a wide range of chemical environments follows in the second paper.
1624 gezelter 3980
1625 gezelter 3906 \begin{acknowledgments}
1626 gezelter 3985 JDG acknowledges helpful discussions with Christopher
1627     Fennell. Support for this project was provided by the National
1628 gezelter 4172 Science Foundation under grant CHE-1362211. Computational time was
1629 gezelter 3985 provided by the Center for Research Computing (CRC) at the
1630     University of Notre Dame.
1631 gezelter 3906 \end{acknowledgments}
1632    
1633 gezelter 3984 \newpage
1634 gezelter 3906 \appendix
1635    
1636 gezelter 3984 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1637 gezelter 3985 \label{SmithFunc}
1638 gezelter 3984 The following summarizes Smith's $B_l(r)$ functions and includes
1639     formulas given in his appendix.\cite{Smith98} The first function
1640     $B_0(r)$ is defined by
1641 gezelter 3906 %
1642     \begin{equation}
1643 gezelter 4198 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
1644 gezelter 3906 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1645     \end{equation}
1646     %
1647     The first derivative of this function is
1648     %
1649     \begin{equation}
1650     \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1651     -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1652     \end{equation}
1653     %
1654 gezelter 3984 which can be used to define a function $B_1(r)$:
1655 gezelter 3906 %
1656     \begin{equation}
1657     B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1658     \end{equation}
1659     %
1660 gezelter 3984 In general, the recurrence relation,
1661 gezelter 3906 \begin{equation}
1662     B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1663     = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1664     \text{e}^{-{\alpha}^2r^2}
1665 gezelter 3984 \right] ,
1666 gezelter 3906 \end{equation}
1667 gezelter 4183 is very useful for building up higher derivatives. As noted by Smith,
1668     it is possible to approximate the $B_l(r)$ functions,
1669 gezelter 3906 %
1670     \begin{equation}
1671     B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1672     +\text{O}(r) .
1673     \end{equation}
1674 gezelter 3984 \newpage
1675     \section{The $r$-dependent factors for TSF electrostatics}
1676 gezelter 4183 \label{radialTSF}
1677 gezelter 3906
1678     Using the shifted damped functions $f_n(r)$ defined by:
1679     %
1680     \begin{equation}
1681 gezelter 3984 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1682 gezelter 3906 \end{equation}
1683     %
1684 gezelter 3984 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1685     this Appendix, we provide formulas for successive derivatives of this
1686     function. (If there is no damping, then $B_0(r)$ is replaced by
1687     $1/r$.) First, we find:
1688 gezelter 3906 %
1689     \begin{equation}
1690     \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1691     \end{equation}
1692     %
1693 gezelter 3984 This formula clearly brings in derivatives of Smith's $B_0(r)$
1694     function, and we define higher-order derivatives as follows:
1695 gezelter 3906 %
1696 gezelter 3984 \begin{align}
1697     g_n(r)=& \frac{d f_n}{d r} =
1698     B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1699     h_n(r)=& \frac{d^2f_n}{d r^2} =
1700     B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1701     s_n(r)=& \frac{d^3f_n}{d r^3} =
1702     B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1703     t_n(r)=& \frac{d^4f_n}{d r^4} =
1704     B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1705     u_n(r)=& \frac{d^5f_n}{d r^5} =
1706     B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1707     \end{align}
1708 gezelter 3906 %
1709 gezelter 3984 We note that the last function needed (for quadrupole-quadrupole interactions) is
1710 gezelter 3906 %
1711     \begin{equation}
1712 gezelter 3984 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1713 gezelter 3906 \end{equation}
1714 gezelter 3989 % The functions
1715     % needed are listed schematically below:
1716     % %
1717     % \begin{eqnarray}
1718     % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1719     % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1720     % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1721     % s_2 \quad s_3 \quad &s_4 \nonumber \\
1722     % t_3 \quad &t_4 \nonumber \\
1723     % &u_4 \nonumber .
1724     % \end{eqnarray}
1725 gezelter 3984 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1726 gezelter 3989 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1727     functions, we find
1728 gezelter 3906 %
1729 gezelter 3984 \begin{align}
1730     \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1731     \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1732     +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1733 gezelter 3989 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1734 gezelter 3906 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1735     \delta_{ \beta \gamma} r_\alpha \right)
1736 gezelter 3989 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1737     & + r_\alpha r_\beta r_\gamma
1738 gezelter 3984 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1739 gezelter 3989 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1740     r_\gamma \partial r_\delta} =&
1741 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1742     + \delta_{\alpha \gamma} \delta_{\beta \delta}
1743     +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1744     \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1745 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1746     + \text{5 permutations}
1747 gezelter 3906 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1748     \right) \nonumber \\
1749 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta
1750 gezelter 3906 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1751 gezelter 3984 + \frac{t_n}{r^4} \right)\\
1752 gezelter 3906 \frac{\partial^5 f_n}
1753 gezelter 3989 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1754     r_\delta \partial r_\epsilon} =&
1755 gezelter 3906 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1756 gezelter 3984 + \text{14 permutations} \right)
1757 gezelter 3906 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1758 gezelter 3984 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1759     + \text{9 permutations}
1760 gezelter 3906 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1761     \right) \nonumber \\
1762 gezelter 3984 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1763 gezelter 3906 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1764 gezelter 3984 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1765     \end{align}
1766 gezelter 3906 %
1767     %
1768     %
1769 gezelter 3984 \newpage
1770     \section{The $r$-dependent factors for GSF electrostatics}
1771 gezelter 4183 \label{radialGSF}
1772 gezelter 3906
1773 gezelter 3984 In Gradient-shifted force electrostatics, the kernel is not expanded,
1774 gezelter 4183 and the expansion is carried out on the individual terms in the
1775     multipole interaction energies. For damped charges, this still brings
1776     multiple derivatives of the Smith's $B_0(r)$ function into the
1777     algebra. To denote these terms, we generalize the notation of the
1778     previous appendix. For either $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$
1779     (damped),
1780 gezelter 3906 %
1781 gezelter 3984 \begin{align}
1782 gezelter 4179 g(r) &= \frac{df}{d r} && &&=-\frac{1}{r^2}
1783     &&\mathrm{or~~~} -rB_1(r) \\
1784     h(r) &= \frac{dg}{d r} &&= \frac{d^2f}{d r^2} &&= \frac{2}{r^3} &&\mathrm{or~~~}-B_1(r) + r^2 B_2(r) \\
1785     s(r) &= \frac{dh}{d r} &&= \frac{d^3f}{d r^3} &&=-\frac{6}{r^4}&&\mathrm{or~~~}3rB_2(r) - r^3 B_3(r)\\
1786     t(r) &= \frac{ds}{d r} &&= \frac{d^4f}{d r^4} &&= \frac{24}{r^5} &&\mathrm{or~~~} 3
1787     B_2(r) - 6r^2 B_3(r) + r^4 B_4(r) \\
1788     u(r) &= \frac{dt}{d r} &&= \frac{d^5f}{d r^5} &&=-\frac{120}{r^6} &&\mathrm{or~~~} -15
1789     r B_3(r) + 10 r^3B_4(r) -r^5B_5(r).
1790 gezelter 3984 \end{align}
1791 gezelter 3906 %
1792 gezelter 4179 For undamped charges, Table I lists these derivatives under the Bare
1793     Coulomb column. Equations \ref{eq:b9} to \ref{eq:b13} are still
1794 gezelter 3989 correct for GSF electrostatics if the subscript $n$ is eliminated.
1795 gezelter 3906
1796 gezelter 4172 \newpage
1797    
1798 gezelter 3980 \bibliography{multipole}
1799    
1800 gezelter 3906 \end{document}
1801     %
1802     % ****** End of file multipole.tex ******