ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
(Generate patch)

Comparing trunk/multipole/multipole1.tex (file contents):
Revision 3984 by gezelter, Sat Dec 28 18:41:19 2013 UTC vs.
Revision 3985 by gezelter, Tue Dec 31 01:33:31 2013 UTC

# Line 34 | Line 34 | jcp]{revtex4-1}
34   \usepackage{times}
35   \usepackage[version=3]{mhchem}  % this is a great package for formatting chemical reactions
36   \usepackage{url}
37 + \usepackage{rotating}
38  
39   %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40   %\linenumbers\relax % Commence numbering lines
# Line 101 | Line 102 | and DSF is now used routinely in simulations of ionic
102   similar methods where the force vanishes at $R_\textrm{c}$ are
103   essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
104   related methods have now been widely investigated,\cite{Hansen:2012uq}
105 < and DSF is now used routinely in simulations of ionic
106 < liquids,\cite{doi:10.1021/la400226g,McCann:2013fk} flow in carbon
107 < nanotubes,\cite{kannam:094701} gas sorption in metal-organic framework
108 < materials,\cite{Forrest:2012ly} thermal conductivity of methane
109 < hydrates,\cite{English:2008kx} condensation coefficients of
109 < water,\cite{Louden:2013ve} and in tribology at solid-liquid-solid
110 < interfaces.\cite{Tokumasu:2013zr} DSF electrostatics provides a
111 < compromise between the computational speed of real-space cutoffs and
112 < the accuracy of fully-periodic Ewald treatments.
105 > and DSF is now used routinely in a diverse set of chemical
106 > environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
107 > DSF electrostatics provides a compromise between the computational
108 > speed of real-space cutoffs and the accuracy of fully-periodic Ewald
109 > treatments.
110  
114 \subsection{Coarse Graining using Point Multipoles}
111   One common feature of many coarse-graining approaches, which treat
112   entire molecular subsystems as a single rigid body, is simplification
113   of the electrostatic interactions between these bodies so that fewer
114   site-site interactions are required to compute configurational
115 < energies. Notably, the force matching approaches of Voth and coworkers
116 < are an exciting development in their ability to represent realistic
117 < (and {\it reactive}) chemical systems for very large length scales and
118 < long times.  This approach utilized a coarse-graining in interaction
119 < space (CGIS) which fits an effective force for the coarse grained
124 < system using a variational force-matching method to a fine-grained
125 < simulation.\cite{Izvekov:2008wo}
115 > energies.  The coarse-graining approaches of Ren \&
116 > coworkers,\cite{Golubkov06} and Essex \&
117 > coworkers,\cite{ISI:000276097500009,ISI:000298664400012} both utilize
118 > point multipoles to model electrostatics for entire molecules or
119 > functional groups.
120  
127 The coarse-graining approaches of Ren \& coworkers,\cite{Golubkov06}
128 and Essex \&
129 coworkers,\cite{ISI:000276097500009,ISI:000298664400012}
130 both utilize Gay-Berne
131 ellipsoids~\cite{Berne72,Gay81,Luckhurst90,Cleaver96,Berardi98,Ravichandran:1999fk,Berardi99,Pasterny00}
132 to model dispersive interactions and point multipoles to model
133 electrostatics for entire molecules or functional groups.
134
121   Ichiye and coworkers have recently introduced a number of very fast
122   water models based on a ``sticky'' multipole model which are
123   qualitatively better at reproducing the behavior of real water than
124 < the more common point-charge models (SPC/E, TIPnP).  The point charge
125 < models are also substantially more computationally demanding than the
126 < sticky multipole
127 < approach.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The
128 < SSDQO model requires the use of an approximate multipole expansion
129 < (AME) as the exact multipole expansion is quite expensive
144 < (particularly when handled via the Ewald sum).\cite{Ichiye:2006qy}
124 > the more common point-charge models (SPC/E,
125 > TIPnP).\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The SSDQO
126 > model requires the use of an approximate multipole expansion (AME) as
127 > the exact multipole expansion is quite expensive (particularly when
128 > handled via the Ewald sum).\cite{Ichiye:2006qy}
129 >
130   Another particularly important use of point multipoles (and multipole
131   polarizability) is in the very high-quality AMOEBA water model and
132   related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
# Line 154 | Line 139 | kernel to point multipoles.  We have developed two dis
139   a different orientation can cause energy discontinuities.
140  
141   This paper outlines an extension of the original DSF electrostatic
142 < kernel to point multipoles.  We have developed two distinct real-space
142 > kernel to point multipoles.  We describe two distinct real-space
143   interaction models for higher-order multipoles based on two truncated
144   Taylor expansions that are carried out at the cutoff radius.  We are
145   calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
146   electrostatics.  Because of differences in the initial assumptions,
147   the two methods yield related, but different expressions for energies,
148 < forces, and torques.  
148 > forces, and torques.
149  
150   In this paper we outline the new methodology and give functional forms
151   for the energies, forces, and torques up to quadrupole-quadrupole
152   order.  We also compare the new methods to analytic energy constants
153   for periodic arrays of point multipoles.  In the following paper, we
154 < provide extensive numerical comparisons to Ewald-based electrostatics
155 < in common simulation enviornments.  
154 > provide numerical comparisons to Ewald-based electrostatics in common
155 > simulation enviornments.
156  
157   \section{Methodology}
158  
# Line 189 | Line 174 | + \frac{2\alpha}{\pi^{1/2}}
174   \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
175   \label{eq:DSFPot}
176   \end{equation*}
177 + Note that in this potential and in all electrostatic quantities that
178 + follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
179 + clarity.
180  
181   To insure net charge neutrality within each cutoff sphere, an
182   additional ``self'' term is added to the potential. This term is
# Line 199 | Line 187 | damping.\cite{deLeeuw80,Wolf99}
187   over the surface of the cutoff sphere.  A portion of the self term is
188   identical to the self term in the Ewald summation, and comes from the
189   utilization of the complimentary error function for electrostatic
190 < damping.\cite{deLeeuw80,Wolf99}
190 > damping.\cite{deLeeuw80,Wolf99}
191  
192   There have been recent efforts to extend the Wolf self-neutralization
193   method to zero out the dipole and higher order multipoles contained
194   within the cutoff
195 < sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}  
195 > sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
196  
197 < In this work, we will be extending the idea of self-neutralization for
198 < the point multipoles in a similar way.  In Figure
199 < \ref{fig:shiftedMultipoles}, the central dipolar site $\mathbf{D}_i$
200 < is interacting with point dipole $\mathbf{D}_j$ and point quadrupole,
201 < $\mathbf{Q}_k$.  The self-neutralization scheme for point multipoles
202 < involves projecting opposing multipoles for sites $j$ and $k$ on the
203 < surface of the cutoff sphere.
197 > In this work, we extend the idea of self-neutralization for the point
198 > multipoles by insuring net charge-neutrality and net-zero moments
199 > within each cutoff sphere.  In Figure \ref{fig:shiftedMultipoles}, the
200 > central dipolar site $\mathbf{D}_i$ is interacting with point dipole
201 > $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$.  The
202 > self-neutralization scheme for point multipoles involves projecting
203 > opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
204 > sphere.  There are also significant modifications made to make the
205 > forces and torques go smoothly to zero at the cutoff distance.
206  
207   \begin{figure}
208   \includegraphics[width=3in]{SM}
# Line 237 | Line 227 | V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
227   a$.  Then the electrostatic potential of object $\bf a$ at
228   $\mathbf{r}$ is given by
229   \begin{equation}
230 < V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
230 > V_a(\mathbf r) =
231   \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
232   \end{equation}
233   The Taylor expansion in $r$ can be written using an implied summation
# Line 256 | Line 246 | V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M
246   can then be used to express the electrostatic potential on $\bf a$ in
247   terms of multipole operators,
248   \begin{equation}
249 < V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
249 > V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
250   \end{equation}
251   where
252   \begin{equation}
# Line 281 | Line 271 | U_{\bf{ab}}(r)
271   $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
272   \begin{equation}
273   U_{\bf{ab}}(r)
274 < = \frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
274 > = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
275   \end{equation}
276   This can also be expanded as a Taylor series in $r$.  Using a notation
277   similar to before to define the multipoles on object {\bf b},
# Line 292 | Line 282 | U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{
282   \end{equation}
283   we arrive at the multipole expression for the total interaction energy.
284   \begin{equation}
285 < U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r}  \label{kernel}.
285 > U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
286   \end{equation}
287   This form has the benefit of separating out the energies of
288   interaction into contributions from the charge, dipole, and quadrupole
# Line 316 | Line 306 | summarized in Appendix A.
306   these functions are known.  Smith's convenient functions $B_l(r)$ are
307   summarized in Appendix A.
308  
319
309   The main goal of this work is to smoothly cut off the interaction
310   energy as well as forces and torques as $r\rightarrow r_c$.  To
311   describe how this goal may be met, we use two examples, charge-charge
# Line 328 | Line 317 | U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_
317   charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
318   written:
319   \begin{equation}
320 < U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
320 > U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
321   \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2}  }
322   \right) .
323   \end{equation}
# Line 345 | Line 334 | There are a number of ways to generalize this derivati
334   \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
335   \right) .
336   \end{equation}
337 < There are a number of ways to generalize this derivative shift for
337 > which clearly vanishes as the $r$ approaches the cutoff radius. There
338 > are a number of ways to generalize this derivative shift for
339   higher-order multipoles.  Below, we present two methods, one based on
340   higher-order Taylor series for $r$ near $r_c$, and the other based on
341   linear shift of the kernel gradients at the cutoff itself.
# Line 381 | Line 371 | U_{C_{\bf a}D_{\bf b}}(r)=
371   %
372   \begin{equation}
373   U_{C_{\bf a}D_{\bf b}}(r)=
374 < \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}  \frac {\partial f_1(r) }{\partial r_\alpha}
375 < =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}  
374 > C_{\bf a} D_{{\bf b}\alpha}  \frac {\partial f_1(r) }{\partial r_\alpha}
375 > = C_{\bf a} D_{{\bf b}\alpha}
376   \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
377   \end{equation}
378   %
379   The force that dipole  $\bf b$ exerts on charge $\bf a$ is
380   %
381   \begin{equation}
382 < F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
382 > F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
383   \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
384   \frac{r_\alpha r_\beta}{r^2}
385   \left( -\frac{1}{r} \frac {\partial} {\partial r}
# Line 400 | Line 390 | F_{C_{\bf a}D_{\bf b}\beta} =
390   %
391   \begin{equation}
392   F_{C_{\bf a}D_{\bf b}\beta} =
393 < \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
393 > \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
394   \left[  -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
395 < +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
395 > +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
396   \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
397   \end{equation}
398   %
# Line 411 | Line 401 | U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{
401   In general, we can write
402   %
403   \begin{equation}
404 < U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
404 > U= (\text{prefactor}) (\text{derivatives}) f_n(r)
405   \label{generic}
406   \end{equation}
407   %
408 < where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
409 < and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
410 < An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
411 < $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
412 < $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
413 < implied summation combining the space indices.
408 > with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
409 > charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
410 > $n=4$ for quadrupole-quadrupole.  For example, in
411 > quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
412 > $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
413 > $\partial^4/\partial r_\alpha \partial r_\beta \partial
414 > r_\gamma \partial r_\delta$, with implied summation combining the
415 > space indices.
416  
417   In the formulas presented in the tables below, the placeholder
418   function $f(r)$ is used to represent the electrostatic kernel (either
419   damped or undamped).  The main functions that go into the force and
420 < torque terms, $f_n(r), g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$
421 < are successive derivatives of the shifted electrostatic kernel of the
422 < same index $n$.  The algebra required to evaluate energies, forces and
423 < torques is somewhat tedious and are summarized in Appendices A and B.
420 > torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
421 > successive derivatives of the shifted electrostatic kernel, $f_n(r)$
422 > of the same index $n$.  The algebra required to evaluate energies,
423 > forces and torques is somewhat tedious, so only the final forms are
424 > presented in tables XX and YY.
425  
426   \subsection{Gradient-shifted force (GSF) electrostatics}
427 < Note the method used in the previous subsection to smoothly shift the
428 < force to zero is a truncated Taylor Series in the radius $r$.  The
429 < second method maintains only the linear $(r-r_c)$ term and has a
430 < similar interaction energy for all multipole orders:
427 > The second, and conceptually simpler approach to force-shifting
428 > maintains only the linear $(r-r_c)$ term in the truncated Taylor
429 > expansion, and has a similar interaction energy for all multipole
430 > orders:
431   \begin{equation}
432 < U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert  _{r_c} .
432 > U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
433 > \lvert  _{r_c} .
434 > \label{generic2}
435   \end{equation}
436 < No higher order terms $(r-r_c)^n$ appear.  The primary difference
437 < between the TSF and GSF methods is the stage at which the Taylor
438 < Series is applied; in the Taylor-shifted approach, it is applied to
439 < the kernel itself.  In the Gradient-shifted approach, it is applied to
440 < individual radial interactions terms in the multipole expansion.
441 < Terms from this method thus have the general form:
436 > Here the gradient for force shifting is evaluated for an image
437 > multipole on the surface of the cutoff sphere (see fig
438 > \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
439 > appear.  The primary difference between the TSF and GSF methods is the
440 > stage at which the Taylor Series is applied; in the Taylor-shifted
441 > approach, it is applied to the kernel itself.  In the Gradient-shifted
442 > approach, it is applied to individual radial interactions terms in the
443 > multipole expansion.  Energies from this method thus have the general
444 > form:
445   \begin{equation}
446 < U=\frac{1}{4\pi \epsilon_0}\sum  (\text{angular factor}) (\text{radial factor}).
447 < \label{generic2}
446 > U= \sum  (\text{angular factor}) (\text{radial factor}).
447 > \label{generic3}
448   \end{equation}
449  
450 < Results for both methods can be summarized using the form of
451 < Eq.~(\ref{generic2}) and are listed in Table I below.
450 > Functional forms for both methods (TSF and GSF) can be summarized
451 > using the form of Eq.~(\ref{generic3}).  The basic forms for the
452 > energy, force, and torque expressions are tabulated for both shifting
453 > approaches below - for each separate orientational contribution, only
454 > the radial factors differ between the two methods.
455  
456   \subsection{\label{sec:level2}Body and space axes}
457  
458 + [XXX Do we need this section in the main paper? or should it go in the
459 + extra materials?]
460 +
461   So far, all energies and forces have been written in terms of fixed
462 < space coordinates $x$, $y$, $z$.  Interaction energies are computed
463 < from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2})
464 < which combine prefactors with radial functions.  Because objects $\bf
462 > space coordinates.  Interaction energies are computed from the generic
463 > formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which combine
464 > orientational prefactors with radial functions.  Because objects $\bf
465   a$ and $\bf b$ both translate and rotate during a molecular dynamics
466   (MD) simulation, it is desirable to contract all $r$-dependent terms
467   with dipole and quadrupole moments expressed in terms of their body
468 < axes.  To do so, we follow the methodology of Allen and
469 < Germano,\cite{Allen:2006fk} which was itself based on an earlier paper
470 < by Price {\em et al.}\cite{Price:1984fk}
468 > axes.  To do so, we have followed the methodology of Allen and
469 > Germano,\cite{Allen:2006fk} which was itself based on earlier work by
470 > Price {\em et al.}\cite{Price:1984fk}
471  
472   We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
473   $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
# Line 475 | Line 479 | Allen and Germano define matrices $\hat{\mathbf {a}}$
479   \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z}  \\
480   \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z}  .
481   \end{eqnarray}
482 < Allen and Germano define matrices $\hat{\mathbf {a}}$
483 < and  $\hat{\mathbf {b}}$ using these unit vectors:
482 > Rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
483 > expressed using these unit vectors:
484   \begin{eqnarray}
485   \hat{\mathbf {a}} =
486   \begin{pmatrix}
# Line 498 | Line 502 | b_{1x}\quad  b_{1y} \quad b_{1z} \\
502   \end{pmatrix}
503   =
504   \begin{pmatrix}
505 < b_{1x}\quad  b_{1y} \quad b_{1z} \\
505 > b_{1x} \quad  b_{1y} \quad b_{1z} \\
506   b_{2x} \quad b_{2y} \quad b_{2z} \\
507   b_{3x} \quad b_{3y} \quad b_{3z}
508   \end{pmatrix}  .
509   \end{eqnarray}
510   %
511 < These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
512 < All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
513 < It proves to be equally convenient to just write any contraction in terms of unit vectors
514 < $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.  
515 < We have found it useful to write angular-dependent terms in three different fashions,
516 < illustrated by the following
517 < three examples from the interaction-energy expressions:
511 > These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
512 > coordinates.  All contractions of prefactors with derivatives of
513 > functions can be written in terms of these matrices. It proves to be
514 > equally convenient to just write any contraction in terms of unit
515 > vectors $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. In the torque
516 > expressions, it is useful to have the angular-dependent terms
517 > available in three different fashions, e.g. for the dipole-dipole
518 > contraction:
519   %
520 < \begin{eqnarray}
520 > \begin{equation}
521   \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
522 < =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
523 < \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
524 < r^2 \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
520 < r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
521 < \sum_{mn}(\hat{r} \cdot \hat{b}_m)  Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
522 < r ( \mathbf{D}_{\mathbf{a}} \cdot
523 < \mathbf{Q}_{\mathbf{b}}  \cdot \hat{r})=
524 < D_{\bf {a}\alpha}  Q_{\bf b \alpha \beta} r_\beta
525 < =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
526 < (\hat{b}_n \cdot \hat{r}) .
527 < \end{eqnarray}
522 > = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
523 > \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
524 > \end{equation}
525   %
526 < [Dan, perhaps there are better examples to show here.]
526 > The first two forms are written using space coordinates.  The first
527 > form is standard in the chemistry literature, while the second is
528 > expressed using implied summation notation.  The third form shows
529 > explicit sums over body indices and the dot products now indicate
530 > contractions using space indices.
531  
531 In each line, the first two terms are written using space coordinates.  The first form is standard
532 in the chemistry literature, and the second is ``physicist style'' using implied summation notation.  The third
533 form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
534 We find the first form to be useful in writing equations prior to converting to computer code.  The second form is helpful
535 in derivations of the interaction energy expressions.  The third one is specifically helpful when deriving forces and torques, as will
536 be discussed below.  
532  
538
533   \subsection{The Self-Interaction \label{sec:selfTerm}}
534  
535 < The Wolf summation~\cite{Wolf99} and the later damped shifted force
536 < (DSF) extension~\cite{Fennell06} included self-interactions that are
537 < handled separately from the pairwise interactions between sites. The
538 < self-term is normally calculated via a single loop over all sites in
539 < the system, and is relatively cheap to evaluate. The self-interaction
540 < has contributions from two sources:
541 < \begin{itemize}
542 < \item The neutralization procedure within the cutoff radius requires a
543 <  contribution from a charge opposite in sign, but equal in magnitude,
544 <  to the central charge, which has been spread out over the surface of
545 <  the cutoff sphere.  For a system of undamped charges, the total
546 <  self-term is
535 > In addition to cutoff-sphere neutralization, the Wolf
536 > summation~\cite{Wolf99} and the damped shifted force (DSF)
537 > extension~\cite{Fennell:2006zl} also included self-interactions that
538 > are handled separately from the pairwise interactions between
539 > sites. The self-term is normally calculated via a single loop over all
540 > sites in the system, and is relatively cheap to evaluate. The
541 > self-interaction has contributions from two sources.
542 >
543 > First, the neutralization procedure within the cutoff radius requires
544 > a contribution from a charge opposite in sign, but equal in magnitude,
545 > to the central charge, which has been spread out over the surface of
546 > the cutoff sphere.  For a system of undamped charges, the total
547 > self-term is
548   \begin{equation}
549   V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
550   \label{eq:selfTerm}
551   \end{equation}
552 < Note that in this potential and in all electrostatic quantities that
553 < follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
554 < clarity.
555 < \item Charge damping with the complementary error function is a
556 <  partial analogy to the Ewald procedure which splits the interaction
557 <  into real and reciprocal space sums.  The real space sum is retained
558 <  in the Wolf and DSF methods.  The reciprocal space sum is first
559 <  minimized by folding the largest contribution (the self-interaction)
560 <  into the self-interaction from charge neutralization of the damped
561 <  potential.  The remainder of the reciprocal space portion is then
562 <  discarded (as this contributes the largest computational cost and
568 <  complexity to the Ewald sum).  For a system containing only damped
569 <  charges, the complete self-interaction can be written as
552 >
553 > Second, charge damping with the complementary error function is a
554 > partial analogy to the Ewald procedure which splits the interaction
555 > into real and reciprocal space sums.  The real space sum is retained
556 > in the Wolf and DSF methods.  The reciprocal space sum is first
557 > minimized by folding the largest contribution (the self-interaction)
558 > into the self-interaction from charge neutralization of the damped
559 > potential.  The remainder of the reciprocal space portion is then
560 > discarded (as this contributes the largest computational cost and
561 > complexity to the Ewald sum).  For a system containing only damped
562 > charges, the complete self-interaction can be written as
563   \begin{equation}
564   V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
565    \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
566        C_{\bf a}^{2}.
567   \label{eq:dampSelfTerm}
568   \end{equation}
576 \end{itemize}
569  
570   The extension of DSF electrostatics to point multipoles requires
571   treatment of {\it both} the self-neutralization and reciprocal
# Line 616 | Line 608 | terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ a
608   multipole orders.  Symmetry prevents the charge-dipole and
609   dipole-quadrupole interactions from contributing to the
610   self-interaction.  The functions that go into the self-neutralization
611 < terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
612 < derivatives of the electrostatic kernel (either the undamped $1/r$ or
613 < the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that are
614 < evaluated at the cutoff distance.  For undamped interactions, $f(r_c)
615 < = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on.  For damped interactions,
616 < $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so on.  Appendix XX
617 < contains recursion relations that allow rapid evaluation of these
618 < derivatives.
611 > terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
612 > derivatives of the electrostatic kernel, $f(r)$ (either the undamped
613 > $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
614 > have been evaluated at the cutoff distance.  For undamped
615 > interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on.  For
616 > damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
617 > on.  Appendix \ref{SmithFunc} contains recursion relations that allow
618 > rapid evaluation of these derivatives.
619  
620 < \section{Energies, forces, and torques}
621 < \subsection{Interaction energies}
620 > \section{Interaction energies, forces, and torques}
621 > The main result of this paper is a set of expressions for the
622 > energies, forces and torques (up to quadrupole-quadrupole order) that
623 > work for both the Taylor-shifted and Gradient-shifted approximations.
624 > These expressions were derived using a set of generic radial
625 > functions.  Without using the shifting approximations mentioned above,
626 > some of these radial functions would be identical, and the expressions
627 > coalesce into the familiar forms for unmodified multipole-multipole
628 > interactions.  Table \ref{tab:tableenergy} maps between the generic
629 > functions and the radial functions derived for both the Taylor-shifted
630 > and Gradient-shifted methods.  The energy equations are written in
631 > terms of lab-frame representations of the dipoles, quadrupoles, and
632 > the unit vector connecting the two objects,
633  
631 We now list multipole interaction energies using a set of generic
632 radial functions.  Table \ref{tab:tableenergy} maps between the
633 generic functions and the radial functions derived for both the
634 Taylor-shifted and Gradient-shifted methods.  This set of equations is
635 written in terms of space coordinates:
636
634   % Energy in space coordinate form ----------------------------------------------------------------------------------------------
635   %
636   %
# Line 641 | Line 638 | U_{C_{\bf a}C_{\bf b}}(r)=&
638   %
639   \begin{align}
640   U_{C_{\bf a}C_{\bf b}}(r)=&
641 < \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  v_{01}(r)  \label{uchch}
641 > C_{\bf a} C_{\bf b}  v_{01}(r)  \label{uchch}
642   \\
643   %
644   % u ca db
645   %
646   U_{C_{\bf a}D_{\bf b}}(r)=&
647 < \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)  v_{11}(r)  
647 > C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)  v_{11}(r)  
648   \label{uchdip}
649   \\
650   %
651   % u ca qb
652   %
653 < U_{C_{\bf a}Q_{\bf b}}(r)=&
654 < \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
655 < \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
653 > U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
654 > v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
655 >  \hat{r} \right) v_{22}(r) \Bigr]
656   \label{uchquad}
657   \\
658   %
# Line 669 | Line 666 | -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\
666   % u da db
667   %
668   U_{D_{\bf a}D_{\bf b}}(r)=&
669 < -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
669 > -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
670   \mathbf{D}_{\mathbf{b}} \right)  v_{21}(r)
671   +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
672   \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)  
# Line 682 | Line 679 | -\frac{1}{4\pi \epsilon_0} \Bigl[
679   \begin{split}
680   % 1
681   U_{D_{\bf a}Q_{\bf b}}(r) =&
682 < -\frac{1}{4\pi \epsilon_0} \Bigl[
682 > -\Bigl[
683   \text{Tr}\mathbf{Q}_{\mathbf{b}}
684   \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
685   +2 ( \mathbf{D}_{\mathbf{a}} \cdot
686   \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
687   % 2
688 < &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
688 > &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
689   \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
690   \label{udipquad}
691   \end{split}
# Line 725 | Line 722 | U_{Q_{\bf a}Q_{\bf b}}(r)=&
722   \begin{split}
723   %1
724   U_{Q_{\bf a}Q_{\bf b}}(r)=&
725 < \frac{1}{4\pi \epsilon_0} \Bigl[
725 > \Bigl[
726   \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
727   +2 \text{Tr} \left(
728   \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
729   \\
730   % 2
731 < &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
731 > &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
732   \left( \hat{r} \cdot
733   \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
734   +\text{Tr}\mathbf{Q}_{\mathbf{b}}
# Line 741 | Line 738 | +\text{Tr}\mathbf{Q}_{\mathbf{b}}
738   \Bigr] v_{42}(r)
739   \\
740   % 4
741 < &+ \frac{1}{4\pi \epsilon_0}
741 > &+
742   \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
743   \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}}  \cdot \hat{r} \right) v_{43}(r).
744   \label{uquadquad}
745   \end{split}
746   \end{align}
747 <
747 > %
748   Note that the energies of multipoles on site $\mathbf{b}$ interacting
749   with those on site $\mathbf{a}$ can be obtained by swapping indices
750   along with the sign of the intersite vector, $\hat{r}$.
# Line 757 | Line 754 | along with the sign of the intersite vector, $\hat{r}$
754   % TABLE of radial functions  ----------------------------------------------------------------------------------------------------------------
755   %
756  
757 < \begin{table*}
758 < \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations.  Functions
759 < used in this table are defined in Appendices B and C.}
760 < \begin{ruledtabular}
761 < \begin{tabular}{|l|c|l|l}
762 < Generic&Coulomb&Taylor-Shifted&Gradient-Shifted
757 > \begin{sidewaystable}
758 >  \caption{\label{tab:tableenergy}Radial functions used in the energy
759 >    and torque equations.  The $f, g, h, s, t, \mathrm{and} u$
760 >    functions used in this table are defined in Appendices B and C.}
761 > \begin{tabular}{|c|c|l|l|} \hline
762 > Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
763   \\ \hline
764   %
765   %
# Line 794 | Line 791 | -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
791   $\frac{3}{r^3}  $ &
792   $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
793   $\left(-\frac{g(r)}{r}+h(r) \right)
794 < -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
795 < &&&$  -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
794 > -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$  \\
795 > &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
796   \\
797   %
798   %
# Line 806 | Line 803 | -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right
803   $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
804   $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
805   -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
806 < &&&$  -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
806 > &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
807   \\
808   %
809   $v_{32}(r)$ &
# Line 814 | Line 811 | - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} +
811   $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
812   $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
813   - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
814 < &&&$  -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
814 > &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
815   \\
816   %
817   %
# Line 825 | Line 822 | - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2}
822   $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $  &
823   $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
824   - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
825 < &&&$  -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
825 > &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
826   \\
827   % 2
828   $v_{42}(r)$ &
# Line 833 | Line 830 | -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+
830   $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
831   $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
832   -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
833 < &&&$  -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
833 > &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
834   -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
835   \\
836   % 3
# Line 841 | Line 838 | $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s
838   $ \frac{105}{r^5}  $ &
839   $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
840   $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
841 < &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
842 < &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
843 < -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
841 > &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
842 > &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
843 > -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
844   \end{tabular}
845 < \end{ruledtabular}
849 < \end{table*}
845 > \end{sidewaystable}
846   %
847   %
848   % FORCE  TABLE of radial functions  ----------------------------------------------------------------------------------------------------------------
849   %
850  
851 < \begin{table}
851 > \begin{sidewaystable}
852   \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
853 < \begin{ruledtabular}
854 < \begin{tabular}{cc}
859 < Generic&Method 1 or Method 2
853 > \begin{tabular}{|c|c|l|l|} \hline
854 > Function&Definition&Taylor-Shifted&Gradient-Shifted
855   \\ \hline
856   %
857   %
858   %
859   $w_a(r)$&
860 < $\frac{d v_{01}}{dr}$ \\
860 > $\frac{d v_{01}}{dr}$&
861 > $g_0(r)$&
862 > $g(r)-g(r_c)$ \\
863   %
864   %
865   $w_b(r)$ &
866 < $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
866 > $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
867 > $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
868 > $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
869   %
870   $w_c(r)$ &
871 < $\frac{v_{11}(r)}{r}$ \\
871 > $\frac{v_{11}(r)}{r}$ &
872 > $\frac{g_1(r)}{r} $ &
873 > $\frac{v_{11}(r)}{r}$\\
874   %
875   %
876   $w_d(r)$&
877 < $\frac{d v_{21}}{dr}$ \\
877 > $\frac{d v_{21}}{dr}$&
878 > $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
879 > $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
880 > -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
881   %
882   $w_e(r)$ &
883 + $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
884 + $\frac{v_{22}(r)}{r}$ &
885   $\frac{v_{22}(r)}{r}$ \\
886   %
887   %
888   $w_f(r)$&
889 < $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
889 > $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
890 > $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
891 >  $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $  \\
892 >  &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
893 >     \right)-\frac{2v_{22}(r)}{r}$\\
894   %
895   $w_g(r)$&
896 + $\frac{v_{31}(r)}{r}$&
897 + $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
898   $\frac{v_{31}(r)}{r}$\\
899   %
900   $w_h(r)$ &
901 < $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
901 > $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
902 > $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
903 > $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
904 > &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
905   % 2
906   $w_i(r)$ &
907 < $\frac{v_{32}(r)}{r}$ \\
907 > $\frac{v_{32}(r)}{r}$ &
908 > $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
909 > $\frac{v_{32}(r)}{r}$\\
910   %
911   $w_j(r)$ &
912 < $\frac{d v_{32}}{dr}  - \frac{3v_{32}}{r}$ \\
912 > $\frac{d v_{32}}{dr}  - \frac{3v_{32}}{r}$&
913 > $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right)  $ &
914 > $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
915 > &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
916 >  -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
917   %
918   $w_k(r)$ &
919 < $\frac{d v_{41}}{dr} $  \\
919 > $\frac{d v_{41}}{dr} $ &
920 > $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
921 > $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}  \right)
922 > -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2}  \right)$ \\
923   %
924   $w_l(r)$ &
925 < $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
925 > $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
926 > $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
927 > $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
928 > &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
929 > -\frac{2v_{42}(r)}{r}$\\
930   %
931   $w_m(r)$ &
932 < $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
932 > $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
933 > $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
934 > $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
935 > &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
936 > +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
937 > &&& $~~~-\frac{4v_{43}(r)}{r}$  \\
938   %
939   $w_n(r)$ &
940 < $\frac{v_{42}(r)}{r}$ \\
940 > $\frac{v_{42}(r)}{r}$ &
941 > $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
942 > $\frac{v_{42}(r)}{r}$\\
943   %
944   $w_o(r)$ &
945 < $\frac{v_{43}(r)}{r}$ \\
945 > $\frac{v_{43}(r)}{r}$&
946 > $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
947 > $\frac{v_{43}(r)}{r}$  \\ \hline
948   %
949  
950   \end{tabular}
951 < \end{ruledtabular}
915 < \end{table}
951 > \end{sidewaystable}
952   %
953   %
954   %
955  
956   \subsection{Forces}
957 <
958 < The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
959 < the force  $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$.  For a simple charge-charge
960 < interaction, these forces will point along the $\pm \hat{r}$ directions, where
961 < $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $.  Thus
957 > The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
958 > $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
959 > a simple charge-charge interaction, these forces will point along the
960 > $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
961 > \mathbf{r}_a $.  Thus
962   %
963   \begin{equation}
964   F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
# Line 930 | Line 966 | The concept of obtaining a force from an energy by tak
966   = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r}  .
967   \end{equation}
968   %
969 < The concept of obtaining a force from an energy by taking a gradient is the same for
970 < higher-order multipole interactions, the trick is to make sure that all
971 < $r$-dependent derivatives are considered.
972 < As is pointed out by Allen and Germano,\cite{Allen:2006fk} this is straightforward if the
973 < interaction energies are written recognizing explicit
974 < $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
969 > Obtaining the force from the interaction energy expressions is the
970 > same for higher-order multipole interactions -- the trick is to make
971 > sure that all $r$-dependent derivatives are considered.  This is
972 > straighforward if the interaction energies are written explicitly in
973 > terms of $\hat{r}$ and the body axes ($\hat{a}_m$,
974 > $\hat{b}_n$) :
975   %
976   \begin{equation}
977   U(r,\{\hat{a}_m \cdot \hat{r} \},
978 < \{\hat{b}_n\cdot \hat{r} \}
978 > \{\hat{b}_n\cdot \hat{r} \},
979   \{\hat{a}_m \cdot \hat{b}_n \}) .
980   \label{ugeneral}
981   \end{equation}
982   %
983 < Then,
983 > Allen and Germano,\cite{Allen:2006fk} showed that if the energy is
984 > written in this form, the forces come out relatively cleanly,
985   %
986   \begin{equation}
987   \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} =  \frac{\partial U}{\partial \mathbf{r}}
# Line 957 | Line 994 | Note our definition of $\mathbf{r}=\mathbf{r}_b - \mat
994   \right] \label{forceequation}.
995   \end{equation}
996   %
997 < Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
998 < that of Allen and Germano.\cite{Allen:2006fk}  In simplifying the algebra, we also use:
997 > Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
998 > is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
999 > In simplifying the algebra, we have also used:
1000   %
1001 < \begin{eqnarray}
1001 > \begin{align}
1002   \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1003 < = \frac{1}{r} \left(  \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1003 > =& \frac{1}{r} \left(  \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1004   \right) \\
1005   \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1006 < = \frac{1}{r} \left(  \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1006 > =& \frac{1}{r} \left(  \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1007   \right) .
1008 < \end{eqnarray}
1008 > \end{align}
1009   %
1010 < We list below the force equations written in terms  of space coordinates.  The
1011 < radial functions used in the two methods are listed in Table II.
1010 > We list below the force equations written in terms of lab-frame
1011 > coordinates.  The radial functions used in the two methods are listed
1012 > in Table \ref{tab:tableFORCE}
1013   %
1014 < %SPACE COORDINATES FORCE EQUTIONS
1014 > %SPACE COORDINATES FORCE EQUATIONS
1015   %
1016   % **************************************************************************
1017   % f ca cb
1018   %
1019 < \begin{equation}
1020 < \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1021 < \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  w_a(r) \hat{r}
983 < \end{equation}
1019 > \begin{align}
1020 > \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1021 > C_{\bf a} C_{\bf b}  w_a(r) \hat{r} \\
1022   %
1023   %
1024   %
1025 < \begin{equation}
1026 < \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
989 < \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
1025 > \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1026 > C_{\bf a} \Bigl[
1027   \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1028   w_b(r) \hat{r}  
1029 < + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
993 < \end{equation}
1029 > + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1030   %
1031   %
1032   %
1033 < \begin{equation}
1034 < \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
999 < \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
1033 > \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1034 > C_{\bf a } \Bigr[
1035   \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1036   + 2  \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1037 < + \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1038 < \end{equation}
1037 > + \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1038 > \right) w_f(r) \hat{r} \Bigr] \\
1039   %
1040   %
1041   %
1042 < \begin{equation}
1043 < \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1044 < -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
1045 < \left( \hat{r} \cdot  \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1046 < + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1047 < \end{equation}
1042 > % \begin{equation}
1043 > % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1044 > % -C_{\bf{b}} \Bigl[
1045 > % \left( \hat{r} \cdot  \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1046 > % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1047 > % \end{equation}
1048   %
1049   %
1050   %
1051 < \begin{equation}
1052 < \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
1018 < \frac{1}{4\pi \epsilon_0} \Bigl[
1051 > \begin{split}
1052 > \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1053   - \mathbf{D}_{\mathbf {a}} \cdot  \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1054   + \left( \mathbf{D}_{\mathbf {a}}
1055   \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1056 < + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}}  \cdot \hat{r} \right) \right) w_e(r)
1056 > + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}}  \cdot \hat{r} \right) \right) w_e(r)\\
1057   % 2
1058 < - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1059 < \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
1060 < \end{equation}
1058 > & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1059 > \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1060 > \end{split}\\
1061   %
1062   %
1063   %
1030 \begin{equation}
1064   \begin{split}
1065 < \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1033 < & - \frac{1}{4\pi \epsilon_0} \Bigl[
1065 > \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1066   \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1067   +2 \mathbf{D}_{\mathbf{a}} \cdot
1068   \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1069 < - \frac{1}{4\pi \epsilon_0} \Bigl[
1069 > - \Bigl[
1070   \text{Tr}\mathbf{Q}_{\mathbf{b}}
1071   \left( \hat{r} \cdot  \mathbf{D}_{\mathbf{a}} \right)
1072   +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1073   \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r}  \\
1074   % 3
1075 < & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}}  (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1075 > & - \Bigl[\mathbf{ D}_{\mathbf{a}}  (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1076   +2  (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} )  \Bigr]
1077   w_i(r)
1078   % 4
1079 < -\frac{1}{4\pi \epsilon_0}
1079 > -
1080   (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1081 < (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}  
1050 < \end{split}
1051 < \end{equation}
1081 > (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1082   %
1083   %
1084 < \begin{equation}
1085 < \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1086 < \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1087 < \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1088 < + 2  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1089 < + \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1090 < \end{equation}
1084 > % \begin{equation}
1085 > % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1086 > % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1087 > % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1088 > % + 2  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1089 > %  + \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1090 > % \end{equation}
1091 > % %
1092 > % \begin{equation}
1093 > % \begin{split}
1094 > % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1095 > % &\frac{1}{4\pi \epsilon_0} \Bigl[
1096 > % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1097 > % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}}  \Bigr] w_g(r)
1098 > % % 2
1099 > % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1100 > % (\hat{r} \cdot  \mathbf{D}_{\mathbf{b}})
1101 > % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1102 > % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r}  \\
1103 > % % 3
1104 > % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1105 > % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1106 > % +2  (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1107 > % (\hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} ) \Bigr]   w_i(r)
1108 > % % 4
1109 > % +\frac{1}{4\pi \epsilon_0}
1110 > % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1111 > % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}  \cdot \hat{r}) w_j(r) \hat{r}
1112 > % \end{split}
1113 > % \end{equation}
1114   %
1062 \begin{equation}
1063 \begin{split}
1064 \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1065 &\frac{1}{4\pi \epsilon_0} \Bigl[
1066 \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1067 +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}}  \Bigr] w_g(r)
1068 % 2
1069 + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1070 (\hat{r} \cdot  \mathbf{D}_{\mathbf{b}})
1071 +2 (\mathbf{D}_{\mathbf{b}} \cdot
1072 \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r}  \\
1073 % 3
1074 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1075 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1076 +2  (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1077 (\hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} ) \Bigr]   w_i(r)
1078 % 4
1079 +\frac{1}{4\pi \epsilon_0}
1080 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1081 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}  \cdot \hat{r}) w_j(r) \hat{r}
1082 \end{split}
1083 \end{equation}
1115   %
1116   %
1086 %
1087 \begin{equation}
1117   \begin{split}
1118 < \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1119 < +\frac{1}{4\pi \epsilon_0} \Bigl[
1118 > \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1119 > \Bigl[
1120   \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1121   + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot  \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1122   % 2
1123 < +\frac{1}{4\pi \epsilon_0} \Bigl[
1123 > &+ \Bigl[
1124   2\text{Tr}\mathbf{Q}_{\mathbf{b}}  (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )  
1125   + 2\text{Tr}\mathbf{Q}_{\mathbf{a}}  (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1126   % 3
1127   +4 (\mathbf{Q}_{\mathbf{a}}  \cdot  \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})  
1128   +  4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1129   % 4
1130 < + \frac{1}{4\pi \epsilon_0} \Bigl[
1130 > &+  \Bigl[
1131   \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1132   + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1133   (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}}  \cdot \hat{r})  
# Line 1106 | Line 1135 | + \frac{1}{4\pi \epsilon_0} \Bigl[
1135   +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot  
1136   \mathbf{Q}_{\mathbf{b}}   \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1137   %
1138 < + \frac{1}{4\pi \epsilon_0} \Bigl[
1138 > &+ \Bigl[
1139   + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1140   (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1141   %6
1142   +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1143   (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1144   %  7
1145 < + \frac{1}{4\pi \epsilon_0}
1145 > &+
1146   (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}}  \cdot \hat{r})
1147 < (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1148 < \end{split}
1149 < \end{equation}
1147 > (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1148 > \end{align}
1149 > Note that the forces for higher multipoles on site $\mathbf{a}$
1150 > interacting with those of lower order on site $\mathbf{b}$ can be
1151 > obtained by swapping indices in the expressions above.
1152 >
1153   %
1154 + % Torques SECTION -----------------------------------------------------------------------------------------
1155   %
1123 % TORQUES SECTION -----------------------------------------------------------------------------------------
1124 %
1156   \subsection{Torques}
1157 <
1158 < Following again Allen and Germano,\cite{Allen:2006fk} when energies are written in the form
1159 < of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1157 > When energies are written in the form of Eq.~({\ref{ugeneral}), then
1158 >  torques can be found in a relatively straightforward
1159 >  manner,\cite{Allen:2006fk}
1160   %
1161   \begin{eqnarray}
1162   \mathbf{\tau}_{\bf a} =
# Line 1146 | Line 1177 | Here we list the torque equations written in terms of
1177   \end{eqnarray}
1178   %
1179   %
1180 < Here we list the torque equations written in terms of space coordinates.
1180 > The torques for both the Taylor-Shifted as well as Gradient-Shifted
1181 > methods are given in space-frame coordinates:
1182   %
1183   %
1184 + \begin{align}
1185 + \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1186 + C_{\bf a}  (\hat{r} \times  \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1187   %
1153 \begin{equation}
1154 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1155 \frac{C_{\bf a}}{4\pi \epsilon_0}  (\hat{r} \times  \mathbf{D}_{\mathbf{b}}) v_{11}(r)
1156 \end{equation}
1188   %
1189   %
1190 + \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1191 + 2C_{\bf a}
1192 + \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1193   %
1160 \begin{equation}
1161 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1162 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1163 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
1164 \end{equation}
1194   %
1195   %
1196 + % \begin{equation}
1197 + % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =  
1198 + % -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1199 + % (\hat{r} \times \mathbf{D}_{\mathbf{a}})  v_{11}(r)
1200 + % \end{equation}
1201   %
1168 \begin{equation}
1169 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =  
1170 -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1171 (\hat{r} \times \mathbf{D}_{\mathbf{a}})  v_{11}(r)
1172 \end{equation}
1202   %
1203   %
1204 < %
1205 < \begin{equation}
1177 < \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
1178 < \frac{1}{4\pi \epsilon_0}  \mathbf{D}_{\mathbf {a}}  \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1204 > \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1205 > \mathbf{D}_{\mathbf {a}}  \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1206   % 2
1207 < -\frac{1}{4\pi \epsilon_0}
1207 > -
1208   (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1209 < (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} )  v_{22}(r)
1183 < \end{equation}
1209 > (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} )  v_{22}(r)\\
1210   %
1211   %
1212   %
1213 < \begin{equation}
1214 < \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1215 < -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1216 < % 2
1217 < +\frac{1}{4\pi \epsilon_0}
1218 < (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1219 < (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1220 < \end{equation}
1213 > % \begin{equation}
1214 > % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1215 > % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1216 > % % 2
1217 > % +\frac{1}{4\pi \epsilon_0}
1218 > % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1219 > % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1220 > % \end{equation}
1221   %
1222   %
1223   %
1224 < \begin{equation}
1225 < \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1200 < \frac{1}{4\pi \epsilon_0} \Bigl[
1224 > \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1225 > \Bigl[
1226   -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1227   (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1228   +2 \mathbf{D}_{\mathbf{a}}  \times
1229   (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1230   \Bigr] v_{31}(r)
1231   % 3
1232 < -\frac{1}{4\pi \epsilon_0}
1233 < \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1209 < (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
1210 < \end{equation}
1232 > - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1233 > (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1234   %
1235   %
1236   %
1237 < \begin{equation}
1238 < \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
1216 < \frac{1}{4\pi \epsilon_0} \Bigl[
1237 > \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1238 > \Bigl[
1239   +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1240   \hat{r}
1241   -2 \mathbf{D}_{\mathbf{a}}  \times
1242   (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1243   \Bigr] v_{31}(r)
1244   % 2
1245 < +\frac{2}{4\pi \epsilon_0}
1245 > +
1246   (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1247 < (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1226 < \end{equation}
1247 > (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1248   %
1249   %
1250   %
1251 < \begin{equation}
1252 < \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1253 < \frac{1}{4\pi \epsilon_0} \Bigl[
1254 < -2 (\mathbf{D}_{\mathbf{b}}  \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1255 < +2 \mathbf{D}_{\mathbf{b}}  \times
1256 < (\mathbf{Q}_{\mathbf{a}}  \cdot \hat{r})
1257 < \Bigr] v_{31}(r)
1258 < % 3
1259 < - \frac{2}{4\pi \epsilon_0}
1260 < (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1261 < (\hat{r} \cdot  \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1262 < \end{equation}
1251 > % \begin{equation}
1252 > % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1253 > % \frac{1}{4\pi \epsilon_0} \Bigl[
1254 > % -2 (\mathbf{D}_{\mathbf{b}}  \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1255 > % +2 \mathbf{D}_{\mathbf{b}}  \times
1256 > % (\mathbf{Q}_{\mathbf{a}}  \cdot \hat{r})
1257 > % \Bigr] v_{31}(r)
1258 > % % 3
1259 > % - \frac{2}{4\pi \epsilon_0}
1260 > % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1261 > % (\hat{r} \cdot  \mathbf
1262 > % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1263 > % \end{equation}
1264   %
1265   %
1266   %
1267 < \begin{equation}
1268 < \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1269 < \frac{1}{4\pi \epsilon_0} \Bigl[
1270 < \text{Tr}\mathbf{Q}_{\mathbf{a}}
1271 < (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1272 < +2 \mathbf{D}_{\mathbf{b}}  \times
1273 < ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1274 < % 2
1275 < +\frac{1}{4\pi \epsilon_0}
1276 < (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1277 < (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1278 < \end{equation}
1267 > % \begin{equation}
1268 > % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1269 > % \frac{1}{4\pi \epsilon_0} \Bigl[
1270 > % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1271 > % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1272 > % +2 \mathbf{D}_{\mathbf{b}}  \times
1273 > % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1274 > % % 2
1275 > % +\frac{1}{4\pi \epsilon_0}
1276 > % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1277 > % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1278 > % \end{equation}
1279   %
1280   %
1281   %
1260 \begin{equation}
1282   \begin{split}
1283 < \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1284 < &-\frac{4}{4\pi \epsilon_0}
1283 > \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1284 > -4
1285   \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1286   v_{41}(r) \\
1287   % 2
1288 < &+ \frac{1}{4\pi \epsilon_0}
1288 > &+
1289   \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1290   (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1291   +4 \hat{r} \times
# Line 1273 | Line 1294 | -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1294   -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1295   ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1296   % 4
1297 < &+ \frac{2}{4\pi \epsilon_0}
1297 > &+ 2
1298   \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1299 < (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1279 < \end{split}
1280 < \end{equation}
1299 > (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1300   %
1301   %
1302   %
1284 \begin{equation}
1303   \begin{split}
1304   \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =  
1305 < &\frac{4}{4\pi \epsilon_0}
1305 > &4
1306   \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1307   % 2
1308 < &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1308 > &+  \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1309   (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1310   -4  (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1311   \mathbf{Q}_{{\mathbf b}} ) \times
# Line 1296 | Line 1314 | +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1314   ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1315   \Bigr] v_{42}(r) \\
1316   % 4
1317 < &+ \frac{2}{4\pi \epsilon_0}
1317 > &+2
1318   (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1319 < \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1320 < \end{split}
1303 < \end{equation}
1319 > \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1320 > \end{align}
1321   %
1322 + Here, we have defined the matrix cross product in an identical form
1323 + as in Ref. \onlinecite{Smith98}:
1324 + \begin{equation}
1325 + \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1326 + \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1327 +  -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1328 + \right]
1329 + \end{equation}
1330 + where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1331 + permuations of the matrix indices.
1332  
1333 + All of the radial functions required for torques are identical with
1334 + the radial functions previously computed for the interaction energies.
1335 + These are tabulated for both shifted force methods in table
1336 + \ref{tab:tableenergy}.  The torques for higher multipoles on site
1337 + $\mathbf{a}$ interacting with those of lower order on site
1338 + $\mathbf{b}$ can be obtained by swapping indices in the expressions
1339 + above.
1340 +
1341   \section{Comparison to known multipolar energies}
1342  
1343   To understand how these new real-space multipole methods behave in
# Line 1394 | Line 1429 | where $Q$ is the quadrupole moment.
1429   \end{equation}
1430   where $Q$ is the quadrupole moment.
1431  
1432 + \section{Conclusion}
1433 + We have presented two efficient real-space methods for computing the
1434 + interactions between point multipoles.  These methods have the benefit
1435 + of smoothly truncating the energies, forces, and torques at the cutoff
1436 + radius, making them attractive for both molecular dynamics (MD) and
1437 + Monte Carlo (MC) simulations.  We find that the Gradient-Shifted Force
1438 + (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1439 + correct lattice energies for ordered dipolar and quadrupolar arrays,
1440 + while the Taylor-Shifted Force (TSF) is too severe an approximation to
1441 + provide accurate convergence to lattice energies.  
1442  
1443 <
1444 <
1445 <
1446 <
1443 > In most cases, GSF can obtain nearly quantitative agreement with the
1444 > lattice energy constants with reasonably small cutoff radii.  The only
1445 > exception we have observed is for crystals which exhibit a bulk
1446 > macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1447 > In this particular case, the multipole neutralization scheme can
1448 > interfere with the correct computation of the energies.  We note that
1449 > the energies for these arrangements are typically much larger than for
1450 > crystals with net-zero moments, so this is not expected to be an issue
1451 > in most simulations.
1452  
1453 + In large systems, these new methods can be made to scale approximately
1454 + linearly with system size, and detailed comparisons with the Ewald sum
1455 + for a wide range of chemical environments follows in the second paper.
1456  
1457   \begin{acknowledgments}
1458 < Support for this project was provided by the National Science
1459 < Foundation under grant CHE-0848243. Computational time was provided by
1460 < the Center for Research Computing (CRC) at the University of Notre
1461 < Dame.
1458 >  JDG acknowledges helpful discussions with Christopher
1459 >  Fennell. Support for this project was provided by the National
1460 >  Science Foundation under grant CHE-0848243. Computational time was
1461 >  provided by the Center for Research Computing (CRC) at the
1462 >  University of Notre Dame.
1463   \end{acknowledgments}
1464  
1465   \newpage
1466   \appendix
1467  
1468   \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1469 <
1469 > \label{SmithFunc}
1470   The following summarizes Smith's $B_l(r)$ functions and includes
1471   formulas given in his appendix.\cite{Smith98} The first function
1472   $B_0(r)$ is defined by
# Line 1576 | Line 1630 | $n$ is eliminated.
1630   \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1631   $n$ is eliminated.
1632  
1633 < \section{Extra Material}
1634 < %
1635 < %
1636 < %Energy in body coordinate form ---------------------------------------------------------------
1637 < %
1638 < Here are the interaction energies written in terms of the body coordinates:
1585 <
1586 < %
1587 < % u ca cb
1588 < %
1589 < \begin{equation}
1590 < U_{C_{\bf a}C_{\bf b}}(r)=
1591 < \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  v_{01}(r)
1592 < \end{equation}
1593 < %
1594 < % u ca db
1595 < %
1596 < \begin{equation}
1597 < U_{C_{\bf a}D_{\bf b}}(r)=
1598 < \frac{C_{\bf a}}{4\pi \epsilon_0}
1599 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \,  v_{11}(r)
1600 < \end{equation}
1601 < %
1602 < % u ca qb
1603 < %
1604 < \begin{equation}
1605 < U_{C_{\bf a}Q_{\bf b}}(r)=
1606 < \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}  
1607 < v_{21}(r) \nonumber \\
1608 < +\frac{C_{\bf a}}{4\pi \epsilon_0}
1609 < \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1610 < v_{22}(r)
1611 < \end{equation}
1612 < %
1613 < % u da cb
1614 < %
1615 < \begin{equation}
1616 < U_{D_{\bf a}C_{\bf b}}(r)=
1617 < -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1618 < \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \,  v_{11}(r)
1619 < \end{equation}
1620 < %
1621 < % u da db
1622 < %
1623 < \begin{equation}
1624 < \begin{split}
1625 < % 1
1626 < U_{D_{\bf a}D_{\bf b}}(r)&=
1627 < -\frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
1628 < (\hat{a}_m \cdot   \hat{b}_n)
1629 < D_{\mathbf{b}n} v_{21}(r) \\
1630 < % 2
1631 < &-\frac{1}{4\pi \epsilon_0}
1632 < \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1633 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1634 < v_{22}(r)
1635 < \end{split}
1636 < \end{equation}
1637 < %
1638 < % u da qb
1639 < %
1640 < \begin{equation}
1641 < \begin{split}
1642 < % 1
1643 < U_{D_{\bf a}Q_{\bf b}}(r)&=
1644 < -\frac{1}{4\pi \epsilon_0} \left(
1645 < \text{Tr}Q_{\mathbf{b}}
1646 < \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1647 < +2\sum_{lmn}D_{\mathbf{a}l}
1648 < (\hat{a}_l \cdot \hat{b}_m)
1649 < Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1650 < \right)  v_{31}(r) \\
1651 < % 2
1652 < &-\frac{1}{4\pi \epsilon_0}
1653 < \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1654 < \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1655 < Q_{{\mathbf b}mn}
1656 < (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1657 < \end{split}
1658 < \end{equation}
1659 < %
1660 < % u qa cb
1661 < %
1662 < \begin{equation}
1663 < U_{Q_{\bf a}C_{\bf b}}(r)=
1664 < \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0}  v_{21}(r)
1665 < +\frac{C_{\bf b}}{4\pi \epsilon_0}
1666 < \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1667 < \end{equation}
1668 < %
1669 < % u qa db
1670 < %
1671 < \begin{equation}
1672 < \begin{split}
1673 < %1
1674 < U_{Q_{\bf a}D_{\bf b}}(r)&=
1675 < \frac{1}{4\pi \epsilon_0} \left(
1676 < \text{Tr}Q_{\mathbf{a}}
1677 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1678 < +2\sum_{lmn}D_{\mathbf{b}l}
1679 < (\hat{b}_l \cdot \hat{a}_m)
1680 < Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1681 < \right) v_{31}(r)  \\
1682 < % 2
1683 < &+\frac{1}{4\pi \epsilon_0}
1684 < \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1685 < \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1686 < Q_{{\mathbf a}mn}
1687 < (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1688 < \end{split}
1689 < \end{equation}
1690 < %
1691 < % u qa qb
1692 < %
1693 < \begin{equation}
1694 < \begin{split}
1695 < %1
1696 < U_{Q_{\bf a}Q_{\bf b}}(r)&=
1697 < \frac{1}{4\pi \epsilon_0} \Bigl[
1698 < \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1699 < +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1700 < Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1701 < (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1702 < v_{41}(r) \\
1703 < % 2
1704 < &+ \frac{1}{4\pi \epsilon_0}
1705 < \Bigl[ \text{Tr}Q_{\mathbf{a}}
1706 < \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1707 < Q_{{\mathbf b}lm}
1708 < (\hat{b}_m \cdot \hat{r})
1709 < +\text{Tr}Q_{\mathbf{b}}
1710 < \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1711 < Q_{{\mathbf a}lm}
1712 < (\hat{a}_m \cdot \hat{r}) \\
1713 < % 3
1714 < &+4 \sum_{lmnp}
1715 < (\hat{r} \cdot \hat{a}_l )
1716 < Q_{{\mathbf a}lm}
1717 < (\hat{a}_m \cdot \hat{b}_n)
1718 < Q_{{\mathbf b}np}
1719 < (\hat{b}_p \cdot \hat{r})
1720 < \Bigr] v_{42}(r)  \\
1721 < % 4
1722 < &+ \frac{1}{4\pi \epsilon_0}
1723 < \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1724 < Q_{{\mathbf a}lm}
1725 < (\hat{a}_m \cdot \hat{r})
1726 < \sum_{np}  (\hat{r} \cdot \hat{b}_n)
1727 < Q_{{\mathbf b}np}
1728 < (\hat{b}_p \cdot \hat{r})  v_{43}(r).
1729 < \end{split}
1730 < \end{equation}
1731 < %
1633 > % \section{Extra Material}
1634 > % %
1635 > % %
1636 > % %Energy in body coordinate form ---------------------------------------------------------------
1637 > % %
1638 > % Here are the interaction energies written in terms of the body coordinates:
1639  
1640 <
1641 < % BODY coordinates force equations --------------------------------------------
1642 < %
1643 < %
1644 < Here are the force equations written in terms of body coordinates.
1645 < %
1646 < % f ca cb
1647 < %
1648 < \begin{equation}
1649 < \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1650 < \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  w_a(r) \hat{r}
1651 < \end{equation}
1652 < %
1653 < % f ca db
1654 < %
1655 < \begin{equation}
1656 < \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1657 < \frac{C_{\bf a}}{4\pi \epsilon_0}  
1658 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1659 < +\frac{C_{\bf a}}{4\pi \epsilon_0}  
1660 < \sum_n  D_{\mathbf{b}n} \hat{b}_n w_c(r)
1661 < \end{equation}
1662 < %
1663 < % f ca qb
1664 < %
1665 < \begin{equation}
1666 < \begin{split}
1667 < % 1
1668 < \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1669 < \frac{1}{4\pi \epsilon_0}  
1670 < C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1671 < + 2C_{\bf a } \sum_l  \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1672 < % 2
1673 < +\frac{C_{\bf a}}{4\pi \epsilon_0}
1674 < \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1675 < \end{split}
1676 < \end{equation}
1677 < %
1678 < % f da cb
1679 < %
1680 < \begin{equation}
1681 < \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1682 < -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1683 < \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r)  \hat{r}
1684 < -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1685 < \sum_n  D_{\mathbf{a}n} \hat{a}_n w_c(r)
1686 < \end{equation}
1687 < %
1688 < % f da db
1689 < %
1690 < \begin{equation}
1691 < \begin{split}
1692 < % 1
1693 < \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1694 < -\frac{1}{4\pi \epsilon_0}
1695 < \sum_{mn} D_{\mathbf {a}m}
1696 < (\hat{a}_m \cdot   \hat{b}_n)
1697 < D_{\mathbf{b}n}  w_d(r) \hat{r}
1698 < -\frac{1}{4\pi \epsilon_0}
1699 < \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1700 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1701 < % 2
1702 < & \quad + \frac{1}{4\pi \epsilon_0}
1703 < \Bigl[ \sum_m D_{\mathbf {a}m}
1704 < \hat{a}_m \sum_n D_{\mathbf{b}n}
1705 < (\hat{b}_n \cdot \hat{r})
1706 < + \sum_m D_{\mathbf {b}m}
1707 < \hat{b}_m \sum_n D_{\mathbf{a}n}
1708 < (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r)  \\
1709 < \end{split}
1710 < \end{equation}
1711 < %
1712 < % f da qb
1713 < %
1714 < \begin{equation}
1715 < \begin{split}
1716 < % 1
1717 < &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1718 < - \frac{1}{4\pi \epsilon_0} \Bigl[
1719 < \text{Tr}Q_{\mathbf{b}}
1720 < \sum_l  D_{\mathbf{a}l} \hat{a}_l
1721 < +2\sum_{lmn} D_{\mathbf{a}l}
1722 < (\hat{a}_l \cdot \hat{b}_m)
1723 < Q_{\mathbf{b}mn} \hat{b}_n  \Bigr] w_g(r) \\
1724 < % 3
1725 < &  - \frac{1}{4\pi \epsilon_0} \Bigl[
1726 < \text{Tr}Q_{\mathbf{b}}
1727 < \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1728 < +2\sum_{lmn}D_{\mathbf{a}l}
1729 < (\hat{a}_l \cdot \hat{b}_m)
1730 < Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1731 < % 4
1732 < &+ \frac{1}{4\pi \epsilon_0}
1733 < \Bigl[\sum_l  D_{\mathbf{a}l} \hat{a}_l
1734 < \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1735 < Q_{{\mathbf b}mn}
1736 < (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1737 < D_{\mathbf{a}l}
1738 < \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1739 < Q_{{\mathbf b}mn} \hat{b}_n \Bigr]   w_i(r)\\
1740 < % 6
1741 < &  -\frac{1}{4\pi \epsilon_0}
1742 < \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1743 < \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1744 < Q_{{\mathbf b}mn}
1745 < (\hat{b}_n \cdot \hat{r})  w_j(r)  \hat{r}
1746 < \end{split}
1747 < \end{equation}
1748 < %
1749 < % force qa cb
1750 < %
1751 < \begin{equation}
1752 < \begin{split}
1753 < % 1
1754 < \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1755 < \frac{1}{4\pi \epsilon_0}  
1756 < C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1757 < + \frac{2C_{\bf b }}{4\pi \epsilon_0}  \sum_l  \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1758 < % 2
1759 < &  +\frac{C_{\bf b}}{4\pi \epsilon_0}
1760 < \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1761 < \end{split}
1762 < \end{equation}
1763 < %
1764 < % f qa db
1765 < %
1766 < \begin{equation}
1767 < \begin{split}
1768 < % 1
1769 < &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1770 < \frac{1}{4\pi \epsilon_0} \Bigl[
1771 < \text{Tr}Q_{\mathbf{a}}
1772 < \sum_l  D_{\mathbf{b}l} \hat{b}_l
1773 < +2\sum_{lmn} D_{\mathbf{b}l}
1774 < (\hat{b}_l \cdot \hat{a}_m)
1775 < Q_{\mathbf{a}mn} \hat{a}_n  \Bigr]
1776 < w_g(r)\\
1777 < % 3
1778 < &  + \frac{1}{4\pi \epsilon_0} \Bigl[
1779 < \text{Tr}Q_{\mathbf{a}}
1780 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1781 < +2\sum_{lmn}D_{\mathbf{b}l}
1782 < (\hat{b}_l \cdot \hat{a}_m)
1783 < Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1784 < % 4
1785 < &  + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l  D_{\mathbf{b}l} \hat{b}_l
1786 < \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1787 < Q_{{\mathbf a}mn}
1788 < (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1789 < D_{\mathbf{b}l}
1790 < \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1791 < Q_{{\mathbf a}mn} \hat{a}_n \Bigr]   w_i(r) \\
1792 < % 6
1793 < &  +\frac{1}{4\pi \epsilon_0}
1794 < \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1795 < \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1796 < Q_{{\mathbf a}mn}
1797 < (\hat{a}_n \cdot \hat{r})  w_j(r)  \hat{r}
1798 < \end{split}
1799 < \end{equation}
1800 < %
1801 < % f qa qb
1802 < %
1803 < \begin{equation}
1804 < \begin{split}
1805 < &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1806 < \frac{1}{4\pi \epsilon_0} \Bigl[
1807 < \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1808 < + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1809 < Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1810 < (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1811 < &+\frac{1}{4\pi \epsilon_0} \Bigl[
1812 < 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm}  \hat{a}_m  
1813 < + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm}  \hat{b}_m \\
1814 < &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})  
1815 < + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1816 < \Bigr] w_n(r) \\
1817 < &+ \frac{1}{4\pi \epsilon_0}
1818 < \Bigl[ \text{Tr}Q_{\mathbf{a}}
1819 < \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1820 < + \text{Tr}Q_{\mathbf{b}}
1821 < \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm}  (\hat{a}_m \cdot \hat{r}) \\
1822 < &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1823 < Q_{\mathbf{b}np}  (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1824 < %
1825 < &+\frac{1}{4\pi \epsilon_0} \Bigl[
1826 < 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1827 < \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1828 < &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1829 < \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1830 < &  + \frac{1}{4\pi \epsilon_0}
1831 < \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1832 < \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1833 < \end{split}
1834 < \end{equation}
1835 < %
1836 < Here we list the form of the non-zero damped shifted multipole torques showing
1837 < explicitly dependences on body axes:
1838 < %
1839 < %  t ca db
1840 < %
1841 < \begin{equation}
1842 < \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1843 < \frac{C_{\bf a}}{4\pi \epsilon_0}  
1844 < \sum_n  (\hat{r} \times \hat{b}_n)  D_{\mathbf{b}n} \,  v_{11}(r)
1845 < \end{equation}
1846 < %
1847 < % t ca qb
1848 < %
1849 < \begin{equation}
1850 < \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1851 < \frac{2C_{\bf a}}{4\pi \epsilon_0}
1852 < \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1853 < \end{equation}
1854 < %
1855 < %  t da cb
1856 < %
1857 < \begin{equation}
1858 < \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1859 < -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1860 < \sum_n  (\hat{r} \times \hat{a}_n)  D_{\mathbf{a}n} \,  v_{11}(r)
1861 < \end{equation}%
1862 < %
1863 < %
1864 < %  ta da db
1865 < %
1866 < \begin{equation}
1867 < \begin{split}
1868 < % 1
1869 < \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1870 < \frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
1871 < (\hat{a}_m \times  \hat{b}_n)
1872 < D_{\mathbf{b}n} v_{21}(r) \\
1873 < % 2
1874 < &-\frac{1}{4\pi \epsilon_0}
1875 < \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1876 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1877 < \end{split}
1878 < \end{equation}
1879 < %
1880 < %  tb da db
1881 < %
1882 < \begin{equation}
1883 < \begin{split}
1884 < % 1
1885 < \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1886 < -\frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
1887 < (\hat{a}_m \times  \hat{b}_n)
1888 < D_{\mathbf{b}n} v_{21}(r) \\
1889 < % 2
1890 < &+\frac{1}{4\pi \epsilon_0}
1891 < \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1892 < \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1893 < \end{split}
1894 < \end{equation}
1895 < %
1896 < % ta da qb
1897 < %
1898 < \begin{equation}
1899 < \begin{split}
1900 < % 1
1901 < \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1902 < \frac{1}{4\pi \epsilon_0} \left(
1903 < -\text{Tr}Q_{\mathbf{b}}
1904 < \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1905 < +2\sum_{lmn}D_{\mathbf{a}l}
1906 < (\hat{a}_l \times \hat{b}_m)
1907 < Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1908 < \right) v_{31}(r)\\
1909 < % 2
1910 < &-\frac{1}{4\pi \epsilon_0}
1911 < \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
1912 < \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1913 < Q_{{\mathbf b}mn}
1914 < (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1915 < \end{split}
1916 < \end{equation}
1917 < %
1918 < % tb da qb
1919 < %
1920 < \begin{equation}
1921 < \begin{split}
1922 < % 1
1923 < \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
1924 < \frac{1}{4\pi \epsilon_0} \left(
1925 < -2\sum_{lmn}D_{\mathbf{a}l}
1926 < (\hat{a}_l \cdot \hat{b}_m)
1927 < Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
1928 < -2\sum_{lmn}D_{\mathbf{a}l}
1929 < (\hat{a}_l \times \hat{b}_m)
1930 < Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1931 < \right) v_{31}(r) \\
1932 < % 2
1933 < &-\frac{2}{4\pi \epsilon_0}
1934 < \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1935 < \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1936 < Q_{{\mathbf b}mn}
1937 < (\hat{r}\times \hat{b}_n) v_{32}(r)
1938 < \end{split}
1939 < \end{equation}
1940 < %
1941 < % ta qa cb
1942 < %
1943 < \begin{equation}
1944 < \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1945 < \frac{2C_{\bf a}}{4\pi \epsilon_0}
1946 < \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
1947 < \end{equation}
1948 < %
1949 < % ta qa db
1950 < %
1951 < \begin{equation}
1952 < \begin{split}
1953 < % 1
1954 < \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
1955 < \frac{1}{4\pi \epsilon_0} \left(
1956 < 2\sum_{lmn}D_{\mathbf{b}l}
1957 < (\hat{b}_l \cdot \hat{a}_m)
1958 < Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
1959 < +2\sum_{lmn}D_{\mathbf{b}l}
1960 < (\hat{a}_l \times \hat{b}_m)
1961 < Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1962 < \right) v_{31}(r) \\
1963 < % 2
1964 < &+\frac{2}{4\pi \epsilon_0}
1965 < \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1966 < \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1967 < Q_{{\mathbf a}mn}
1968 < (\hat{r}\times \hat{a}_n) v_{32}(r)
1969 < \end{split}
1970 < \end{equation}
1971 < %
1972 < % tb qa db
1973 < %
1974 < \begin{equation}
1975 < \begin{split}
1976 < % 1
1977 < \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
1978 < \frac{1}{4\pi \epsilon_0} \left(
1979 < \text{Tr}Q_{\mathbf{a}}
1980 < \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
1981 < +2\sum_{lmn}D_{\mathbf{b}l}
1982 < (\hat{a}_l \times \hat{b}_m)
1983 < Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1984 < \right) v_{31}(r)\\
1985 < % 2
1986 < &\frac{1}{4\pi \epsilon_0}
1987 < \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
1988 < \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1989 < Q_{{\mathbf a}mn}
1990 < (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1991 < \end{split}
1992 < \end{equation}
1993 < %
1994 < % ta qa qb
1995 < %
1996 < \begin{equation}
1997 < \begin{split}
1998 < % 1
1999 < \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2000 < -\frac{4}{4\pi \epsilon_0}
2001 < \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2002 < Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
2003 < (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2004 < % 2
2005 < &+ \frac{1}{4\pi \epsilon_0}
2006 < \Bigl[
2007 < 2\text{Tr}Q_{\mathbf{b}}
2008 < \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2009 < Q_{{\mathbf a}lm}
2010 < (\hat{r} \times \hat{a}_m)
2011 < +4 \sum_{lmnp}
2012 < (\hat{r} \times \hat{a}_l )
2013 < Q_{{\mathbf a}lm}
2014 < (\hat{a}_m \cdot \hat{b}_n)
2015 < Q_{{\mathbf b}np}
2016 < (\hat{b}_p \cdot \hat{r}) \\
2017 < % 3
2018 < &-4 \sum_{lmnp}
2019 < (\hat{r} \cdot \hat{a}_l )
2020 < Q_{{\mathbf a}lm}
2021 < (\hat{a}_m \times \hat{b}_n)
2022 < Q_{{\mathbf b}np}
2023 < (\hat{b}_p \cdot \hat{r})
2024 < \Bigr] v_{42}(r) \\
2025 < % 4
2026 < &+ \frac{2}{4\pi \epsilon_0}
2027 < \sum_{lm} (\hat{r} \times \hat{a}_l)
2028 < Q_{{\mathbf a}lm}
2029 < (\hat{a}_m \cdot \hat{r})
2030 < \sum_{np}  (\hat{r} \cdot \hat{b}_n)
2031 < Q_{{\mathbf b}np}
2032 < (\hat{b}_p \cdot \hat{r})  v_{43}(r)\\
2033 < \end{split}
2034 < \end{equation}
2035 < %
2036 < % tb qa qb
2037 < %
2038 < \begin{equation}
2039 < \begin{split}
2040 < % 1
2041 < \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2042 < \frac{4}{4\pi \epsilon_0}
2043 < \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2044 < Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
2045 < (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2046 < % 2
2047 < &+ \frac{1}{4\pi \epsilon_0}
2048 < \Bigl[
2049 < 2\text{Tr}Q_{\mathbf{a}}
2050 < \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2051 < Q_{{\mathbf b}lm}
2052 < (\hat{r} \times \hat{b}_m)
2053 < +4 \sum_{lmnp}
2054 < (\hat{r} \cdot \hat{a}_l )
2055 < Q_{{\mathbf a}lm}
2056 < (\hat{a}_m \cdot \hat{b}_n)
2057 < Q_{{\mathbf b}np}
2058 < (\hat{r} \times \hat{b}_p) \\
2059 < % 3
2060 < &+4 \sum_{lmnp}
2061 < (\hat{r} \cdot \hat{a}_l )
2062 < Q_{{\mathbf a}lm}
2063 < (\hat{a}_m \times \hat{b}_n)
2064 < Q_{{\mathbf b}np}
2065 < (\hat{b}_p \cdot \hat{r})
2066 < \Bigr] v_{42}(r)  \\
2067 < % 4
2068 < &+ \frac{2}{4\pi \epsilon_0}
2069 < \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2070 < Q_{{\mathbf a}lm}
2071 < (\hat{a}_m \cdot \hat{r})
2072 < \sum_{np}  (\hat{r} \times \hat{b}_n)
2073 < Q_{{\mathbf b}np}
2074 < (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2075 < \end{split}
2076 < \end{equation}
2077 < %
2078 < \begin{table*}
2079 < \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2080 < \begin{ruledtabular}
2081 < \begin{tabular}{|l|l|l|}
2082 < Generic&Taylor-shifted Force&Gradient-shifted Force
2083 < \\ \hline
2084 < %
2085 < %
2086 < %
2087 < $w_a(r)$&
2088 < $g_0(r)$&
2089 < $g(r)-g(r_c)$ \\
2090 < %
2091 < %
2092 < $w_b(r)$ &
2093 < $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2094 < $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2095 < %
2096 < $w_c(r)$ &
2097 < $\frac{g_1(r)}{r} $ &
2098 < $\frac{v_{11}(r)}{r}$ \\
2099 < %
2100 < %
2101 < $w_d(r)$&
2102 < $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2103 < $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2104 < -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2105 < %
2106 < $w_e(r)$ &
2107 < $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2108 < $\frac{v_{22}(r)}{r}$ \\
2109 < %
2110 < %
2111 < $w_f(r)$&
2112 < $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2113 < $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2114 < &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2115 < %
2116 < $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2117 < $\frac{v_{31}(r)}{r}$\\
2118 < %
2119 < $w_h(r)$ &
2120 < $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
2121 < $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2122 < &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2123 < &&$-\frac{v_{31}(r)}{r}$\\
2124 < % 2
2125 < $w_i(r)$ &
2126 < $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
2127 < $\frac{v_{32}(r)}{r}$ \\
2128 < %
2129 < $w_j(r)$ &
2130 < $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right)  $ &
2131 < $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $  \\
2132 < &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2133 < %
2134 < $w_k(r)$ &
2135 < $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
2136 < $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}  \right)$  \\
2137 < &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2}  \right)$ \\
2138 < %
2139 < $w_l(r)$ &
2140 < $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2141 < $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2142 < &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2143 < -\frac{2v_{42}(r)}{r}$ \\
2144 < %
2145 < $w_m(r)$ &
2146 < $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2147 < $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2148 < &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2149 < +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2150 < &&$-\frac{4v_{43}(r)}{r}$ \\
2151 < %
2152 < $w_n(r)$ &
2153 < $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
2154 < $\frac{v_{42}(r)}{r}$ \\
2155 < %
2156 < $w_o(r)$ &
2157 < $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2158 < $\frac{v_{43}(r)}{r}$ \\
1640 > % %
1641 > % % u ca cb
1642 > % %
1643 > % \begin{equation}
1644 > % U_{C_{\bf a}C_{\bf b}}(r)=
1645 > % \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  v_{01}(r)
1646 > % \end{equation}
1647 > % %
1648 > % % u ca db
1649 > % %
1650 > % \begin{equation}
1651 > % U_{C_{\bf a}D_{\bf b}}(r)=
1652 > % \frac{C_{\bf a}}{4\pi \epsilon_0}
1653 > % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \,  v_{11}(r)
1654 > % \end{equation}
1655 > % %
1656 > % % u ca qb
1657 > % %
1658 > % \begin{equation}
1659 > % U_{C_{\bf a}Q_{\bf b}}(r)=
1660 > % \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}  
1661 > % v_{21}(r) \nonumber \\
1662 > % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1663 > % \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1664 > % v_{22}(r)
1665 > % \end{equation}
1666 > % %
1667 > % % u da cb
1668 > % %
1669 > % \begin{equation}
1670 > % U_{D_{\bf a}C_{\bf b}}(r)=
1671 > % -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1672 > % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \,  v_{11}(r)
1673 > % \end{equation}
1674 > % %
1675 > % % u da db
1676 > % %
1677 > % \begin{equation}
1678 > % \begin{split}
1679 > % % 1
1680 > % U_{D_{\bf a}D_{\bf b}}(r)&=
1681 > % -\frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
1682 > % (\hat{a}_m \cdot   \hat{b}_n)
1683 > % D_{\mathbf{b}n} v_{21}(r) \\
1684 > % % 2
1685 > % &-\frac{1}{4\pi \epsilon_0}
1686 > % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1687 > % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1688 > % v_{22}(r)
1689 > % \end{split}
1690 > % \end{equation}
1691 > % %
1692 > % % u da qb
1693 > % %
1694 > % \begin{equation}
1695 > % \begin{split}
1696 > % % 1
1697 > % U_{D_{\bf a}Q_{\bf b}}(r)&=
1698 > % -\frac{1}{4\pi \epsilon_0} \left(
1699 > % \text{Tr}Q_{\mathbf{b}}
1700 > % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1701 > % +2\sum_{lmn}D_{\mathbf{a}l}
1702 > % (\hat{a}_l \cdot \hat{b}_m)
1703 > % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1704 > % \right)  v_{31}(r) \\
1705 > % % 2
1706 > % &-\frac{1}{4\pi \epsilon_0}
1707 > % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1708 > % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1709 > % Q_{{\mathbf b}mn}
1710 > % (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1711 > % \end{split}
1712 > % \end{equation}
1713 > % %
1714 > % % u qa cb
1715 > % %
1716 > % \begin{equation}
1717 > % U_{Q_{\bf a}C_{\bf b}}(r)=
1718 > % \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0}  v_{21}(r)
1719 > % +\frac{C_{\bf b}}{4\pi \epsilon_0}
1720 > % \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1721 > % \end{equation}
1722 > % %
1723 > % % u qa db
1724 > % %
1725 > % \begin{equation}
1726 > % \begin{split}
1727 > % %1
1728 > % U_{Q_{\bf a}D_{\bf b}}(r)&=
1729 > % \frac{1}{4\pi \epsilon_0} \left(
1730 > % \text{Tr}Q_{\mathbf{a}}
1731 > % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1732 > % +2\sum_{lmn}D_{\mathbf{b}l}
1733 > % (\hat{b}_l \cdot \hat{a}_m)
1734 > % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1735 > % \right) v_{31}(r)  \\
1736 > % % 2
1737 > % &+\frac{1}{4\pi \epsilon_0}
1738 > % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1739 > % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1740 > % Q_{{\mathbf a}mn}
1741 > % (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1742 > % \end{split}
1743 > % \end{equation}
1744 > % %
1745 > % % u qa qb
1746 > % %
1747 > % \begin{equation}
1748 > % \begin{split}
1749 > % %1
1750 > % U_{Q_{\bf a}Q_{\bf b}}(r)&=
1751 > % \frac{1}{4\pi \epsilon_0} \Bigl[
1752 > % \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1753 > % +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1754 > % Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1755 > % (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1756 > % v_{41}(r) \\
1757 > % % 2
1758 > % &+ \frac{1}{4\pi \epsilon_0}
1759 > % \Bigl[ \text{Tr}Q_{\mathbf{a}}
1760 > % \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1761 > % Q_{{\mathbf b}lm}
1762 > % (\hat{b}_m \cdot \hat{r})
1763 > % +\text{Tr}Q_{\mathbf{b}}
1764 > % \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1765 > % Q_{{\mathbf a}lm}
1766 > % (\hat{a}_m \cdot \hat{r}) \\
1767 > % % 3
1768 > % &+4 \sum_{lmnp}
1769 > % (\hat{r} \cdot \hat{a}_l )
1770 > % Q_{{\mathbf a}lm}
1771 > % (\hat{a}_m \cdot \hat{b}_n)
1772 > % Q_{{\mathbf b}np}
1773 > % (\hat{b}_p \cdot \hat{r})
1774 > % \Bigr] v_{42}(r)  \\
1775 > % % 4
1776 > % &+ \frac{1}{4\pi \epsilon_0}
1777 > % \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1778 > % Q_{{\mathbf a}lm}
1779 > % (\hat{a}_m \cdot \hat{r})
1780 > % \sum_{np}  (\hat{r} \cdot \hat{b}_n)
1781 > % Q_{{\mathbf b}np}
1782 > % (\hat{b}_p \cdot \hat{r})  v_{43}(r).
1783 > % \end{split}
1784 > % \end{equation}
1785 > % %
1786 >
1787 >
1788 > % % BODY coordinates force equations --------------------------------------------
1789 > % %
1790 > % %
1791 > % Here are the force equations written in terms of body coordinates.
1792 > % %
1793 > % % f ca cb
1794 > % %
1795 > % \begin{equation}
1796 > % \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1797 > % \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  w_a(r) \hat{r}
1798 > % \end{equation}
1799 > % %
1800 > % % f ca db
1801 > % %
1802 > % \begin{equation}
1803 > % \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1804 > % \frac{C_{\bf a}}{4\pi \epsilon_0}  
1805 > % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1806 > % +\frac{C_{\bf a}}{4\pi \epsilon_0}  
1807 > % \sum_n  D_{\mathbf{b}n} \hat{b}_n w_c(r)
1808 > % \end{equation}
1809 > % %
1810 > % % f ca qb
1811 > % %
1812 > % \begin{equation}
1813 > % \begin{split}
1814 > % % 1
1815 > % \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1816 > % \frac{1}{4\pi \epsilon_0}  
1817 > % C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1818 > % + 2C_{\bf a } \sum_l  \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1819 > % % 2
1820 > % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1821 > % \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1822 > % \end{split}
1823 > % \end{equation}
1824 > % %
1825 > % % f da cb
1826 > % %
1827 > % \begin{equation}
1828 > % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1829 > % -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1830 > % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r)  \hat{r}
1831 > % -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1832 > % \sum_n  D_{\mathbf{a}n} \hat{a}_n w_c(r)
1833 > % \end{equation}
1834 > % %
1835 > % % f da db
1836 > % %
1837 > % \begin{equation}
1838 > % \begin{split}
1839 > % % 1
1840 > % \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1841 > % -\frac{1}{4\pi \epsilon_0}
1842 > %  \sum_{mn} D_{\mathbf {a}m}
1843 > % (\hat{a}_m \cdot   \hat{b}_n)
1844 > % D_{\mathbf{b}n}  w_d(r) \hat{r}
1845 > % -\frac{1}{4\pi \epsilon_0}
1846 > % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1847 > % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1848 > % % 2
1849 > % & \quad + \frac{1}{4\pi \epsilon_0}
1850 > % \Bigl[ \sum_m D_{\mathbf {a}m}
1851 > % \hat{a}_m \sum_n D_{\mathbf{b}n}
1852 > % (\hat{b}_n \cdot \hat{r})
1853 > % + \sum_m D_{\mathbf {b}m}
1854 > % \hat{b}_m \sum_n D_{\mathbf{a}n}
1855 > % (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r)  \\
1856 > % \end{split}
1857 > % \end{equation}
1858 > % %
1859 > % % f da qb
1860 > % %
1861 > % \begin{equation}
1862 > % \begin{split}
1863 > % % 1
1864 > % &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1865 > %  - \frac{1}{4\pi \epsilon_0} \Bigl[
1866 > % \text{Tr}Q_{\mathbf{b}}
1867 > % \sum_l  D_{\mathbf{a}l} \hat{a}_l
1868 > % +2\sum_{lmn} D_{\mathbf{a}l}
1869 > % (\hat{a}_l \cdot \hat{b}_m)
1870 > % Q_{\mathbf{b}mn} \hat{b}_n  \Bigr] w_g(r) \\
1871 > % % 3
1872 > % &  - \frac{1}{4\pi \epsilon_0} \Bigl[
1873 > % \text{Tr}Q_{\mathbf{b}}
1874 > % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1875 > % +2\sum_{lmn}D_{\mathbf{a}l}
1876 > % (\hat{a}_l \cdot \hat{b}_m)
1877 > % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1878 > % % 4
1879 > % &+ \frac{1}{4\pi \epsilon_0}
1880 > % \Bigl[\sum_l  D_{\mathbf{a}l} \hat{a}_l
1881 > % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1882 > % Q_{{\mathbf b}mn}
1883 > % (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1884 > %  D_{\mathbf{a}l}
1885 > % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1886 > % Q_{{\mathbf b}mn} \hat{b}_n \Bigr]   w_i(r)\\
1887 > % % 6
1888 > % &  -\frac{1}{4\pi \epsilon_0}
1889 > % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1890 > % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1891 > % Q_{{\mathbf b}mn}
1892 > % (\hat{b}_n \cdot \hat{r})  w_j(r)  \hat{r}
1893 > % \end{split}
1894 > % \end{equation}
1895 > % %
1896 > % % force qa cb
1897 > % %
1898 > % \begin{equation}
1899 > % \begin{split}
1900 > % % 1
1901 > % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1902 > % \frac{1}{4\pi \epsilon_0}  
1903 > % C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1904 > % + \frac{2C_{\bf b }}{4\pi \epsilon_0}  \sum_l  \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1905 > % % 2
1906 > % &  +\frac{C_{\bf b}}{4\pi \epsilon_0}
1907 > % \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1908 > % \end{split}
1909 > % \end{equation}
1910 > % %
1911 > % % f qa db
1912 > % %
1913 > % \begin{equation}
1914 > % \begin{split}
1915 > % % 1
1916 > % &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1917 > % \frac{1}{4\pi \epsilon_0} \Bigl[
1918 > % \text{Tr}Q_{\mathbf{a}}
1919 > % \sum_l  D_{\mathbf{b}l} \hat{b}_l
1920 > % +2\sum_{lmn} D_{\mathbf{b}l}
1921 > % (\hat{b}_l \cdot \hat{a}_m)
1922 > % Q_{\mathbf{a}mn} \hat{a}_n  \Bigr]
1923 > % w_g(r)\\
1924 > % % 3
1925 > % &  + \frac{1}{4\pi \epsilon_0} \Bigl[
1926 > % \text{Tr}Q_{\mathbf{a}}
1927 > % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1928 > % +2\sum_{lmn}D_{\mathbf{b}l}
1929 > % (\hat{b}_l \cdot \hat{a}_m)
1930 > % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1931 > % % 4
1932 > % &  + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l  D_{\mathbf{b}l} \hat{b}_l
1933 > % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1934 > % Q_{{\mathbf a}mn}
1935 > % (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1936 > %  D_{\mathbf{b}l}
1937 > % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1938 > % Q_{{\mathbf a}mn} \hat{a}_n \Bigr]   w_i(r) \\
1939 > % % 6
1940 > % &  +\frac{1}{4\pi \epsilon_0}
1941 > % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1942 > % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1943 > % Q_{{\mathbf a}mn}
1944 > % (\hat{a}_n \cdot \hat{r})  w_j(r)  \hat{r}
1945 > % \end{split}
1946 > % \end{equation}
1947 > % %
1948 > % % f qa qb
1949 > % %
1950 > % \begin{equation}
1951 > % \begin{split}
1952 > % &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1953 > % \frac{1}{4\pi \epsilon_0} \Bigl[
1954 > % \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1955 > % + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1956 > % Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1957 > % (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1958 > % &+\frac{1}{4\pi \epsilon_0} \Bigl[
1959 > % 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm}  \hat{a}_m  
1960 > % + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm}  \hat{b}_m \\
1961 > % &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})  
1962 > % + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1963 > % \Bigr] w_n(r) \\
1964 > % &+ \frac{1}{4\pi \epsilon_0}
1965 > % \Bigl[ \text{Tr}Q_{\mathbf{a}}
1966 > % \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1967 > % + \text{Tr}Q_{\mathbf{b}}
1968 > % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm}  (\hat{a}_m \cdot \hat{r}) \\
1969 > % &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1970 > % Q_{\mathbf{b}np}  (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1971 > % %
1972 > % &+\frac{1}{4\pi \epsilon_0} \Bigl[
1973 > % 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1974 > % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1975 > % &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1976 > % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1977 > % &  + \frac{1}{4\pi \epsilon_0}
1978 > % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1979 > % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1980 > % \end{split}
1981 > % \end{equation}
1982 > % %
1983 > % Here we list the form of the non-zero damped shifted multipole torques showing
1984 > % explicitly dependences on body axes:
1985 > % %
1986 > % %  t ca db
1987 > % %
1988 > % \begin{equation}
1989 > % \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1990 > % \frac{C_{\bf a}}{4\pi \epsilon_0}  
1991 > % \sum_n  (\hat{r} \times \hat{b}_n)  D_{\mathbf{b}n} \,  v_{11}(r)
1992 > % \end{equation}
1993 > % %
1994 > % % t ca qb
1995 > % %
1996 > % \begin{equation}
1997 > % \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1998 > % \frac{2C_{\bf a}}{4\pi \epsilon_0}
1999 > % \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
2000 > % \end{equation}
2001 > % %
2002 > % %  t da cb
2003 > % %
2004 > % \begin{equation}
2005 > % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
2006 > % -\frac{C_{\bf b}}{4\pi \epsilon_0}  
2007 > % \sum_n  (\hat{r} \times \hat{a}_n)  D_{\mathbf{a}n} \,  v_{11}(r)
2008 > % \end{equation}%
2009 > % %
2010 > % %
2011 > % %  ta da db
2012 > % %
2013 > % \begin{equation}
2014 > % \begin{split}
2015 > % % 1
2016 > % \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
2017 > % \frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
2018 > % (\hat{a}_m \times  \hat{b}_n)
2019 > % D_{\mathbf{b}n} v_{21}(r) \\
2020 > % % 2
2021 > % &-\frac{1}{4\pi \epsilon_0}
2022 > % \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
2023 > % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
2024 > % \end{split}
2025 > % \end{equation}
2026 > % %
2027 > % %  tb da db
2028 > % %
2029 > % \begin{equation}
2030 > % \begin{split}
2031 > % % 1
2032 > % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
2033 > % -\frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
2034 > % (\hat{a}_m \times  \hat{b}_n)
2035 > % D_{\mathbf{b}n} v_{21}(r) \\
2036 > % % 2
2037 > % &+\frac{1}{4\pi \epsilon_0}
2038 > % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
2039 > % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
2040 > % \end{split}
2041 > % \end{equation}
2042 > % %
2043 > % % ta da qb
2044 > % %
2045 > % \begin{equation}
2046 > % \begin{split}
2047 > % % 1
2048 > % \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
2049 > % \frac{1}{4\pi \epsilon_0} \left(
2050 > % -\text{Tr}Q_{\mathbf{b}}
2051 > % \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
2052 > % +2\sum_{lmn}D_{\mathbf{a}l}
2053 > % (\hat{a}_l \times \hat{b}_m)
2054 > % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2055 > % \right) v_{31}(r)\\
2056 > % % 2
2057 > % &-\frac{1}{4\pi \epsilon_0}
2058 > % \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2059 > % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2060 > % Q_{{\mathbf b}mn}
2061 > % (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2062 > % \end{split}
2063 > % \end{equation}
2064 > % %
2065 > % % tb da qb
2066 > % %
2067 > % \begin{equation}
2068 > % \begin{split}
2069 > % % 1
2070 > % \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2071 > % \frac{1}{4\pi \epsilon_0} \left(
2072 > % -2\sum_{lmn}D_{\mathbf{a}l}
2073 > % (\hat{a}_l \cdot \hat{b}_m)
2074 > % Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2075 > % -2\sum_{lmn}D_{\mathbf{a}l}
2076 > % (\hat{a}_l \times \hat{b}_m)
2077 > % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2078 > % \right) v_{31}(r) \\
2079 > % % 2
2080 > % &-\frac{2}{4\pi \epsilon_0}
2081 > % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2082 > % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2083 > % Q_{{\mathbf b}mn}
2084 > % (\hat{r}\times \hat{b}_n) v_{32}(r)
2085 > % \end{split}
2086 > % \end{equation}
2087 > % %
2088 > % % ta qa cb
2089 > % %
2090 > % \begin{equation}
2091 > % \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2092 > % \frac{2C_{\bf a}}{4\pi \epsilon_0}
2093 > % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2094 > % \end{equation}
2095 > % %
2096 > % % ta qa db
2097 > % %
2098 > % \begin{equation}
2099 > % \begin{split}
2100 > % % 1
2101 > % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2102 > % \frac{1}{4\pi \epsilon_0} \left(
2103 > % 2\sum_{lmn}D_{\mathbf{b}l}
2104 > % (\hat{b}_l \cdot \hat{a}_m)
2105 > % Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2106 > % +2\sum_{lmn}D_{\mathbf{b}l}
2107 > % (\hat{a}_l \times \hat{b}_m)
2108 > % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2109 > % \right) v_{31}(r) \\
2110 > % % 2
2111 > % &+\frac{2}{4\pi \epsilon_0}
2112 > % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2113 > % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2114 > % Q_{{\mathbf a}mn}
2115 > % (\hat{r}\times \hat{a}_n) v_{32}(r)
2116 > % \end{split}
2117 > % \end{equation}
2118 > % %
2119 > % % tb qa db
2120 > % %
2121 > % \begin{equation}
2122 > % \begin{split}
2123 > % % 1
2124 > % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2125 > % \frac{1}{4\pi \epsilon_0} \left(
2126 > % \text{Tr}Q_{\mathbf{a}}
2127 > % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2128 > % +2\sum_{lmn}D_{\mathbf{b}l}
2129 > % (\hat{a}_l \times \hat{b}_m)
2130 > % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2131 > % \right) v_{31}(r)\\
2132 > % % 2
2133 > % &\frac{1}{4\pi \epsilon_0}
2134 > % \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2135 > % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2136 > % Q_{{\mathbf a}mn}
2137 > % (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2138 > % \end{split}
2139 > % \end{equation}
2140 > % %
2141 > % % ta qa qb
2142 > % %
2143 > % \begin{equation}
2144 > % \begin{split}
2145 > % % 1
2146 > % \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2147 > % -\frac{4}{4\pi \epsilon_0}
2148 > % \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2149 > % Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
2150 > % (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2151 > % % 2
2152 > % &+ \frac{1}{4\pi \epsilon_0}
2153 > % \Bigl[
2154 > % 2\text{Tr}Q_{\mathbf{b}}
2155 > % \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2156 > % Q_{{\mathbf a}lm}
2157 > % (\hat{r} \times \hat{a}_m)
2158 > % +4 \sum_{lmnp}
2159 > % (\hat{r} \times \hat{a}_l )
2160 > % Q_{{\mathbf a}lm}
2161 > % (\hat{a}_m \cdot \hat{b}_n)
2162 > % Q_{{\mathbf b}np}
2163 > % (\hat{b}_p \cdot \hat{r}) \\
2164 > % % 3
2165 > % &-4 \sum_{lmnp}
2166 > % (\hat{r} \cdot \hat{a}_l )
2167 > % Q_{{\mathbf a}lm}
2168 > % (\hat{a}_m \times \hat{b}_n)
2169 > % Q_{{\mathbf b}np}
2170 > % (\hat{b}_p \cdot \hat{r})
2171 > % \Bigr] v_{42}(r) \\
2172 > % % 4
2173 > % &+ \frac{2}{4\pi \epsilon_0}
2174 > % \sum_{lm} (\hat{r} \times \hat{a}_l)
2175 > % Q_{{\mathbf a}lm}
2176 > % (\hat{a}_m \cdot \hat{r})
2177 > % \sum_{np}  (\hat{r} \cdot \hat{b}_n)
2178 > % Q_{{\mathbf b}np}
2179 > % (\hat{b}_p \cdot \hat{r})  v_{43}(r)\\
2180 > % \end{split}
2181 > % \end{equation}
2182 > % %
2183 > % % tb qa qb
2184 > % %
2185 > % \begin{equation}
2186 > % \begin{split}
2187 > % % 1
2188 > % \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2189 > % \frac{4}{4\pi \epsilon_0}
2190 > % \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2191 > % Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
2192 > % (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2193 > % % 2
2194 > % &+ \frac{1}{4\pi \epsilon_0}
2195 > % \Bigl[
2196 > % 2\text{Tr}Q_{\mathbf{a}}
2197 > % \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2198 > % Q_{{\mathbf b}lm}
2199 > % (\hat{r} \times \hat{b}_m)
2200 > % +4 \sum_{lmnp}
2201 > % (\hat{r} \cdot \hat{a}_l )
2202 > % Q_{{\mathbf a}lm}
2203 > % (\hat{a}_m \cdot \hat{b}_n)
2204 > % Q_{{\mathbf b}np}
2205 > % (\hat{r} \times \hat{b}_p) \\
2206 > % % 3
2207 > % &+4 \sum_{lmnp}
2208 > % (\hat{r} \cdot \hat{a}_l )
2209 > % Q_{{\mathbf a}lm}
2210 > % (\hat{a}_m \times \hat{b}_n)
2211 > % Q_{{\mathbf b}np}
2212 > % (\hat{b}_p \cdot \hat{r})
2213 > % \Bigr] v_{42}(r)  \\
2214 > % % 4
2215 > % &+ \frac{2}{4\pi \epsilon_0}
2216 > % \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2217 > % Q_{{\mathbf a}lm}
2218 > % (\hat{a}_m \cdot \hat{r})
2219 > % \sum_{np}  (\hat{r} \times \hat{b}_n)
2220 > % Q_{{\mathbf b}np}
2221 > % (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2222 > % \end{split}
2223 > % \end{equation}
2224   %
2225 < \end{tabular}
2226 < \end{ruledtabular}
2227 < \end{table*}
2225 > % \begin{table*}
2226 > % \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2227 > % \begin{ruledtabular}
2228 > % \begin{tabular}{|l|l|l|}
2229 > % Generic&Taylor-shifted Force&Gradient-shifted Force
2230 > % \\ \hline
2231 > % %
2232 > % %
2233 > % %
2234 > % $w_a(r)$&
2235 > % $g_0(r)$&
2236 > % $g(r)-g(r_c)$ \\
2237 > % %
2238 > % %
2239 > % $w_b(r)$ &
2240 > % $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2241 > % $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2242 > % %
2243 > % $w_c(r)$ &
2244 > % $\frac{g_1(r)}{r} $ &
2245 > % $\frac{v_{11}(r)}{r}$ \\
2246 > % %
2247 > % %
2248 > % $w_d(r)$&
2249 > % $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2250 > % $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2251 > % -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2252 > % %
2253 > % $w_e(r)$ &
2254 > % $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2255 > % $\frac{v_{22}(r)}{r}$ \\
2256 > % %
2257 > % %
2258 > % $w_f(r)$&
2259 > % $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2260 > % $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2261 > % &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2262 > % %
2263 > % $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2264 > % $\frac{v_{31}(r)}{r}$\\
2265 > % %
2266 > % $w_h(r)$ &
2267 > % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
2268 > % $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2269 > % &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2270 > % &&$-\frac{v_{31}(r)}{r}$\\
2271 > % % 2
2272 > % $w_i(r)$ &
2273 > % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
2274 > % $\frac{v_{32}(r)}{r}$ \\
2275 > % %
2276 > % $w_j(r)$ &
2277 > % $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right)  $ &
2278 > % $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $  \\
2279 > % &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2280 > % %
2281 > % $w_k(r)$ &
2282 > % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
2283 > % $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}  \right)$  \\
2284 > % &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2}  \right)$ \\
2285 > % %
2286 > % $w_l(r)$ &
2287 > % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2288 > % $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2289 > % &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2290 > % -\frac{2v_{42}(r)}{r}$ \\
2291 > % %
2292 > % $w_m(r)$ &
2293 > % $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2294 > % $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2295 > % &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2296 > % +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2297 > % &&$-\frac{4v_{43}(r)}{r}$ \\
2298 > % %
2299 > % $w_n(r)$ &
2300 > % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
2301 > % $\frac{v_{42}(r)}{r}$ \\
2302 > % %
2303 > % $w_o(r)$ &
2304 > % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2305 > % $\frac{v_{43}(r)}{r}$ \\
2306 > % %
2307 > % \end{tabular}
2308 > % \end{ruledtabular}
2309 > % \end{table*}
2310  
2311   \newpage
2312  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines