ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3985
Committed: Tue Dec 31 01:33:31 2013 UTC (10 years, 7 months ago) by gezelter
Content type: application/x-tex
File size: 82583 byte(s)
Log Message:
Edits + data

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38
39 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40 %\linenumbers\relax % Commence numbering lines
41
42 \begin{document}
43
44 \preprint{AIP/123-QED}
45
46 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
47 {Real space alternatives to the Ewald
48 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
49
50 \author{Madan Lamichhane}
51 \affiliation{Department of Physics, University
52 of Notre Dame, Notre Dame, IN 46556}
53
54 \author{J. Daniel Gezelter}
55 \email{gezelter@nd.edu.}
56 \affiliation{Department of Chemistry and Biochemistry, University
57 of Notre Dame, Notre Dame, IN 46556}
58
59 \author{Kathie E. Newman}
60 \affiliation{Department of Physics, University
61 of Notre Dame, Notre Dame, IN 46556}
62
63
64 \date{\today}% It is always \today, today,
65 % but any date may be explicitly specified
66
67 \begin{abstract}
68 We have extended the original damped-shifted force (DSF)
69 electrostatic kernel and have been able to derive two new
70 electrostatic potentials for higher-order multipoles that are based
71 on truncated Taylor expansions around the cutoff radius. For
72 multipole-multipole interactions, we find that each of the distinct
73 orientational contributions has a separate radial function to ensure
74 that the overall forces and torques vanish at the cutoff radius. In
75 this paper, we present energy, force, and torque expressions for the
76 new models, and compare these real-space interaction models to exact
77 results for ordered arrays of multipoles.
78 \end{abstract}
79
80 \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
81 % Classification Scheme.
82 \keywords{Suggested keywords}%Use showkeys class option if keyword
83 %display desired
84 \maketitle
85
86 \section{Introduction}
87 There has been increasing interest in real-space methods for
88 calculating electrostatic interactions in computer simulations of
89 condensed molecular
90 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
91 The simplest of these techniques was developed by Wolf {\it et al.}
92 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
93 For systems of point charges, Fennell and Gezelter showed that a
94 simple damped shifted force (DSF) modification to Wolf's method could
95 give nearly quantitative agreement with smooth particle mesh Ewald
96 (SPME)\cite{Essmann95} configurational energy differences as well as
97 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
98
99 The computational efficiency and the accuracy of the DSF method are
100 surprisingly good, particularly for systems with uniform charge
101 density. Additionally, dielectric constants obtained using DSF and
102 similar methods where the force vanishes at $R_\textrm{c}$ are
103 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
104 related methods have now been widely investigated,\cite{Hansen:2012uq}
105 and DSF is now used routinely in a diverse set of chemical
106 environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
107 DSF electrostatics provides a compromise between the computational
108 speed of real-space cutoffs and the accuracy of fully-periodic Ewald
109 treatments.
110
111 One common feature of many coarse-graining approaches, which treat
112 entire molecular subsystems as a single rigid body, is simplification
113 of the electrostatic interactions between these bodies so that fewer
114 site-site interactions are required to compute configurational
115 energies. The coarse-graining approaches of Ren \&
116 coworkers,\cite{Golubkov06} and Essex \&
117 coworkers,\cite{ISI:000276097500009,ISI:000298664400012} both utilize
118 point multipoles to model electrostatics for entire molecules or
119 functional groups.
120
121 Ichiye and coworkers have recently introduced a number of very fast
122 water models based on a ``sticky'' multipole model which are
123 qualitatively better at reproducing the behavior of real water than
124 the more common point-charge models (SPC/E,
125 TIPnP).\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The SSDQO
126 model requires the use of an approximate multipole expansion (AME) as
127 the exact multipole expansion is quite expensive (particularly when
128 handled via the Ewald sum).\cite{Ichiye:2006qy}
129
130 Another particularly important use of point multipoles (and multipole
131 polarizability) is in the very high-quality AMOEBA water model and
132 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
133
134 Higher-order multipoles present a peculiar issue for molecular
135 dynamics. Multipolar interactions are inherently short-ranged, and
136 should not need the relatively expensive Ewald treatment. However,
137 real-space cutoff methods are normally applied in an orientation-blind
138 fashion so multipoles which leave and then re-enter a cutoff sphere in
139 a different orientation can cause energy discontinuities.
140
141 This paper outlines an extension of the original DSF electrostatic
142 kernel to point multipoles. We describe two distinct real-space
143 interaction models for higher-order multipoles based on two truncated
144 Taylor expansions that are carried out at the cutoff radius. We are
145 calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
146 electrostatics. Because of differences in the initial assumptions,
147 the two methods yield related, but different expressions for energies,
148 forces, and torques.
149
150 In this paper we outline the new methodology and give functional forms
151 for the energies, forces, and torques up to quadrupole-quadrupole
152 order. We also compare the new methods to analytic energy constants
153 for periodic arrays of point multipoles. In the following paper, we
154 provide numerical comparisons to Ewald-based electrostatics in common
155 simulation enviornments.
156
157 \section{Methodology}
158
159 \subsection{Self-neutralization, damping, and force-shifting}
160 The DSF and Wolf methods operate by neutralizing the total charge
161 contained within the cutoff sphere surrounding each particle. This is
162 accomplished by shifting the potential functions to generate image
163 charges on the surface of the cutoff sphere for each pair interaction
164 computed within $R_\textrm{c}$. Damping using a complementary error
165 function is applied to the potential to accelerate convergence. The
166 potential for the DSF method, where $\alpha$ is the adjustable damping
167 parameter, is given by
168 \begin{equation*}
169 V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
170 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
171 - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
172 + \frac{2\alpha}{\pi^{1/2}}
173 \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
174 \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
175 \label{eq:DSFPot}
176 \end{equation*}
177 Note that in this potential and in all electrostatic quantities that
178 follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
179 clarity.
180
181 To insure net charge neutrality within each cutoff sphere, an
182 additional ``self'' term is added to the potential. This term is
183 constant (as long as the charges and cutoff radius do not change), and
184 exists outside the normal pair-loop for molecular simulations. It can
185 be thought of as a contribution from a charge opposite in sign, but
186 equal in magnitude, to the central charge, which has been spread out
187 over the surface of the cutoff sphere. A portion of the self term is
188 identical to the self term in the Ewald summation, and comes from the
189 utilization of the complimentary error function for electrostatic
190 damping.\cite{deLeeuw80,Wolf99}
191
192 There have been recent efforts to extend the Wolf self-neutralization
193 method to zero out the dipole and higher order multipoles contained
194 within the cutoff
195 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
196
197 In this work, we extend the idea of self-neutralization for the point
198 multipoles by insuring net charge-neutrality and net-zero moments
199 within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
200 central dipolar site $\mathbf{D}_i$ is interacting with point dipole
201 $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
202 self-neutralization scheme for point multipoles involves projecting
203 opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
204 sphere. There are also significant modifications made to make the
205 forces and torques go smoothly to zero at the cutoff distance.
206
207 \begin{figure}
208 \includegraphics[width=3in]{SM}
209 \caption{Reversed multipoles are projected onto the surface of the
210 cutoff sphere. The forces, torques, and potential are then smoothly
211 shifted to zero as the sites leave the cutoff region.}
212 \label{fig:shiftedMultipoles}
213 \end{figure}
214
215 As in the point-charge approach, there is a contribution from
216 self-neutralization of site $i$. The self term for multipoles is
217 described in section \ref{sec:selfTerm}.
218
219 \subsection{The multipole expansion}
220
221 Consider two discrete rigid collections of point charges, denoted as
222 $\bf a$ and $\bf b$. In the following, we assume that the two objects
223 interact via electrostatics only and describe those interactions in
224 terms of a standard multipole expansion. Putting the origin of the
225 coordinate system at the center of mass of $\bf a$, we use vectors
226 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
227 a$. Then the electrostatic potential of object $\bf a$ at
228 $\mathbf{r}$ is given by
229 \begin{equation}
230 V_a(\mathbf r) =
231 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
232 \end{equation}
233 The Taylor expansion in $r$ can be written using an implied summation
234 notation. Here Greek indices are used to indicate space coordinates
235 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
236 labelling specific charges in $\bf a$ and $\bf b$ respectively. The
237 Taylor expansion,
238 \begin{equation}
239 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
240 \left( 1
241 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
242 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
243 \right)
244 \frac{1}{r} ,
245 \end{equation}
246 can then be used to express the electrostatic potential on $\bf a$ in
247 terms of multipole operators,
248 \begin{equation}
249 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
250 \end{equation}
251 where
252 \begin{equation}
253 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
254 + Q_{{\bf a}\alpha\beta}
255 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
256 \end{equation}
257 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
258 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
259 a}\alpha\beta}$, respectively. These are the primitive multipoles
260 which can be expressed as a distribution of charges,
261 \begin{align}
262 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
263 D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
264 Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
265 \end{align}
266 Note that the definition of the primitive quadrupole here differs from
267 the standard traceless form, and contains an additional Taylor-series
268 based factor of $1/2$.
269
270 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
271 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
272 \begin{equation}
273 U_{\bf{ab}}(r)
274 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
275 \end{equation}
276 This can also be expanded as a Taylor series in $r$. Using a notation
277 similar to before to define the multipoles on object {\bf b},
278 \begin{equation}
279 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
280 + Q_{{\bf b}\alpha\beta}
281 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
282 \end{equation}
283 we arrive at the multipole expression for the total interaction energy.
284 \begin{equation}
285 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
286 \end{equation}
287 This form has the benefit of separating out the energies of
288 interaction into contributions from the charge, dipole, and quadrupole
289 of $\bf a$ interacting with the same multipoles $\bf b$.
290
291 \subsection{Damped Coulomb interactions}
292 In the standard multipole expansion, one typically uses the bare
293 Coulomb potential, with radial dependence $1/r$, as shown in
294 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
295 interaction, which results from replacing point charges with Gaussian
296 distributions of charge with width $\alpha$. In damped multipole
297 electrostatics, the kernel ($1/r$) of the expansion is replaced with
298 the function:
299 \begin{equation}
300 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
301 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
302 \end{equation}
303 We develop equations below using the function $f(r)$ to represent
304 either $1/r$ or $B_0(r)$, and all of the techniques can be applied
305 either to bare or damped Coulomb kernels as long as derivatives of
306 these functions are known. Smith's convenient functions $B_l(r)$ are
307 summarized in Appendix A.
308
309 The main goal of this work is to smoothly cut off the interaction
310 energy as well as forces and torques as $r\rightarrow r_c$. To
311 describe how this goal may be met, we use two examples, charge-charge
312 and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
313 the idea.
314
315 \subsection{Shifted-force methods}
316 In the shifted-force approximation, the interaction energy for two
317 charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
318 written:
319 \begin{equation}
320 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
321 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
322 \right) .
323 \end{equation}
324 Two shifting terms appear in this equations, one from the
325 neutralization procedure ($-1/r_c$), and one that causes the first
326 derivative to vanish at the cutoff radius.
327
328 Since one derivative of the interaction energy is needed for the
329 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
330 interaction energy, that is:
331 \begin{equation}
332 \frac{d\,}{dr}
333 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
334 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
335 \right) .
336 \end{equation}
337 which clearly vanishes as the $r$ approaches the cutoff radius. There
338 are a number of ways to generalize this derivative shift for
339 higher-order multipoles. Below, we present two methods, one based on
340 higher-order Taylor series for $r$ near $r_c$, and the other based on
341 linear shift of the kernel gradients at the cutoff itself.
342
343 \subsection{Taylor-shifted force (TSF) electrostatics}
344 In the Taylor-shifted force (TSF) method, the procedure that we follow
345 is based on a Taylor expansion containing the same number of
346 derivatives required for each force term to vanish at the cutoff. For
347 example, the quadrupole-quadrupole interaction energy requires four
348 derivatives of the kernel, and the force requires one additional
349 derivative. We therefore require shifted energy expressions that
350 include enough terms so that all energies, forces, and torques are
351 zero as $r \rightarrow r_c$. In each case, we will subtract off a
352 function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$. The
353 subscript $n$ indicates the number of derivatives to be taken when
354 deriving a given multipole energy. We choose a function with
355 guaranteed smooth derivatives --- a truncated Taylor series of the
356 function $f(r)$, e.g.,
357 %
358 \begin{equation}
359 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
360 \end{equation}
361 %
362 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
363 Thus, for $f(r)=1/r$, we find
364 %
365 \begin{equation}
366 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
367 \end{equation}
368 %
369 Continuing with the example of a charge $\bf a$ interacting with a
370 dipole $\bf b$, we write
371 %
372 \begin{equation}
373 U_{C_{\bf a}D_{\bf b}}(r)=
374 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
375 = C_{\bf a} D_{{\bf b}\alpha}
376 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
377 \end{equation}
378 %
379 The force that dipole $\bf b$ exerts on charge $\bf a$ is
380 %
381 \begin{equation}
382 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
383 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
384 \frac{r_\alpha r_\beta}{r^2}
385 \left( -\frac{1}{r} \frac {\partial} {\partial r}
386 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
387 \end{equation}
388 %
389 For undamped coulombic interactions, $f(r)=1/r$, we find
390 %
391 \begin{equation}
392 F_{C_{\bf a}D_{\bf b}\beta} =
393 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
394 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
395 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
396 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
397 \end{equation}
398 %
399 This expansion shows the expected $1/r^3$ dependence of the force.
400
401 In general, we can write
402 %
403 \begin{equation}
404 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
405 \label{generic}
406 \end{equation}
407 %
408 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
409 charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
410 $n=4$ for quadrupole-quadrupole. For example, in
411 quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
412 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
413 $\partial^4/\partial r_\alpha \partial r_\beta \partial
414 r_\gamma \partial r_\delta$, with implied summation combining the
415 space indices.
416
417 In the formulas presented in the tables below, the placeholder
418 function $f(r)$ is used to represent the electrostatic kernel (either
419 damped or undamped). The main functions that go into the force and
420 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
421 successive derivatives of the shifted electrostatic kernel, $f_n(r)$
422 of the same index $n$. The algebra required to evaluate energies,
423 forces and torques is somewhat tedious, so only the final forms are
424 presented in tables XX and YY.
425
426 \subsection{Gradient-shifted force (GSF) electrostatics}
427 The second, and conceptually simpler approach to force-shifting
428 maintains only the linear $(r-r_c)$ term in the truncated Taylor
429 expansion, and has a similar interaction energy for all multipole
430 orders:
431 \begin{equation}
432 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
433 \lvert _{r_c} .
434 \label{generic2}
435 \end{equation}
436 Here the gradient for force shifting is evaluated for an image
437 multipole on the surface of the cutoff sphere (see fig
438 \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
439 appear. The primary difference between the TSF and GSF methods is the
440 stage at which the Taylor Series is applied; in the Taylor-shifted
441 approach, it is applied to the kernel itself. In the Gradient-shifted
442 approach, it is applied to individual radial interactions terms in the
443 multipole expansion. Energies from this method thus have the general
444 form:
445 \begin{equation}
446 U= \sum (\text{angular factor}) (\text{radial factor}).
447 \label{generic3}
448 \end{equation}
449
450 Functional forms for both methods (TSF and GSF) can be summarized
451 using the form of Eq.~(\ref{generic3}). The basic forms for the
452 energy, force, and torque expressions are tabulated for both shifting
453 approaches below - for each separate orientational contribution, only
454 the radial factors differ between the two methods.
455
456 \subsection{\label{sec:level2}Body and space axes}
457
458 [XXX Do we need this section in the main paper? or should it go in the
459 extra materials?]
460
461 So far, all energies and forces have been written in terms of fixed
462 space coordinates. Interaction energies are computed from the generic
463 formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which combine
464 orientational prefactors with radial functions. Because objects $\bf
465 a$ and $\bf b$ both translate and rotate during a molecular dynamics
466 (MD) simulation, it is desirable to contract all $r$-dependent terms
467 with dipole and quadrupole moments expressed in terms of their body
468 axes. To do so, we have followed the methodology of Allen and
469 Germano,\cite{Allen:2006fk} which was itself based on earlier work by
470 Price {\em et al.}\cite{Price:1984fk}
471
472 We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
473 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
474 referring to a convenient set of inertial body axes. (N.B., these
475 body axes are generally not the same as those for which the quadrupole
476 moment is diagonal.) Then,
477 %
478 \begin{eqnarray}
479 \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
480 \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
481 \end{eqnarray}
482 Rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
483 expressed using these unit vectors:
484 \begin{eqnarray}
485 \hat{\mathbf {a}} =
486 \begin{pmatrix}
487 \hat{a}_1 \\
488 \hat{a}_2 \\
489 \hat{a}_3
490 \end{pmatrix}
491 =
492 \begin{pmatrix}
493 a_{1x} \quad a_{1y} \quad a_{1z} \\
494 a_{2x} \quad a_{2y} \quad a_{2z} \\
495 a_{3x} \quad a_{3y} \quad a_{3z}
496 \end{pmatrix}\\
497 \hat{\mathbf {b}} =
498 \begin{pmatrix}
499 \hat{b}_1 \\
500 \hat{b}_2 \\
501 \hat{b}_3
502 \end{pmatrix}
503 =
504 \begin{pmatrix}
505 b_{1x} \quad b_{1y} \quad b_{1z} \\
506 b_{2x} \quad b_{2y} \quad b_{2z} \\
507 b_{3x} \quad b_{3y} \quad b_{3z}
508 \end{pmatrix} .
509 \end{eqnarray}
510 %
511 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
512 coordinates. All contractions of prefactors with derivatives of
513 functions can be written in terms of these matrices. It proves to be
514 equally convenient to just write any contraction in terms of unit
515 vectors $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. In the torque
516 expressions, it is useful to have the angular-dependent terms
517 available in three different fashions, e.g. for the dipole-dipole
518 contraction:
519 %
520 \begin{equation}
521 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
522 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
523 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
524 \end{equation}
525 %
526 The first two forms are written using space coordinates. The first
527 form is standard in the chemistry literature, while the second is
528 expressed using implied summation notation. The third form shows
529 explicit sums over body indices and the dot products now indicate
530 contractions using space indices.
531
532
533 \subsection{The Self-Interaction \label{sec:selfTerm}}
534
535 In addition to cutoff-sphere neutralization, the Wolf
536 summation~\cite{Wolf99} and the damped shifted force (DSF)
537 extension~\cite{Fennell:2006zl} also included self-interactions that
538 are handled separately from the pairwise interactions between
539 sites. The self-term is normally calculated via a single loop over all
540 sites in the system, and is relatively cheap to evaluate. The
541 self-interaction has contributions from two sources.
542
543 First, the neutralization procedure within the cutoff radius requires
544 a contribution from a charge opposite in sign, but equal in magnitude,
545 to the central charge, which has been spread out over the surface of
546 the cutoff sphere. For a system of undamped charges, the total
547 self-term is
548 \begin{equation}
549 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
550 \label{eq:selfTerm}
551 \end{equation}
552
553 Second, charge damping with the complementary error function is a
554 partial analogy to the Ewald procedure which splits the interaction
555 into real and reciprocal space sums. The real space sum is retained
556 in the Wolf and DSF methods. The reciprocal space sum is first
557 minimized by folding the largest contribution (the self-interaction)
558 into the self-interaction from charge neutralization of the damped
559 potential. The remainder of the reciprocal space portion is then
560 discarded (as this contributes the largest computational cost and
561 complexity to the Ewald sum). For a system containing only damped
562 charges, the complete self-interaction can be written as
563 \begin{equation}
564 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
565 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
566 C_{\bf a}^{2}.
567 \label{eq:dampSelfTerm}
568 \end{equation}
569
570 The extension of DSF electrostatics to point multipoles requires
571 treatment of {\it both} the self-neutralization and reciprocal
572 contributions to the self-interaction for higher order multipoles. In
573 this section we give formulae for these interactions up to quadrupolar
574 order.
575
576 The self-neutralization term is computed by taking the {\it
577 non-shifted} kernel for each interaction, placing a multipole of
578 equal magnitude (but opposite in polarization) on the surface of the
579 cutoff sphere, and averaging over the surface of the cutoff sphere.
580 Because the self term is carried out as a single sum over sites, the
581 reciprocal-space portion is identical to half of the self-term
582 obtained by Smith and Aguado and Madden for the application of the
583 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
584 site which posesses a charge, dipole, and multipole, both types of
585 contribution are given in table \ref{tab:tableSelf}.
586
587 \begin{table*}
588 \caption{\label{tab:tableSelf} Self-interaction contributions for
589 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
590 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
591 \begin{ruledtabular}
592 \begin{tabular}{lccc}
593 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
594 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
595 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
596 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
597 Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
598 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
599 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
600 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
601 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
602 \end{tabular}
603 \end{ruledtabular}
604 \end{table*}
605
606 For sites which simultaneously contain charges and quadrupoles, the
607 self-interaction includes a cross-interaction between these two
608 multipole orders. Symmetry prevents the charge-dipole and
609 dipole-quadrupole interactions from contributing to the
610 self-interaction. The functions that go into the self-neutralization
611 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
612 derivatives of the electrostatic kernel, $f(r)$ (either the undamped
613 $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
614 have been evaluated at the cutoff distance. For undamped
615 interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
616 damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
617 on. Appendix \ref{SmithFunc} contains recursion relations that allow
618 rapid evaluation of these derivatives.
619
620 \section{Interaction energies, forces, and torques}
621 The main result of this paper is a set of expressions for the
622 energies, forces and torques (up to quadrupole-quadrupole order) that
623 work for both the Taylor-shifted and Gradient-shifted approximations.
624 These expressions were derived using a set of generic radial
625 functions. Without using the shifting approximations mentioned above,
626 some of these radial functions would be identical, and the expressions
627 coalesce into the familiar forms for unmodified multipole-multipole
628 interactions. Table \ref{tab:tableenergy} maps between the generic
629 functions and the radial functions derived for both the Taylor-shifted
630 and Gradient-shifted methods. The energy equations are written in
631 terms of lab-frame representations of the dipoles, quadrupoles, and
632 the unit vector connecting the two objects,
633
634 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
635 %
636 %
637 % u ca cb
638 %
639 \begin{align}
640 U_{C_{\bf a}C_{\bf b}}(r)=&
641 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
642 \\
643 %
644 % u ca db
645 %
646 U_{C_{\bf a}D_{\bf b}}(r)=&
647 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
648 \label{uchdip}
649 \\
650 %
651 % u ca qb
652 %
653 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
654 v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
655 \hat{r} \right) v_{22}(r) \Bigr]
656 \label{uchquad}
657 \\
658 %
659 % u da cb
660 %
661 %U_{D_{\bf a}C_{\bf b}}(r)=&
662 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
663 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
664 %\\
665 %
666 % u da db
667 %
668 U_{D_{\bf a}D_{\bf b}}(r)=&
669 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
670 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
671 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
672 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
673 v_{22}(r) \Bigr]
674 \label{udipdip}
675 \\
676 %
677 % u da qb
678 %
679 \begin{split}
680 % 1
681 U_{D_{\bf a}Q_{\bf b}}(r) =&
682 -\Bigl[
683 \text{Tr}\mathbf{Q}_{\mathbf{b}}
684 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
685 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
686 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
687 % 2
688 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
689 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
690 \label{udipquad}
691 \end{split}
692 \\
693 %
694 % u qa cb
695 %
696 %U_{Q_{\bf a}C_{\bf b}}(r)=&
697 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
698 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
699 %\label{uquadch}
700 %\\
701 %
702 % u qa db
703 %
704 %\begin{split}
705 %1
706 %U_{Q_{\bf a}D_{\bf b}}(r)=&
707 %\frac{1}{4\pi \epsilon_0} \Bigl[
708 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
709 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
710 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
711 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
712 % 2
713 %&+\frac{1}{4\pi \epsilon_0}
714 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
715 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
716 %\label{uquaddip}
717 %\end{split}
718 %\\
719 %
720 % u qa qb
721 %
722 \begin{split}
723 %1
724 U_{Q_{\bf a}Q_{\bf b}}(r)=&
725 \Bigl[
726 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
727 +2 \text{Tr} \left(
728 \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
729 \\
730 % 2
731 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
732 \left( \hat{r} \cdot
733 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
734 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
735 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
736 \cdot \hat{r} \right) +4 (\hat{r} \cdot
737 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
738 \Bigr] v_{42}(r)
739 \\
740 % 4
741 &+
742 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
743 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
744 \label{uquadquad}
745 \end{split}
746 \end{align}
747 %
748 Note that the energies of multipoles on site $\mathbf{b}$ interacting
749 with those on site $\mathbf{a}$ can be obtained by swapping indices
750 along with the sign of the intersite vector, $\hat{r}$.
751
752 %
753 %
754 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
755 %
756
757 \begin{sidewaystable}
758 \caption{\label{tab:tableenergy}Radial functions used in the energy
759 and torque equations. The $f, g, h, s, t, \mathrm{and} u$
760 functions used in this table are defined in Appendices B and C.}
761 \begin{tabular}{|c|c|l|l|} \hline
762 Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
763 \\ \hline
764 %
765 %
766 %
767 %Ch-Ch&
768 $v_{01}(r)$ &
769 $\frac{1}{r}$ &
770 $f_0(r)$ &
771 $f(r)-f(r_c)-(r-r_c)g(r_c)$
772 \\
773 %
774 %
775 %
776 %Ch-Di&
777 $v_{11}(r)$ &
778 $-\frac{1}{r^2}$ &
779 $g_1(r)$ &
780 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
781 %
782 %
783 %
784 %Ch-Qu/Di-Di&
785 $v_{21}(r)$ &
786 $-\frac{1}{r^3} $ &
787 $\frac{g_2(r)}{r} $ &
788 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
789 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
790 $v_{22}(r)$ &
791 $\frac{3}{r^3} $ &
792 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
793 $\left(-\frac{g(r)}{r}+h(r) \right)
794 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
795 &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
796 \\
797 %
798 %
799 %
800 %Di-Qu &
801 $v_{31}(r)$ &
802 $\frac{3}{r^4} $ &
803 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
804 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
805 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
806 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
807 \\
808 %
809 $v_{32}(r)$ &
810 $-\frac{15}{r^4} $ &
811 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
812 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
813 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
814 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
815 \\
816 %
817 %
818 %
819 %Qu-Qu&
820 $v_{41}(r)$ &
821 $\frac{3}{r^5} $ &
822 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
823 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
824 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
825 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
826 \\
827 % 2
828 $v_{42}(r)$ &
829 $- \frac{15}{r^5} $ &
830 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
831 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
832 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
833 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
834 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
835 \\
836 % 3
837 $v_{43}(r)$ &
838 $ \frac{105}{r^5} $ &
839 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
840 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
841 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
842 &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
843 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
844 \end{tabular}
845 \end{sidewaystable}
846 %
847 %
848 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
849 %
850
851 \begin{sidewaystable}
852 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
853 \begin{tabular}{|c|c|l|l|} \hline
854 Function&Definition&Taylor-Shifted&Gradient-Shifted
855 \\ \hline
856 %
857 %
858 %
859 $w_a(r)$&
860 $\frac{d v_{01}}{dr}$&
861 $g_0(r)$&
862 $g(r)-g(r_c)$ \\
863 %
864 %
865 $w_b(r)$ &
866 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
867 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
868 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
869 %
870 $w_c(r)$ &
871 $\frac{v_{11}(r)}{r}$ &
872 $\frac{g_1(r)}{r} $ &
873 $\frac{v_{11}(r)}{r}$\\
874 %
875 %
876 $w_d(r)$&
877 $\frac{d v_{21}}{dr}$&
878 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
879 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
880 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
881 %
882 $w_e(r)$ &
883 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
884 $\frac{v_{22}(r)}{r}$ &
885 $\frac{v_{22}(r)}{r}$ \\
886 %
887 %
888 $w_f(r)$&
889 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
890 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
891 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
892 &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
893 \right)-\frac{2v_{22}(r)}{r}$\\
894 %
895 $w_g(r)$&
896 $\frac{v_{31}(r)}{r}$&
897 $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
898 $\frac{v_{31}(r)}{r}$\\
899 %
900 $w_h(r)$ &
901 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
902 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
903 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
904 &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
905 % 2
906 $w_i(r)$ &
907 $\frac{v_{32}(r)}{r}$ &
908 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
909 $\frac{v_{32}(r)}{r}$\\
910 %
911 $w_j(r)$ &
912 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
913 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
914 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
915 &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
916 -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
917 %
918 $w_k(r)$ &
919 $\frac{d v_{41}}{dr} $ &
920 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
921 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
922 -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
923 %
924 $w_l(r)$ &
925 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
926 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
927 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
928 &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
929 -\frac{2v_{42}(r)}{r}$\\
930 %
931 $w_m(r)$ &
932 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
933 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
934 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
935 &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
936 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
937 &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
938 %
939 $w_n(r)$ &
940 $\frac{v_{42}(r)}{r}$ &
941 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
942 $\frac{v_{42}(r)}{r}$\\
943 %
944 $w_o(r)$ &
945 $\frac{v_{43}(r)}{r}$&
946 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
947 $\frac{v_{43}(r)}{r}$ \\ \hline
948 %
949
950 \end{tabular}
951 \end{sidewaystable}
952 %
953 %
954 %
955
956 \subsection{Forces}
957 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
958 $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
959 a simple charge-charge interaction, these forces will point along the
960 $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
961 \mathbf{r}_a $. Thus
962 %
963 \begin{equation}
964 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
965 \quad \text{and} \quad F_{\bf b \alpha}
966 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
967 \end{equation}
968 %
969 Obtaining the force from the interaction energy expressions is the
970 same for higher-order multipole interactions -- the trick is to make
971 sure that all $r$-dependent derivatives are considered. This is
972 straighforward if the interaction energies are written explicitly in
973 terms of $\hat{r}$ and the body axes ($\hat{a}_m$,
974 $\hat{b}_n$) :
975 %
976 \begin{equation}
977 U(r,\{\hat{a}_m \cdot \hat{r} \},
978 \{\hat{b}_n\cdot \hat{r} \},
979 \{\hat{a}_m \cdot \hat{b}_n \}) .
980 \label{ugeneral}
981 \end{equation}
982 %
983 Allen and Germano,\cite{Allen:2006fk} showed that if the energy is
984 written in this form, the forces come out relatively cleanly,
985 %
986 \begin{equation}
987 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
988 = \frac{\partial U}{\partial r} \hat{r}
989 + \sum_m \left[
990 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
991 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
992 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
993 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
994 \right] \label{forceequation}.
995 \end{equation}
996 %
997 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
998 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
999 In simplifying the algebra, we have also used:
1000 %
1001 \begin{align}
1002 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1003 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1004 \right) \\
1005 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1006 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1007 \right) .
1008 \end{align}
1009 %
1010 We list below the force equations written in terms of lab-frame
1011 coordinates. The radial functions used in the two methods are listed
1012 in Table \ref{tab:tableFORCE}
1013 %
1014 %SPACE COORDINATES FORCE EQUATIONS
1015 %
1016 % **************************************************************************
1017 % f ca cb
1018 %
1019 \begin{align}
1020 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1021 C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1022 %
1023 %
1024 %
1025 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1026 C_{\bf a} \Bigl[
1027 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1028 w_b(r) \hat{r}
1029 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1030 %
1031 %
1032 %
1033 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1034 C_{\bf a } \Bigr[
1035 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1036 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1037 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1038 \right) w_f(r) \hat{r} \Bigr] \\
1039 %
1040 %
1041 %
1042 % \begin{equation}
1043 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1044 % -C_{\bf{b}} \Bigl[
1045 % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1046 % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1047 % \end{equation}
1048 %
1049 %
1050 %
1051 \begin{split}
1052 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1053 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1054 + \left( \mathbf{D}_{\mathbf {a}}
1055 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1056 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1057 % 2
1058 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1059 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1060 \end{split}\\
1061 %
1062 %
1063 %
1064 \begin{split}
1065 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1066 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1067 +2 \mathbf{D}_{\mathbf{a}} \cdot
1068 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1069 - \Bigl[
1070 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1071 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1072 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1073 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1074 % 3
1075 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1076 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1077 w_i(r)
1078 % 4
1079 -
1080 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1081 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1082 %
1083 %
1084 % \begin{equation}
1085 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1086 % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1087 % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1088 % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1089 % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1090 % \end{equation}
1091 % %
1092 % \begin{equation}
1093 % \begin{split}
1094 % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1095 % &\frac{1}{4\pi \epsilon_0} \Bigl[
1096 % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1097 % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1098 % % 2
1099 % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1100 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1101 % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1102 % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1103 % % 3
1104 % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1105 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1106 % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1107 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1108 % % 4
1109 % +\frac{1}{4\pi \epsilon_0}
1110 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1111 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1112 % \end{split}
1113 % \end{equation}
1114 %
1115 %
1116 %
1117 \begin{split}
1118 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1119 \Bigl[
1120 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1121 + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1122 % 2
1123 &+ \Bigl[
1124 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1125 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1126 % 3
1127 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1128 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1129 % 4
1130 &+ \Bigl[
1131 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1132 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1133 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1134 % 5
1135 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1136 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1137 %
1138 &+ \Bigl[
1139 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1140 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1141 %6
1142 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1143 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1144 % 7
1145 &+
1146 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1147 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1148 \end{align}
1149 Note that the forces for higher multipoles on site $\mathbf{a}$
1150 interacting with those of lower order on site $\mathbf{b}$ can be
1151 obtained by swapping indices in the expressions above.
1152
1153 %
1154 % Torques SECTION -----------------------------------------------------------------------------------------
1155 %
1156 \subsection{Torques}
1157 When energies are written in the form of Eq.~({\ref{ugeneral}), then
1158 torques can be found in a relatively straightforward
1159 manner,\cite{Allen:2006fk}
1160 %
1161 \begin{eqnarray}
1162 \mathbf{\tau}_{\bf a} =
1163 \sum_m
1164 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1165 ( \hat{r} \times \hat{a}_m )
1166 -\sum_{mn}
1167 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1168 (\hat{a}_m \times \hat{b}_n) \\
1169 %
1170 \mathbf{\tau}_{\bf b} =
1171 \sum_m
1172 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1173 ( \hat{r} \times \hat{b}_m)
1174 +\sum_{mn}
1175 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1176 (\hat{a}_m \times \hat{b}_n) .
1177 \end{eqnarray}
1178 %
1179 %
1180 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1181 methods are given in space-frame coordinates:
1182 %
1183 %
1184 \begin{align}
1185 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1186 C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1187 %
1188 %
1189 %
1190 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1191 2C_{\bf a}
1192 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1193 %
1194 %
1195 %
1196 % \begin{equation}
1197 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1198 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1199 % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1200 % \end{equation}
1201 %
1202 %
1203 %
1204 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1205 \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1206 % 2
1207 -
1208 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1209 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1210 %
1211 %
1212 %
1213 % \begin{equation}
1214 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1215 % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1216 % % 2
1217 % +\frac{1}{4\pi \epsilon_0}
1218 % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1219 % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1220 % \end{equation}
1221 %
1222 %
1223 %
1224 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1225 \Bigl[
1226 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1227 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1228 +2 \mathbf{D}_{\mathbf{a}} \times
1229 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1230 \Bigr] v_{31}(r)
1231 % 3
1232 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1233 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1234 %
1235 %
1236 %
1237 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1238 \Bigl[
1239 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1240 \hat{r}
1241 -2 \mathbf{D}_{\mathbf{a}} \times
1242 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1243 \Bigr] v_{31}(r)
1244 % 2
1245 +
1246 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1247 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1248 %
1249 %
1250 %
1251 % \begin{equation}
1252 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1253 % \frac{1}{4\pi \epsilon_0} \Bigl[
1254 % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1255 % +2 \mathbf{D}_{\mathbf{b}} \times
1256 % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1257 % \Bigr] v_{31}(r)
1258 % % 3
1259 % - \frac{2}{4\pi \epsilon_0}
1260 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1261 % (\hat{r} \cdot \mathbf
1262 % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1263 % \end{equation}
1264 %
1265 %
1266 %
1267 % \begin{equation}
1268 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1269 % \frac{1}{4\pi \epsilon_0} \Bigl[
1270 % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1271 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1272 % +2 \mathbf{D}_{\mathbf{b}} \times
1273 % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1274 % % 2
1275 % +\frac{1}{4\pi \epsilon_0}
1276 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1277 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1278 % \end{equation}
1279 %
1280 %
1281 %
1282 \begin{split}
1283 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1284 -4
1285 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1286 v_{41}(r) \\
1287 % 2
1288 &+
1289 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1290 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1291 +4 \hat{r} \times
1292 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1293 % 3
1294 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1295 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1296 % 4
1297 &+ 2
1298 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1299 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1300 %
1301 %
1302 %
1303 \begin{split}
1304 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1305 &4
1306 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1307 % 2
1308 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1309 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1310 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1311 \mathbf{Q}_{{\mathbf b}} ) \times
1312 \hat{r}
1313 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1314 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1315 \Bigr] v_{42}(r) \\
1316 % 4
1317 &+2
1318 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1319 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1320 \end{align}
1321 %
1322 Here, we have defined the matrix cross product in an identical form
1323 as in Ref. \onlinecite{Smith98}:
1324 \begin{equation}
1325 \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1326 \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1327 -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1328 \right]
1329 \end{equation}
1330 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1331 permuations of the matrix indices.
1332
1333 All of the radial functions required for torques are identical with
1334 the radial functions previously computed for the interaction energies.
1335 These are tabulated for both shifted force methods in table
1336 \ref{tab:tableenergy}. The torques for higher multipoles on site
1337 $\mathbf{a}$ interacting with those of lower order on site
1338 $\mathbf{b}$ can be obtained by swapping indices in the expressions
1339 above.
1340
1341 \section{Comparison to known multipolar energies}
1342
1343 To understand how these new real-space multipole methods behave in
1344 computer simulations, it is vital to test against established methods
1345 for computing electrostatic interactions in periodic systems, and to
1346 evaluate the size and sources of any errors that arise from the
1347 real-space cutoffs. In this paper we test Taylor-shifted and
1348 Gradient-shifted electrostatics against analytical methods for
1349 computing the energies of ordered multipolar arrays. In the following
1350 paper, we test the new methods against the multipolar Ewald sum for
1351 computing the energies, forces and torques for a wide range of typical
1352 condensed-phase (disordered) systems.
1353
1354 Because long-range electrostatic effects can be significant in
1355 crystalline materials, ordered multipolar arrays present one of the
1356 biggest challenges for real-space cutoff methods. The dipolar
1357 analogues to the Madelung constants were first worked out by Sauer,
1358 who computed the energies of ordered dipole arrays of zero
1359 magnetization and obtained a number of these constants.\cite{Sauer}
1360 This theory was developed more completely by Luttinger and
1361 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1362 other periodic structures. We have repeated the Luttinger \& Tisza
1363 series summations to much higher order and obtained the following
1364 energy constants (converged to one part in $10^9$):
1365 \begin{table*}
1366 \centering{
1367 \caption{Luttinger \& Tisza arrays and their associated
1368 energy constants. Type "A" arrays have nearest neighbor strings of
1369 antiparallel dipoles. Type "B" arrays have nearest neighbor
1370 strings of antiparallel dipoles if the dipoles are contained in a
1371 plane perpendicular to the dipole direction that passes through
1372 the dipole.}
1373 }
1374 \label{tab:LT}
1375 \begin{ruledtabular}
1376 \begin{tabular}{cccc}
1377 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1378 A & SC & 001 & -2.676788684 \\
1379 A & BCC & 001 & 0 \\
1380 A & BCC & 111 & -1.770078733 \\
1381 A & FCC & 001 & 2.166932835 \\
1382 A & FCC & 011 & -1.083466417 \\
1383
1384 * & BCC & minimum & -1.985920929 \\
1385
1386 B & SC & 001 & -2.676788684 \\
1387 B & BCC & 001 & -1.338394342 \\
1388 B & BCC & 111 & -1.770078733 \\
1389 B & FCC & 001 & -1.083466417 \\
1390 B & FCC & 011 & -1.807573634
1391 \end{tabular}
1392 \end{ruledtabular}
1393 \end{table*}
1394
1395 In addition to the A and B arrays, there is an additional minimum
1396 energy structure for the BCC lattice that was found by Luttinger \&
1397 Tisza. The total electrostatic energy for an array is given by:
1398 \begin{equation}
1399 E = C N^2 \mu^2
1400 \end{equation}
1401 where $C$ is the energy constant given above, $N$ is the number of
1402 dipoles per unit volume, and $\mu$ is the strength of the dipole.
1403
1404 {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1405 computed the energies of selected quadrupole arrays based on
1406 extensions to the Luttinger and Tisza
1407 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1408 energy constants for the lowest energy configurations for linear
1409 quadrupoles shown in table \ref{tab:NNQ}
1410
1411 \begin{table*}
1412 \centering{
1413 \caption{Nagai and Nakamura Quadurpolar arrays}}
1414 \label{tab:NNQ}
1415 \begin{ruledtabular}
1416 \begin{tabular}{ccc}
1417 Lattice & Quadrupole Direction & Energy constants \\ \hline
1418 SC & 111 & -8.3 \\
1419 BCC & 011 & -21.7 \\
1420 FCC & 111 & -80.5
1421 \end{tabular}
1422 \end{ruledtabular}
1423 \end{table*}
1424
1425 In analogy to the dipolar arrays, the total electrostatic energy for
1426 the quadrupolar arrays is:
1427 \begin{equation}
1428 E = C \frac{3}{4} N^2 Q^2
1429 \end{equation}
1430 where $Q$ is the quadrupole moment.
1431
1432 \section{Conclusion}
1433 We have presented two efficient real-space methods for computing the
1434 interactions between point multipoles. These methods have the benefit
1435 of smoothly truncating the energies, forces, and torques at the cutoff
1436 radius, making them attractive for both molecular dynamics (MD) and
1437 Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1438 (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1439 correct lattice energies for ordered dipolar and quadrupolar arrays,
1440 while the Taylor-Shifted Force (TSF) is too severe an approximation to
1441 provide accurate convergence to lattice energies.
1442
1443 In most cases, GSF can obtain nearly quantitative agreement with the
1444 lattice energy constants with reasonably small cutoff radii. The only
1445 exception we have observed is for crystals which exhibit a bulk
1446 macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1447 In this particular case, the multipole neutralization scheme can
1448 interfere with the correct computation of the energies. We note that
1449 the energies for these arrangements are typically much larger than for
1450 crystals with net-zero moments, so this is not expected to be an issue
1451 in most simulations.
1452
1453 In large systems, these new methods can be made to scale approximately
1454 linearly with system size, and detailed comparisons with the Ewald sum
1455 for a wide range of chemical environments follows in the second paper.
1456
1457 \begin{acknowledgments}
1458 JDG acknowledges helpful discussions with Christopher
1459 Fennell. Support for this project was provided by the National
1460 Science Foundation under grant CHE-0848243. Computational time was
1461 provided by the Center for Research Computing (CRC) at the
1462 University of Notre Dame.
1463 \end{acknowledgments}
1464
1465 \newpage
1466 \appendix
1467
1468 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1469 \label{SmithFunc}
1470 The following summarizes Smith's $B_l(r)$ functions and includes
1471 formulas given in his appendix.\cite{Smith98} The first function
1472 $B_0(r)$ is defined by
1473 %
1474 \begin{equation}
1475 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1476 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1477 \end{equation}
1478 %
1479 The first derivative of this function is
1480 %
1481 \begin{equation}
1482 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1483 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1484 \end{equation}
1485 %
1486 which can be used to define a function $B_1(r)$:
1487 %
1488 \begin{equation}
1489 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1490 \end{equation}
1491 %
1492 In general, the recurrence relation,
1493 \begin{equation}
1494 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1495 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1496 \text{e}^{-{\alpha}^2r^2}
1497 \right] ,
1498 \end{equation}
1499 is very useful for building up higher derivatives. Using these
1500 formulas, we find:
1501 %
1502 \begin{align}
1503 \frac{dB_0}{dr}=&-rB_1(r) \\
1504 \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1505 \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1506 \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1507 \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1508 \end{align}
1509 %
1510 As noted by Smith, it is possible to approximate the $B_l(r)$
1511 functions,
1512 %
1513 \begin{equation}
1514 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1515 +\text{O}(r) .
1516 \end{equation}
1517 \newpage
1518 \section{The $r$-dependent factors for TSF electrostatics}
1519
1520 Using the shifted damped functions $f_n(r)$ defined by:
1521 %
1522 \begin{equation}
1523 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1524 \end{equation}
1525 %
1526 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1527 this Appendix, we provide formulas for successive derivatives of this
1528 function. (If there is no damping, then $B_0(r)$ is replaced by
1529 $1/r$.) First, we find:
1530 %
1531 \begin{equation}
1532 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1533 \end{equation}
1534 %
1535 This formula clearly brings in derivatives of Smith's $B_0(r)$
1536 function, and we define higher-order derivatives as follows:
1537 %
1538 \begin{align}
1539 g_n(r)=& \frac{d f_n}{d r} =
1540 B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1541 h_n(r)=& \frac{d^2f_n}{d r^2} =
1542 B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1543 s_n(r)=& \frac{d^3f_n}{d r^3} =
1544 B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1545 t_n(r)=& \frac{d^4f_n}{d r^4} =
1546 B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1547 u_n(r)=& \frac{d^5f_n}{d r^5} =
1548 B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1549 \end{align}
1550 %
1551 We note that the last function needed (for quadrupole-quadrupole interactions) is
1552 %
1553 \begin{equation}
1554 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1555 \end{equation}
1556
1557 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1558 stored on a grid for values of $r$ from $0$ to $r_c$. The functions
1559 needed are listed schematically below:
1560 %
1561 \begin{eqnarray}
1562 f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1563 g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1564 h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1565 s_2 \quad s_3 \quad &s_4 \nonumber \\
1566 t_3 \quad &t_4 \nonumber \\
1567 &u_4 \nonumber .
1568 \end{eqnarray}
1569
1570 Using these functions, we find
1571 %
1572 \begin{align}
1573 \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1574 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1575 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1576 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1577 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1578 \delta_{ \beta \gamma} r_\alpha \right)
1579 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1580 + r_\alpha r_\beta r_\gamma
1581 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1582 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1583 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1584 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1585 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1586 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1587 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1588 + \text{5 permutations}
1589 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1590 \right) \nonumber \\
1591 &+ r_\alpha r_\beta r_\gamma r_\delta
1592 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1593 + \frac{t_n}{r^4} \right)\\
1594 \frac{\partial^5 f_n}
1595 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1596 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1597 + \text{14 permutations} \right)
1598 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1599 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1600 + \text{9 permutations}
1601 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1602 \right) \nonumber \\
1603 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1604 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1605 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1606 \end{align}
1607 %
1608 %
1609 %
1610 \newpage
1611 \section{The $r$-dependent factors for GSF electrostatics}
1612
1613 In Gradient-shifted force electrostatics, the kernel is not expanded,
1614 rather the individual terms in the multipole interaction energies.
1615 For damped charges , this still brings into the algebra multiple
1616 derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1617 we generalize the notation of the previous appendix. For $f(r)=1/r$
1618 (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1619 %
1620 \begin{align}
1621 g(r)=& \frac{df}{d r}\\
1622 h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1623 s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1624 t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1625 u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1626 \end{align}
1627 %
1628 For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1629 under the column ``Bare Coulomb.'' Equations \ref{eq:b9} to
1630 \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1631 $n$ is eliminated.
1632
1633 % \section{Extra Material}
1634 % %
1635 % %
1636 % %Energy in body coordinate form ---------------------------------------------------------------
1637 % %
1638 % Here are the interaction energies written in terms of the body coordinates:
1639
1640 % %
1641 % % u ca cb
1642 % %
1643 % \begin{equation}
1644 % U_{C_{\bf a}C_{\bf b}}(r)=
1645 % \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1646 % \end{equation}
1647 % %
1648 % % u ca db
1649 % %
1650 % \begin{equation}
1651 % U_{C_{\bf a}D_{\bf b}}(r)=
1652 % \frac{C_{\bf a}}{4\pi \epsilon_0}
1653 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1654 % \end{equation}
1655 % %
1656 % % u ca qb
1657 % %
1658 % \begin{equation}
1659 % U_{C_{\bf a}Q_{\bf b}}(r)=
1660 % \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1661 % v_{21}(r) \nonumber \\
1662 % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1663 % \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1664 % v_{22}(r)
1665 % \end{equation}
1666 % %
1667 % % u da cb
1668 % %
1669 % \begin{equation}
1670 % U_{D_{\bf a}C_{\bf b}}(r)=
1671 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1672 % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1673 % \end{equation}
1674 % %
1675 % % u da db
1676 % %
1677 % \begin{equation}
1678 % \begin{split}
1679 % % 1
1680 % U_{D_{\bf a}D_{\bf b}}(r)&=
1681 % -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1682 % (\hat{a}_m \cdot \hat{b}_n)
1683 % D_{\mathbf{b}n} v_{21}(r) \\
1684 % % 2
1685 % &-\frac{1}{4\pi \epsilon_0}
1686 % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1687 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1688 % v_{22}(r)
1689 % \end{split}
1690 % \end{equation}
1691 % %
1692 % % u da qb
1693 % %
1694 % \begin{equation}
1695 % \begin{split}
1696 % % 1
1697 % U_{D_{\bf a}Q_{\bf b}}(r)&=
1698 % -\frac{1}{4\pi \epsilon_0} \left(
1699 % \text{Tr}Q_{\mathbf{b}}
1700 % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1701 % +2\sum_{lmn}D_{\mathbf{a}l}
1702 % (\hat{a}_l \cdot \hat{b}_m)
1703 % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1704 % \right) v_{31}(r) \\
1705 % % 2
1706 % &-\frac{1}{4\pi \epsilon_0}
1707 % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1708 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1709 % Q_{{\mathbf b}mn}
1710 % (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1711 % \end{split}
1712 % \end{equation}
1713 % %
1714 % % u qa cb
1715 % %
1716 % \begin{equation}
1717 % U_{Q_{\bf a}C_{\bf b}}(r)=
1718 % \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1719 % +\frac{C_{\bf b}}{4\pi \epsilon_0}
1720 % \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1721 % \end{equation}
1722 % %
1723 % % u qa db
1724 % %
1725 % \begin{equation}
1726 % \begin{split}
1727 % %1
1728 % U_{Q_{\bf a}D_{\bf b}}(r)&=
1729 % \frac{1}{4\pi \epsilon_0} \left(
1730 % \text{Tr}Q_{\mathbf{a}}
1731 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1732 % +2\sum_{lmn}D_{\mathbf{b}l}
1733 % (\hat{b}_l \cdot \hat{a}_m)
1734 % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1735 % \right) v_{31}(r) \\
1736 % % 2
1737 % &+\frac{1}{4\pi \epsilon_0}
1738 % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1739 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1740 % Q_{{\mathbf a}mn}
1741 % (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1742 % \end{split}
1743 % \end{equation}
1744 % %
1745 % % u qa qb
1746 % %
1747 % \begin{equation}
1748 % \begin{split}
1749 % %1
1750 % U_{Q_{\bf a}Q_{\bf b}}(r)&=
1751 % \frac{1}{4\pi \epsilon_0} \Bigl[
1752 % \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1753 % +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1754 % Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1755 % (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1756 % v_{41}(r) \\
1757 % % 2
1758 % &+ \frac{1}{4\pi \epsilon_0}
1759 % \Bigl[ \text{Tr}Q_{\mathbf{a}}
1760 % \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1761 % Q_{{\mathbf b}lm}
1762 % (\hat{b}_m \cdot \hat{r})
1763 % +\text{Tr}Q_{\mathbf{b}}
1764 % \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1765 % Q_{{\mathbf a}lm}
1766 % (\hat{a}_m \cdot \hat{r}) \\
1767 % % 3
1768 % &+4 \sum_{lmnp}
1769 % (\hat{r} \cdot \hat{a}_l )
1770 % Q_{{\mathbf a}lm}
1771 % (\hat{a}_m \cdot \hat{b}_n)
1772 % Q_{{\mathbf b}np}
1773 % (\hat{b}_p \cdot \hat{r})
1774 % \Bigr] v_{42}(r) \\
1775 % % 4
1776 % &+ \frac{1}{4\pi \epsilon_0}
1777 % \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1778 % Q_{{\mathbf a}lm}
1779 % (\hat{a}_m \cdot \hat{r})
1780 % \sum_{np} (\hat{r} \cdot \hat{b}_n)
1781 % Q_{{\mathbf b}np}
1782 % (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1783 % \end{split}
1784 % \end{equation}
1785 % %
1786
1787
1788 % % BODY coordinates force equations --------------------------------------------
1789 % %
1790 % %
1791 % Here are the force equations written in terms of body coordinates.
1792 % %
1793 % % f ca cb
1794 % %
1795 % \begin{equation}
1796 % \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1797 % \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1798 % \end{equation}
1799 % %
1800 % % f ca db
1801 % %
1802 % \begin{equation}
1803 % \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1804 % \frac{C_{\bf a}}{4\pi \epsilon_0}
1805 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1806 % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1807 % \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1808 % \end{equation}
1809 % %
1810 % % f ca qb
1811 % %
1812 % \begin{equation}
1813 % \begin{split}
1814 % % 1
1815 % \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1816 % \frac{1}{4\pi \epsilon_0}
1817 % C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1818 % + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1819 % % 2
1820 % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1821 % \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1822 % \end{split}
1823 % \end{equation}
1824 % %
1825 % % f da cb
1826 % %
1827 % \begin{equation}
1828 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1829 % -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1830 % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1831 % -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1832 % \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1833 % \end{equation}
1834 % %
1835 % % f da db
1836 % %
1837 % \begin{equation}
1838 % \begin{split}
1839 % % 1
1840 % \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1841 % -\frac{1}{4\pi \epsilon_0}
1842 % \sum_{mn} D_{\mathbf {a}m}
1843 % (\hat{a}_m \cdot \hat{b}_n)
1844 % D_{\mathbf{b}n} w_d(r) \hat{r}
1845 % -\frac{1}{4\pi \epsilon_0}
1846 % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1847 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1848 % % 2
1849 % & \quad + \frac{1}{4\pi \epsilon_0}
1850 % \Bigl[ \sum_m D_{\mathbf {a}m}
1851 % \hat{a}_m \sum_n D_{\mathbf{b}n}
1852 % (\hat{b}_n \cdot \hat{r})
1853 % + \sum_m D_{\mathbf {b}m}
1854 % \hat{b}_m \sum_n D_{\mathbf{a}n}
1855 % (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1856 % \end{split}
1857 % \end{equation}
1858 % %
1859 % % f da qb
1860 % %
1861 % \begin{equation}
1862 % \begin{split}
1863 % % 1
1864 % &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1865 % - \frac{1}{4\pi \epsilon_0} \Bigl[
1866 % \text{Tr}Q_{\mathbf{b}}
1867 % \sum_l D_{\mathbf{a}l} \hat{a}_l
1868 % +2\sum_{lmn} D_{\mathbf{a}l}
1869 % (\hat{a}_l \cdot \hat{b}_m)
1870 % Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1871 % % 3
1872 % & - \frac{1}{4\pi \epsilon_0} \Bigl[
1873 % \text{Tr}Q_{\mathbf{b}}
1874 % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1875 % +2\sum_{lmn}D_{\mathbf{a}l}
1876 % (\hat{a}_l \cdot \hat{b}_m)
1877 % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1878 % % 4
1879 % &+ \frac{1}{4\pi \epsilon_0}
1880 % \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1881 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1882 % Q_{{\mathbf b}mn}
1883 % (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1884 % D_{\mathbf{a}l}
1885 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1886 % Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1887 % % 6
1888 % & -\frac{1}{4\pi \epsilon_0}
1889 % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1890 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1891 % Q_{{\mathbf b}mn}
1892 % (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1893 % \end{split}
1894 % \end{equation}
1895 % %
1896 % % force qa cb
1897 % %
1898 % \begin{equation}
1899 % \begin{split}
1900 % % 1
1901 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1902 % \frac{1}{4\pi \epsilon_0}
1903 % C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1904 % + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1905 % % 2
1906 % & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1907 % \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1908 % \end{split}
1909 % \end{equation}
1910 % %
1911 % % f qa db
1912 % %
1913 % \begin{equation}
1914 % \begin{split}
1915 % % 1
1916 % &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1917 % \frac{1}{4\pi \epsilon_0} \Bigl[
1918 % \text{Tr}Q_{\mathbf{a}}
1919 % \sum_l D_{\mathbf{b}l} \hat{b}_l
1920 % +2\sum_{lmn} D_{\mathbf{b}l}
1921 % (\hat{b}_l \cdot \hat{a}_m)
1922 % Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1923 % w_g(r)\\
1924 % % 3
1925 % & + \frac{1}{4\pi \epsilon_0} \Bigl[
1926 % \text{Tr}Q_{\mathbf{a}}
1927 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1928 % +2\sum_{lmn}D_{\mathbf{b}l}
1929 % (\hat{b}_l \cdot \hat{a}_m)
1930 % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1931 % % 4
1932 % & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1933 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1934 % Q_{{\mathbf a}mn}
1935 % (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1936 % D_{\mathbf{b}l}
1937 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1938 % Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1939 % % 6
1940 % & +\frac{1}{4\pi \epsilon_0}
1941 % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1942 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1943 % Q_{{\mathbf a}mn}
1944 % (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1945 % \end{split}
1946 % \end{equation}
1947 % %
1948 % % f qa qb
1949 % %
1950 % \begin{equation}
1951 % \begin{split}
1952 % &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1953 % \frac{1}{4\pi \epsilon_0} \Bigl[
1954 % \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1955 % + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1956 % Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1957 % (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1958 % &+\frac{1}{4\pi \epsilon_0} \Bigl[
1959 % 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1960 % + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1961 % &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1962 % + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1963 % \Bigr] w_n(r) \\
1964 % &+ \frac{1}{4\pi \epsilon_0}
1965 % \Bigl[ \text{Tr}Q_{\mathbf{a}}
1966 % \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1967 % + \text{Tr}Q_{\mathbf{b}}
1968 % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1969 % &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1970 % Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1971 % %
1972 % &+\frac{1}{4\pi \epsilon_0} \Bigl[
1973 % 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1974 % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1975 % &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1976 % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1977 % & + \frac{1}{4\pi \epsilon_0}
1978 % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1979 % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1980 % \end{split}
1981 % \end{equation}
1982 % %
1983 % Here we list the form of the non-zero damped shifted multipole torques showing
1984 % explicitly dependences on body axes:
1985 % %
1986 % % t ca db
1987 % %
1988 % \begin{equation}
1989 % \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1990 % \frac{C_{\bf a}}{4\pi \epsilon_0}
1991 % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1992 % \end{equation}
1993 % %
1994 % % t ca qb
1995 % %
1996 % \begin{equation}
1997 % \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1998 % \frac{2C_{\bf a}}{4\pi \epsilon_0}
1999 % \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
2000 % \end{equation}
2001 % %
2002 % % t da cb
2003 % %
2004 % \begin{equation}
2005 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
2006 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
2007 % \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
2008 % \end{equation}%
2009 % %
2010 % %
2011 % % ta da db
2012 % %
2013 % \begin{equation}
2014 % \begin{split}
2015 % % 1
2016 % \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
2017 % \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
2018 % (\hat{a}_m \times \hat{b}_n)
2019 % D_{\mathbf{b}n} v_{21}(r) \\
2020 % % 2
2021 % &-\frac{1}{4\pi \epsilon_0}
2022 % \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
2023 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
2024 % \end{split}
2025 % \end{equation}
2026 % %
2027 % % tb da db
2028 % %
2029 % \begin{equation}
2030 % \begin{split}
2031 % % 1
2032 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
2033 % -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
2034 % (\hat{a}_m \times \hat{b}_n)
2035 % D_{\mathbf{b}n} v_{21}(r) \\
2036 % % 2
2037 % &+\frac{1}{4\pi \epsilon_0}
2038 % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
2039 % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
2040 % \end{split}
2041 % \end{equation}
2042 % %
2043 % % ta da qb
2044 % %
2045 % \begin{equation}
2046 % \begin{split}
2047 % % 1
2048 % \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
2049 % \frac{1}{4\pi \epsilon_0} \left(
2050 % -\text{Tr}Q_{\mathbf{b}}
2051 % \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
2052 % +2\sum_{lmn}D_{\mathbf{a}l}
2053 % (\hat{a}_l \times \hat{b}_m)
2054 % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2055 % \right) v_{31}(r)\\
2056 % % 2
2057 % &-\frac{1}{4\pi \epsilon_0}
2058 % \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2059 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2060 % Q_{{\mathbf b}mn}
2061 % (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2062 % \end{split}
2063 % \end{equation}
2064 % %
2065 % % tb da qb
2066 % %
2067 % \begin{equation}
2068 % \begin{split}
2069 % % 1
2070 % \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2071 % \frac{1}{4\pi \epsilon_0} \left(
2072 % -2\sum_{lmn}D_{\mathbf{a}l}
2073 % (\hat{a}_l \cdot \hat{b}_m)
2074 % Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2075 % -2\sum_{lmn}D_{\mathbf{a}l}
2076 % (\hat{a}_l \times \hat{b}_m)
2077 % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2078 % \right) v_{31}(r) \\
2079 % % 2
2080 % &-\frac{2}{4\pi \epsilon_0}
2081 % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2082 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2083 % Q_{{\mathbf b}mn}
2084 % (\hat{r}\times \hat{b}_n) v_{32}(r)
2085 % \end{split}
2086 % \end{equation}
2087 % %
2088 % % ta qa cb
2089 % %
2090 % \begin{equation}
2091 % \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2092 % \frac{2C_{\bf a}}{4\pi \epsilon_0}
2093 % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2094 % \end{equation}
2095 % %
2096 % % ta qa db
2097 % %
2098 % \begin{equation}
2099 % \begin{split}
2100 % % 1
2101 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2102 % \frac{1}{4\pi \epsilon_0} \left(
2103 % 2\sum_{lmn}D_{\mathbf{b}l}
2104 % (\hat{b}_l \cdot \hat{a}_m)
2105 % Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2106 % +2\sum_{lmn}D_{\mathbf{b}l}
2107 % (\hat{a}_l \times \hat{b}_m)
2108 % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2109 % \right) v_{31}(r) \\
2110 % % 2
2111 % &+\frac{2}{4\pi \epsilon_0}
2112 % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2113 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2114 % Q_{{\mathbf a}mn}
2115 % (\hat{r}\times \hat{a}_n) v_{32}(r)
2116 % \end{split}
2117 % \end{equation}
2118 % %
2119 % % tb qa db
2120 % %
2121 % \begin{equation}
2122 % \begin{split}
2123 % % 1
2124 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2125 % \frac{1}{4\pi \epsilon_0} \left(
2126 % \text{Tr}Q_{\mathbf{a}}
2127 % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2128 % +2\sum_{lmn}D_{\mathbf{b}l}
2129 % (\hat{a}_l \times \hat{b}_m)
2130 % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2131 % \right) v_{31}(r)\\
2132 % % 2
2133 % &\frac{1}{4\pi \epsilon_0}
2134 % \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2135 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2136 % Q_{{\mathbf a}mn}
2137 % (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2138 % \end{split}
2139 % \end{equation}
2140 % %
2141 % % ta qa qb
2142 % %
2143 % \begin{equation}
2144 % \begin{split}
2145 % % 1
2146 % \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2147 % -\frac{4}{4\pi \epsilon_0}
2148 % \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2149 % Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2150 % (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2151 % % 2
2152 % &+ \frac{1}{4\pi \epsilon_0}
2153 % \Bigl[
2154 % 2\text{Tr}Q_{\mathbf{b}}
2155 % \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2156 % Q_{{\mathbf a}lm}
2157 % (\hat{r} \times \hat{a}_m)
2158 % +4 \sum_{lmnp}
2159 % (\hat{r} \times \hat{a}_l )
2160 % Q_{{\mathbf a}lm}
2161 % (\hat{a}_m \cdot \hat{b}_n)
2162 % Q_{{\mathbf b}np}
2163 % (\hat{b}_p \cdot \hat{r}) \\
2164 % % 3
2165 % &-4 \sum_{lmnp}
2166 % (\hat{r} \cdot \hat{a}_l )
2167 % Q_{{\mathbf a}lm}
2168 % (\hat{a}_m \times \hat{b}_n)
2169 % Q_{{\mathbf b}np}
2170 % (\hat{b}_p \cdot \hat{r})
2171 % \Bigr] v_{42}(r) \\
2172 % % 4
2173 % &+ \frac{2}{4\pi \epsilon_0}
2174 % \sum_{lm} (\hat{r} \times \hat{a}_l)
2175 % Q_{{\mathbf a}lm}
2176 % (\hat{a}_m \cdot \hat{r})
2177 % \sum_{np} (\hat{r} \cdot \hat{b}_n)
2178 % Q_{{\mathbf b}np}
2179 % (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2180 % \end{split}
2181 % \end{equation}
2182 % %
2183 % % tb qa qb
2184 % %
2185 % \begin{equation}
2186 % \begin{split}
2187 % % 1
2188 % \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2189 % \frac{4}{4\pi \epsilon_0}
2190 % \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2191 % Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2192 % (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2193 % % 2
2194 % &+ \frac{1}{4\pi \epsilon_0}
2195 % \Bigl[
2196 % 2\text{Tr}Q_{\mathbf{a}}
2197 % \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2198 % Q_{{\mathbf b}lm}
2199 % (\hat{r} \times \hat{b}_m)
2200 % +4 \sum_{lmnp}
2201 % (\hat{r} \cdot \hat{a}_l )
2202 % Q_{{\mathbf a}lm}
2203 % (\hat{a}_m \cdot \hat{b}_n)
2204 % Q_{{\mathbf b}np}
2205 % (\hat{r} \times \hat{b}_p) \\
2206 % % 3
2207 % &+4 \sum_{lmnp}
2208 % (\hat{r} \cdot \hat{a}_l )
2209 % Q_{{\mathbf a}lm}
2210 % (\hat{a}_m \times \hat{b}_n)
2211 % Q_{{\mathbf b}np}
2212 % (\hat{b}_p \cdot \hat{r})
2213 % \Bigr] v_{42}(r) \\
2214 % % 4
2215 % &+ \frac{2}{4\pi \epsilon_0}
2216 % \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2217 % Q_{{\mathbf a}lm}
2218 % (\hat{a}_m \cdot \hat{r})
2219 % \sum_{np} (\hat{r} \times \hat{b}_n)
2220 % Q_{{\mathbf b}np}
2221 % (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2222 % \end{split}
2223 % \end{equation}
2224 %
2225 % \begin{table*}
2226 % \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2227 % \begin{ruledtabular}
2228 % \begin{tabular}{|l|l|l|}
2229 % Generic&Taylor-shifted Force&Gradient-shifted Force
2230 % \\ \hline
2231 % %
2232 % %
2233 % %
2234 % $w_a(r)$&
2235 % $g_0(r)$&
2236 % $g(r)-g(r_c)$ \\
2237 % %
2238 % %
2239 % $w_b(r)$ &
2240 % $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2241 % $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2242 % %
2243 % $w_c(r)$ &
2244 % $\frac{g_1(r)}{r} $ &
2245 % $\frac{v_{11}(r)}{r}$ \\
2246 % %
2247 % %
2248 % $w_d(r)$&
2249 % $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2250 % $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2251 % -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2252 % %
2253 % $w_e(r)$ &
2254 % $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2255 % $\frac{v_{22}(r)}{r}$ \\
2256 % %
2257 % %
2258 % $w_f(r)$&
2259 % $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2260 % $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2261 % &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2262 % %
2263 % $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2264 % $\frac{v_{31}(r)}{r}$\\
2265 % %
2266 % $w_h(r)$ &
2267 % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2268 % $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2269 % &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2270 % &&$-\frac{v_{31}(r)}{r}$\\
2271 % % 2
2272 % $w_i(r)$ &
2273 % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2274 % $\frac{v_{32}(r)}{r}$ \\
2275 % %
2276 % $w_j(r)$ &
2277 % $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2278 % $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2279 % &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2280 % %
2281 % $w_k(r)$ &
2282 % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2283 % $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2284 % &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2285 % %
2286 % $w_l(r)$ &
2287 % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2288 % $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2289 % &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2290 % -\frac{2v_{42}(r)}{r}$ \\
2291 % %
2292 % $w_m(r)$ &
2293 % $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2294 % $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2295 % &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2296 % +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2297 % &&$-\frac{4v_{43}(r)}{r}$ \\
2298 % %
2299 % $w_n(r)$ &
2300 % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2301 % $\frac{v_{42}(r)}{r}$ \\
2302 % %
2303 % $w_o(r)$ &
2304 % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2305 % $\frac{v_{43}(r)}{r}$ \\
2306 % %
2307 % \end{tabular}
2308 % \end{ruledtabular}
2309 % \end{table*}
2310
2311 \newpage
2312
2313 \bibliography{multipole}
2314
2315 \end{document}
2316 %
2317 % ****** End of file multipole.tex ******