ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
(Generate patch)

Comparing trunk/multipole/multipole1.tex (file contents):
Revision 4174 by gezelter, Thu Jun 5 19:55:14 2014 UTC vs.
Revision 4175 by gezelter, Fri Jun 6 16:01:36 2014 UTC

# Line 152 | Line 152 | V = \sum_i \sum_{j>i} V_\mathrm{pair}(\mathbf{r}_{ij},
152   An efficient real-space electrostatic method involves the use of a
153   pair-wise functional form,
154   \begin{equation}
155 < V = \sum_i \sum_{j>i} V_\mathrm{pair}(\mathbf{r}_{ij}, \Omega_i, \Omega_j) +
156 < \sum_i V_i^\mathrm{self}
155 > U = \sum_i \sum_{j>i} U_\mathrm{pair}(\mathbf{r}_{ij}, \Omega_i, \Omega_j) +
156 > \sum_i U_i^\mathrm{self}
157   \end{equation}
158   that is short-ranged and easily truncated at a cutoff radius,
159   \begin{equation}
160 <  V_\mathrm{pair}(\mathbf{r}_{ij},\Omega_i, \Omega_j) = \left\{
160 >  U_\mathrm{pair}(\mathbf{r}_{ij},\Omega_i, \Omega_j) = \left\{
161   \begin{array}{ll}
162 < V_\mathrm{approx} (\mathbf{r}_{ij}, \Omega_i, \Omega_j) & \quad \left| \mathbf{r}_{ij} \right| \le r_c \\
162 > U_\mathrm{approx} (\mathbf{r}_{ij}, \Omega_i, \Omega_j) & \quad \left| \mathbf{r}_{ij} \right| \le r_c \\
163   0 & \quad \left| \mathbf{r}_{ij} \right|  > r_c ,
164   \end{array}
165   \right.
166   \end{equation}
167   along with an easily computed self-interaction term ($\sum_i
168 < V_i^\mathrm{self}$) which scales linearly with the number of
168 > U_i^\mathrm{self}$) which scales linearly with the number of
169   particles.  Here $\Omega_i$ and $\Omega_j$ represent orientational
170   coordinates of the two sites, and $\mathbf{r}_{ij}$ is the vector
171   between the two sites.  The computational efficiency, energy
172   conservation, and even some physical properties of a simulation can
173 < depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173 > depend dramatically on how the $U_\mathrm{approx}$ function behaves at
174   the cutoff radius. The goal of any approximation method should be to
175   mimic the real behavior of the electrostatic interactions as closely
176   as possible without sacrificing the near-linear scaling of a cutoff
# Line 185 | Line 185 | V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
185   applied to the potential to accelerate convergence. The interaction
186   for a pair of charges ($C_i$ and $C_j$) in the DSF method,
187   \begin{equation*}
188 < V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
188 > U_\mathrm{DSF}(r_{ij}) = C_i C_j \Biggr{[}
189   \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
190   - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
191   + \frac{2\alpha}{\pi^{1/2}}
# Line 244 | Line 244 | V_a(\mathbf r) =
244   a$.  Then the electrostatic potential of object $\bf a$ at
245   $\mathbf{r}$ is given by
246   \begin{equation}
247 < V_a(\mathbf r) =
247 > \phi_a(\mathbf r) =
248   \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
249   \end{equation}
250   The Taylor expansion in $r$ can be written using an implied summation
# Line 263 | Line 263 | V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
263   can then be used to express the electrostatic potential on $\bf a$ in
264   terms of multipole operators,
265   \begin{equation}
266 < V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
266 > \phi_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
267   \end{equation}
268   where
269   \begin{equation}
# Line 626 | Line 626 | V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C
626   the cutoff sphere.  For a system of undamped charges, the total
627   self-term is
628   \begin{equation}
629 < V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
629 > U_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
630   \label{eq:selfTerm}
631   \end{equation}
632  
# Line 641 | Line 641 | V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r
641   complexity to the Ewald sum).  For a system containing only damped
642   charges, the complete self-interaction can be written as
643   \begin{equation}
644 < V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
644 > U_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
645    \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
646        C_{\bf a}^{2}.
647   \label{eq:dampSelfTerm}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines