ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 4163
Committed: Thu May 29 19:08:06 2014 UTC (10 years, 1 month ago) by mlamichh
Content type: application/x-tex
File size: 67443 byte(s)
Log Message:

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 %reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
39 %\linenumbers\relax % Commence numbering lines
40
41 \begin{document}
42
43 %\preprint{AIP/123-QED}
44
45 \title{Real space alternatives to the Ewald
46 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
47
48 \author{Madan Lamichhane}
49 \affiliation{Department of Physics, University
50 of Notre Dame, Notre Dame, IN 46556}
51
52 \author{J. Daniel Gezelter}
53 \email{gezelter@nd.edu.}
54 \affiliation{Department of Chemistry and Biochemistry, University
55 of Notre Dame, Notre Dame, IN 46556}
56
57 \author{Kathie E. Newman}
58 \affiliation{Department of Physics, University
59 of Notre Dame, Notre Dame, IN 46556}
60
61
62 \date{\today}% It is always \today, today,
63 % but any date may be explicitly specified
64
65 \begin{abstract}
66 We have extended the original damped-shifted force (DSF)
67 electrostatic kernel and have been able to derive two new
68 electrostatic potentials for higher-order multipoles that are based
69 on truncated Taylor expansions around the cutoff radius. For
70 multipole-multipole interactions, we find that each of the distinct
71 orientational contributions has a separate radial function to ensure
72 that the overall forces and torques vanish at the cutoff radius. In
73 this paper, we present energy, force, and torque expressions for the
74 new models, and compare these real-space interaction models to exact
75 results for ordered arrays of multipoles.
76 \end{abstract}
77
78 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
79 % Classification Scheme.
80 %\keywords{Suggested keywords}%Use showkeys class option if keyword
81 %display desired
82 \maketitle
83
84 \section{Introduction}
85 There has been increasing interest in real-space methods for
86 calculating electrostatic interactions in computer simulations of
87 condensed molecular
88 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
89 The simplest of these techniques was developed by Wolf {\it et al.}
90 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
91 For systems of point charges, Fennell and Gezelter showed that a
92 simple damped shifted force (DSF) modification to Wolf's method could
93 give nearly quantitative agreement with smooth particle mesh Ewald
94 (SPME)\cite{Essmann95} configurational energy differences as well as
95 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
96
97 The computational efficiency and the accuracy of the DSF method are
98 surprisingly good, particularly for systems with uniform charge
99 density. Additionally, dielectric constants obtained using DSF and
100 similar methods where the force vanishes at $r_{c}$ are
101 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
102 related methods have now been widely investigated,\cite{Hansen:2012uq}
103 and DSF is now used routinely in a diverse set of chemical
104 environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
105 DSF electrostatics provides a compromise between the computational
106 speed of real-space cutoffs and the accuracy of fully-periodic Ewald
107 treatments.
108
109 One common feature of many coarse-graining approaches, which treat
110 entire molecular subsystems as a single rigid body, is simplification
111 of the electrostatic interactions between these bodies so that fewer
112 site-site interactions are required to compute configurational
113 energies. To do this, the interactions between coarse-grained sites
114 are typically taken to be point
115 multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
116
117 Water, in particular, has been modeled recently with point multipoles
118 up to octupolar
119 order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
120 maximum efficiency, these models require the use of an approximate
121 multipole expansion as the exact multipole expansion can become quite
122 expensive (particularly when handled via the Ewald
123 sum).\cite{Ichiye:2006qy} Point multipoles and multipole
124 polarizability have also been utilized in the AMOEBA water model and
125 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
126
127 Higher-order multipoles present a peculiar issue for molecular
128 dynamics. Multipolar interactions are inherently short-ranged, and
129 should not need the relatively expensive Ewald treatment. However,
130 real-space cutoff methods are normally applied in an orientation-blind
131 fashion so multipoles which leave and then re-enter a cutoff sphere in
132 a different orientation can cause energy discontinuities.
133
134 This paper outlines an extension of the original DSF electrostatic
135 kernel to point multipoles. We describe two distinct real-space
136 interaction models for higher-order multipoles based on two truncated
137 Taylor expansions that are carried out at the cutoff radius. We are
138 calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
139 electrostatics. Because of differences in the initial assumptions,
140 the two methods yield related, but somewhat different expressions for
141 energies, forces, and torques.
142
143 In this paper we outline the new methodology and give functional forms
144 for the energies, forces, and torques up to quadrupole-quadrupole
145 order. We also compare the new methods to analytic energy constants
146 for periodic arrays of point multipoles. In the following paper, we
147 provide numerical comparisons to Ewald-based electrostatics in common
148 simulation enviornments.
149
150 \section{Methodology}
151 An efficient real-space electrostatic method involves the use of a
152 pair-wise functional form,
153 \begin{equation}
154 V = \sum_i \sum_{j>i} V_\mathrm{pair}(\mathbf{r}_{ij}, \Omega_i, \Omega_j) +
155 \sum_i V_i^\mathrm{self}
156 \end{equation}
157 that is short-ranged and easily truncated at a cutoff radius,
158 \begin{equation}
159 V_\mathrm{pair}(\mathbf{r}_{ij},\Omega_i, \Omega_j) = \left\{
160 \begin{array}{ll}
161 V_\mathrm{approx} (\mathbf{r}_{ij}, \Omega_i, \Omega_j) & \quad \left| \mathbf{r}_{ij} \right| \le r_c \\
162 0 & \quad \left| \mathbf{r}_{ij} \right| > r_c ,
163 \end{array}
164 \right.
165 \end{equation}
166 along with an easily computed self-interaction term ($\sum_i
167 V_i^\mathrm{self}$) which scales linearly with the number of
168 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
169 coordinates of the two sites, and $\mathbf{r}_{ij}$ is the vector
170 between the two sites. The computational efficiency, energy
171 conservation, and even some physical properties of a simulation can
172 depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173 the cutoff radius. The goal of any approximation method should be to
174 mimic the real behavior of the electrostatic interactions as closely
175 as possible without sacrificing the near-linear scaling of a cutoff
176 method.
177
178 \subsection{Self-neutralization, damping, and force-shifting}
179 The DSF and Wolf methods operate by neutralizing the total charge
180 contained within the cutoff sphere surrounding each particle. This is
181 accomplished by shifting the potential functions to generate image
182 charges on the surface of the cutoff sphere for each pair interaction
183 computed within $r_c$. Damping using a complementary error function is
184 applied to the potential to accelerate convergence. The interaction
185 for a pair of charges ($C_i$ and $C_j$) in the DSF method,
186 \begin{equation*}
187 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
188 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
189 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
190 + \frac{2\alpha}{\pi^{1/2}}
191 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
192 \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
193 \label{eq:DSFPot}
194 \end{equation*}
195 where $\alpha$ is the adjustable damping parameter. Note that in this
196 potential and in all electrostatic quantities that follow, the
197 standard $1/4 \pi \epsilon_{0}$ has been omitted for clarity.
198
199 To insure net charge neutrality within each cutoff sphere, an
200 additional ``self'' term is added to the potential. This term is
201 constant (as long as the charges and cutoff radius do not change), and
202 exists outside the normal pair-loop for molecular simulations. It can
203 be thought of as a contribution from a charge opposite in sign, but
204 equal in magnitude, to the central charge, which has been spread out
205 over the surface of the cutoff sphere. A portion of the self term is
206 identical to the self term in the Ewald summation, and comes from the
207 utilization of the complimentary error function for electrostatic
208 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
209 extend the Wolf self-neutralization method to zero out the dipole and
210 higher order multipoles contained within the cutoff
211 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
212
213 In this work, we extend the idea of self-neutralization for the point
214 multipoles by insuring net charge-neutrality and net-zero moments
215 within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
216 central dipolar site $\mathbf{D}_i$ is interacting with point dipole
217 $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
218 self-neutralization scheme for point multipoles involves projecting
219 opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
220 sphere. There are also significant modifications made to make the
221 forces and torques go smoothly to zero at the cutoff distance.
222
223
224 As in the point-charge approach, there is an additional contribution
225 from self-neutralization of site $i$. The self term for multipoles is
226 described in section \ref{sec:selfTerm}.
227
228 \subsection{The multipole expansion}
229
230 Consider two discrete rigid collections of point charges, denoted as
231 $\bf a$ and $\bf b$. In the following, we assume that the two objects
232 interact via electrostatics only and describe those interactions in
233 terms of a standard multipole expansion. Putting the origin of the
234 coordinate system at the center of mass of $\bf a$, we use vectors
235 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
236 a$. Then the electrostatic potential of object $\bf a$ at
237 $\mathbf{r}$ is given by
238 \begin{equation}
239 V_a(\mathbf r) =
240 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
241 \end{equation}
242 The Taylor expansion in $r$ can be written using an implied summation
243 notation. Here Greek indices are used to indicate space coordinates
244 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
245 labeling specific charges in $\bf a$ and $\bf b$ respectively. The
246 Taylor expansion,
247 \begin{equation}
248 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
249 \left( 1
250 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
251 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
252 \right)
253 \frac{1}{r} ,
254 \end{equation}
255 can then be used to express the electrostatic potential on $\bf a$ in
256 terms of multipole operators,
257 \begin{equation}
258 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
259 \end{equation}
260 where
261 \begin{equation}
262 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
263 + Q_{{\bf a}\alpha\beta}
264 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
265 \end{equation}
266 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
267 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
268 a}\alpha\beta}$, respectively. These are the primitive multipoles
269 which can be expressed as a distribution of charges,
270 \begin{align}
271 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
272 D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
273 Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
274 r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
275 \end{align}
276 Note that the definition of the primitive quadrupole here differs from
277 the standard traceless form, and contains an additional Taylor-series
278 based factor of $1/2$. We are essentially treating the mass
279 distribution with higher priority; the moment of inertia tensor,
280 $\overleftrightarrow{\mathsf I}$, is diagonalized to obtain body-fixed
281 axes, and the charge distribution may result in a quadrupole tensor
282 that is not necessarily diagonal in the body frame. Additional
283 reasons for utilizing the primitive quadrupole are discussed in
284 section \ref{sec:damped}.
285
286 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
287 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
288 \begin{equation}
289 U_{\bf{ab}}(r)
290 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
291 \end{equation}
292 This can also be expanded as a Taylor series in $r$. Using a notation
293 similar to before to define the multipoles on object {\bf b},
294 \begin{equation}
295 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
296 + Q_{{\bf b}\alpha\beta}
297 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
298 \end{equation}
299 we arrive at the multipole expression for the total interaction energy.
300 \begin{equation}
301 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
302 \end{equation}
303 This form has the benefit of separating out the energies of
304 interaction into contributions from the charge, dipole, and quadrupole
305 of $\bf a$ interacting with the same multipoles on $\bf b$.
306
307 \subsection{Damped Coulomb interactions}
308 \label{sec:damped}
309 In the standard multipole expansion, one typically uses the bare
310 Coulomb potential, with radial dependence $1/r$, as shown in
311 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
312 interaction, which results from replacing point charges with Gaussian
313 distributions of charge with width $\alpha$. In damped multipole
314 electrostatics, the kernel ($1/r$) of the expansion is replaced with
315 the function:
316 \begin{equation}
317 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319 \end{equation}
320 We develop equations below using the function $f(r)$ to represent
321 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322 bare or damped Coulomb kernels (or any other function) as long as
323 derivatives of these functions are known. Smith's convenient
324 functions $B_l(r)$ are summarized in Appendix A. (N.B. there is one
325 important distinction between the two kernels, which is the behavior
326 of $\nabla^2 \frac{1}{r}$ compared with $\nabla^2 B_0(r)$. The former
327 is zero everywhere except for a delta function evaluated at the
328 origin. The latter also has delta function behavior, but is non-zero
329 for $r \neq 0$. Thus the standard justification for using a traceless
330 quadrupole tensor fails for the damped case.)
331
332 The main goal of this work is to smoothly cut off the interaction
333 energy as well as forces and torques as $r\rightarrow r_c$. To
334 describe how this goal may be met, we use two examples, charge-charge
335 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
336 explain the idea.
337
338 \subsection{Shifted-force methods}
339 In the shifted-force approximation, the interaction energy for two
340 charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
341 written:
342 \begin{equation}
343 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
344 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
345 \right) .
346 \end{equation}
347 Two shifting terms appear in this equations, one from the
348 neutralization procedure ($-1/r_c$), and one that causes the first
349 derivative to vanish at the cutoff radius.
350
351 Since one derivative of the interaction energy is needed for the
352 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
353 interaction energy, that is:
354 \begin{equation}
355 \frac{d\,}{dr}
356 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
357 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
358 \right) .
359 \end{equation}
360 which clearly vanishes as the $r$ approaches the cutoff radius. There
361 are a number of ways to generalize this derivative shift for
362 higher-order multipoles. Below, we present two methods, one based on
363 higher-order Taylor series for $r$ near $r_c$, and the other based on
364 linear shift of the kernel gradients at the cutoff itself.
365
366 \subsection{Taylor-shifted force (TSF) electrostatics}
367 In the Taylor-shifted force (TSF) method, the procedure that we follow
368 is based on a Taylor expansion containing the same number of
369 derivatives required for each force term to vanish at the cutoff. For
370 example, the quadrupole-quadrupole interaction energy requires four
371 derivatives of the kernel, and the force requires one additional
372 derivative. For quadrupole-quadrupole interactions, we therefore
373 require shifted energy expressions that include up to $(r-r_c)^5$ so
374 that all energies, forces, and torques are zero as $r \rightarrow
375 r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
376 from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
377 derivatives to be taken when deriving a given multipole energy. We
378 choose a function with guaranteed smooth derivatives -- a truncated
379 Taylor series of the function $f(r)$, e.g.,
380 %
381 \begin{equation}
382 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
383 \end{equation}
384 %
385 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
386 Thus, for $f(r)=1/r$, we find
387 %
388 \begin{equation}
389 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
390 \end{equation}
391 %
392 Continuing with the example of a charge $\bf a$ interacting with a
393 dipole $\bf b$, we write
394 %
395 \begin{equation}
396 U_{C_{\bf a}D_{\bf b}}(r)=
397 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
398 = C_{\bf a} D_{{\bf b}\alpha}
399 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
400 \end{equation}
401 %
402 The force that dipole $\bf b$ exerts on charge $\bf a$ is
403 %
404 \begin{equation}
405 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
406 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
407 \frac{r_\alpha r_\beta}{r^2}
408 \left( -\frac{1}{r} \frac {\partial} {\partial r}
409 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
410 \end{equation}
411 %
412 For undamped coulombic interactions, $f(r)=1/r$, we find
413 %
414 \begin{equation}
415 F_{C_{\bf a}D_{\bf b}\beta} =
416 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
417 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
418 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
419 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
420 \end{equation}
421 %
422 This expansion shows the expected $1/r^3$ dependence of the force.
423
424 In general, we can write
425 %
426 \begin{equation}
427 U^{\text{TSF}}= (\text{prefactor}) (\text{derivatives}) f_n(r)
428 \label{generic}
429 \end{equation}
430 %
431 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
432 charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
433 $n=4$ for quadrupole-quadrupole. For example, in
434 quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
435 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
436 $\partial^4/\partial r_\alpha \partial r_\beta \partial
437 r_\gamma \partial r_\delta$, with implied summation combining the
438 space indices.
439
440 In the formulas presented in the tables below, the placeholder
441 function $f(r)$ is used to represent the electrostatic kernel (either
442 damped or undamped). The main functions that go into the force and
443 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
444 successive derivatives of the shifted electrostatic kernel, $f_n(r)$
445 of the same index $n$. The algebra required to evaluate energies,
446 forces and torques is somewhat tedious, so only the final forms are
447 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
448 One of the principal findings of our work is that the individual
449 orientational contributions to the various multipole-multipole
450 interactions must be treated with distinct radial functions, but each
451 of these contributions is independently force shifted at the cutoff
452 radius.
453
454 \subsection{Gradient-shifted force (GSF) electrostatics}
455 The second, and conceptually simpler approach to force-shifting
456 maintains only the linear $(r-r_c)$ term in the truncated Taylor
457 expansion, and has a similar interaction energy for all multipole
458 orders:
459 \begin{equation}
460 U^{\text{GSF}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
461 U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) - (r-r_c) \hat{r}
462 \cdot \nabla U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) \Big \lvert _{r_c} \right]
463 \label{generic2}
464 \end{equation}
465 where the sum describes a separate force-shifting that is applied to
466 each orientational contribution to the energy. Both the potential and
467 the gradient for force shifting are evaluated for an image multipole
468 projected onto the surface of the cutoff sphere (see fig
469 \ref{fig:shiftedMultipoles}). The image multipole retains the
470 orientation ($\hat{\mathbf{b}}$) of the interacting multipole. No
471 higher order terms $(r-r_c)^n$ appear. The primary difference between
472 the TSF and GSF methods is the stage at which the Taylor Series is
473 applied; in the Taylor-shifted approach, it is applied to the kernel
474 itself. In the Gradient-shifted approach, it is applied to individual
475 radial interactions terms in the multipole expansion. Energies from
476 this method thus have the general form:
477 \begin{equation}
478 U= \sum (\text{angular factor}) (\text{radial factor}).
479 \label{generic3}
480 \end{equation}
481
482 Functional forms for both methods (TSF and GSF) can both be summarized
483 using the form of Eq.~(\ref{generic3}). The basic forms for the
484 energy, force, and torque expressions are tabulated for both shifting
485 approaches below -- for each separate orientational contribution, only
486 the radial factors differ between the two methods.
487
488 \subsection{\label{sec:level2}Body and space axes}
489 Although objects $\bf a$ and $\bf b$ rotate during a molecular
490 dynamics (MD) simulation, their multipole tensors remain fixed in
491 body-frame coordinates. While deriving force and torque expressions,
492 it is therefore convenient to write the energies, forces, and torques
493 in intermediate forms involving the vectors of the rotation matrices.
494 We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
495 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
496 In a typical simulation , the initial axes are obtained by
497 diagonalizing the moment of inertia tensors for the objects. (N.B.,
498 the body axes are generally {\it not} the same as those for which the
499 quadrupole moment is diagonal.) The rotation matrices are then
500 propagated during the simulation.
501
502 The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
503 expressed using these unit vectors:
504 \begin{eqnarray}
505 \hat{\mathbf {a}} =
506 \begin{pmatrix}
507 \hat{a}_1 \\
508 \hat{a}_2 \\
509 \hat{a}_3
510 \end{pmatrix}, \qquad
511 \hat{\mathbf {b}} =
512 \begin{pmatrix}
513 \hat{b}_1 \\
514 \hat{b}_2 \\
515 \hat{b}_3
516 \end{pmatrix}
517 \end{eqnarray}
518 %
519 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
520 coordinates.
521
522 Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
523 {\em et al.},\cite{Price:1984fk} showed that if the interaction
524 energies are written explicitly in terms of $\hat{r}$ and the body
525 axes ($\hat{a}_m$, $\hat{b}_n$) :
526 %
527 \begin{equation}
528 U(r, \{\hat{a}_m \cdot \hat{r} \},
529 \{\hat{b}_n\cdot \hat{r} \},
530 \{\hat{a}_m \cdot \hat{b}_n \}) .
531 \label{ugeneral}
532 \end{equation}
533 %
534 the forces come out relatively cleanly,
535 %
536 \begin{equation}
537 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
538 = \frac{\partial U}{\partial r} \hat{r}
539 + \sum_m \left[
540 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
541 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
542 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
543 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
544 \right] \label{forceequation}.
545 \end{equation}
546
547 The torques can also be found in a relatively similar
548 manner,
549 %
550 \begin{eqnarray}
551 \mathbf{\tau}_{\bf a} =
552 \sum_m
553 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
554 ( \hat{r} \times \hat{a}_m )
555 -\sum_{mn}
556 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
557 (\hat{a}_m \times \hat{b}_n) \\
558 %
559 \mathbf{\tau}_{\bf b} =
560 \sum_m
561 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
562 ( \hat{r} \times \hat{b}_m)
563 +\sum_{mn}
564 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
565 (\hat{a}_m \times \hat{b}_n) .
566 \end{eqnarray}
567
568 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
569 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
570 We also made use of the identities,
571 %
572 \begin{align}
573 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
574 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
575 \right) \\
576 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
577 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
578 \right) .
579 \end{align}
580
581 Many of the multipole contractions required can be written in one of
582 three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
583 and $\hat{b}_n$. In the torque expressions, it is useful to have the
584 angular-dependent terms available in all three fashions, e.g. for the
585 dipole-dipole contraction:
586 %
587 \begin{equation}
588 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
589 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
590 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
591 \end{equation}
592 %
593 The first two forms are written using space coordinates. The first
594 form is standard in the chemistry literature, while the second is
595 expressed using implied summation notation. The third form shows
596 explicit sums over body indices and the dot products now indicate
597 contractions using space indices.
598
599 In computing our force and torque expressions, we carried out most of
600 the work in body coordinates, and have transformed the expressions
601 back to space-frame coordinates, which are reported below. Interested
602 readers may consult the supplemental information for this paper for
603 the intermediate body-frame expressions.
604
605 \subsection{The Self-Interaction \label{sec:selfTerm}}
606
607 In addition to cutoff-sphere neutralization, the Wolf
608 summation~\cite{Wolf99} and the damped shifted force (DSF)
609 extension~\cite{Fennell:2006zl} also include self-interactions that
610 are handled separately from the pairwise interactions between
611 sites. The self-term is normally calculated via a single loop over all
612 sites in the system, and is relatively cheap to evaluate. The
613 self-interaction has contributions from two sources.
614
615 First, the neutralization procedure within the cutoff radius requires
616 a contribution from a charge opposite in sign, but equal in magnitude,
617 to the central charge, which has been spread out over the surface of
618 the cutoff sphere. For a system of undamped charges, the total
619 self-term is
620 \begin{equation}
621 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
622 \label{eq:selfTerm}
623 \end{equation}
624
625 Second, charge damping with the complementary error function is a
626 partial analogy to the Ewald procedure which splits the interaction
627 into real and reciprocal space sums. The real space sum is retained
628 in the Wolf and DSF methods. The reciprocal space sum is first
629 minimized by folding the largest contribution (the self-interaction)
630 into the self-interaction from charge neutralization of the damped
631 potential. The remainder of the reciprocal space portion is then
632 discarded (as this contributes the largest computational cost and
633 complexity to the Ewald sum). For a system containing only damped
634 charges, the complete self-interaction can be written as
635 \begin{equation}
636 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
637 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
638 C_{\bf a}^{2}.
639 \label{eq:dampSelfTerm}
640 \end{equation}
641
642 The extension of DSF electrostatics to point multipoles requires
643 treatment of {\it both} the self-neutralization and reciprocal
644 contributions to the self-interaction for higher order multipoles. In
645 this section we give formulae for these interactions up to quadrupolar
646 order.
647
648 The self-neutralization term is computed by taking the {\it
649 non-shifted} kernel for each interaction, placing a multipole of
650 equal magnitude (but opposite in polarization) on the surface of the
651 cutoff sphere, and averaging over the surface of the cutoff sphere.
652 Because the self term is carried out as a single sum over sites, the
653 reciprocal-space portion is identical to half of the self-term
654 obtained by Smith and Aguado and Madden for the application of the
655 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
656 site which posesses a charge, dipole, and quadrupole, both types of
657 contribution are given in table \ref{tab:tableSelf}.
658
659 \begin{table*}
660 \caption{\label{tab:tableSelf} Self-interaction contributions for
661 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
662 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
663 \begin{ruledtabular}
664 \begin{tabular}{lccc}
665 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
666 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
667 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
668 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
669 Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
670 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
671 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
672 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
673 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
674 \end{tabular}
675 \end{ruledtabular}
676 \end{table*}
677
678 For sites which simultaneously contain charges and quadrupoles, the
679 self-interaction includes a cross-interaction between these two
680 multipole orders. Symmetry prevents the charge-dipole and
681 dipole-quadrupole interactions from contributing to the
682 self-interaction. The functions that go into the self-neutralization
683 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
684 derivatives of the electrostatic kernel, $f(r)$ (either the undamped
685 $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
686 have been evaluated at the cutoff distance. For undamped
687 interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
688 damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
689 on. Appendix \ref{SmithFunc} contains recursion relations that allow
690 rapid evaluation of these derivatives.
691
692 \section{Interaction energies, forces, and torques}
693 The main result of this paper is a set of expressions for the
694 energies, forces and torques (up to quadrupole-quadrupole order) that
695 work for both the Taylor-shifted and Gradient-shifted approximations.
696 These expressions were derived using a set of generic radial
697 functions. Without using the shifting approximations mentioned above,
698 some of these radial functions would be identical, and the expressions
699 coalesce into the familiar forms for unmodified multipole-multipole
700 interactions. Table \ref{tab:tableenergy} maps between the generic
701 functions and the radial functions derived for both the Taylor-shifted
702 and Gradient-shifted methods. The energy equations are written in
703 terms of lab-frame representations of the dipoles, quadrupoles, and
704 the unit vector connecting the two objects,
705
706 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
707 %
708 %
709 % u ca cb
710 %
711 \begin{align}
712 U_{C_{\bf a}C_{\bf b}}(r)=&
713 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
714 \\
715 %
716 % u ca db
717 %
718 U_{C_{\bf a}D_{\bf b}}(r)=&
719 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
720 \label{uchdip}
721 \\
722 %
723 % u ca qb
724 %
725 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
726 v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
727 \hat{r} \right) v_{22}(r) \Bigr]
728 \label{uchquad}
729 \\
730 %
731 % u da cb
732 %
733 %U_{D_{\bf a}C_{\bf b}}(r)=&
734 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
735 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
736 %\\
737 %
738 % u da db
739 %
740 U_{D_{\bf a}D_{\bf b}}(r)=&
741 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
742 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
743 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
744 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
745 v_{22}(r) \Bigr]
746 \label{udipdip}
747 \\
748 %
749 % u da qb
750 %
751 \begin{split}
752 % 1
753 U_{D_{\bf a}Q_{\bf b}}(r) =&
754 -\Bigl[
755 \text{Tr}\mathbf{Q}_{\mathbf{b}}
756 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
757 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
758 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
759 % 2
760 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
761 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
762 \label{udipquad}
763 \end{split}
764 \\
765 %
766 % u qa cb
767 %
768 %U_{Q_{\bf a}C_{\bf b}}(r)=&
769 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
770 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
771 %\label{uquadch}
772 %\\
773 %
774 % u qa db
775 %
776 %\begin{split}
777 %1
778 %U_{Q_{\bf a}D_{\bf b}}(r)=&
779 %\frac{1}{4\pi \epsilon_0} \Bigl[
780 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
781 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
782 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
783 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
784 % 2
785 %&+\frac{1}{4\pi \epsilon_0}
786 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
787 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
788 %\label{uquaddip}
789 %\end{split}
790 %\\
791 %
792 % u qa qb
793 %
794 \begin{split}
795 %1
796 U_{Q_{\bf a}Q_{\bf b}}(r)=&
797 \Bigl[
798 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
799 +2
800 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
801 \\
802 % 2
803 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
804 \left( \hat{r} \cdot
805 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
806 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
807 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
808 \cdot \hat{r} \right) +4 (\hat{r} \cdot
809 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
810 \Bigr] v_{42}(r)
811 \\
812 % 4
813 &+
814 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
815 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
816 \label{uquadquad}
817 \end{split}
818 \end{align}
819 %
820 Note that the energies of multipoles on site $\mathbf{b}$ interacting
821 with those on site $\mathbf{a}$ can be obtained by swapping indices
822 along with the sign of the intersite vector, $\hat{r}$.
823
824 %
825 %
826 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
827 %
828
829 \begin{sidewaystable}
830 \caption{\label{tab:tableenergy}Radial functions used in the energy
831 and torque equations. The $f, g, h, s, t, \mathrm{and} u$
832 functions used in this table are defined in Appendices B and C.}
833 \begin{tabular}{|c|c|l|l|} \hline
834 Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
835 \\ \hline
836 %
837 %
838 %
839 %Ch-Ch&
840 $v_{01}(r)$ &
841 $\frac{1}{r}$ &
842 $f_0(r)$ &
843 $f(r)-f(r_c)-(r-r_c)g(r_c)$
844 \\
845 %
846 %
847 %
848 %Ch-Di&
849 $v_{11}(r)$ &
850 $-\frac{1}{r^2}$ &
851 $g_1(r)$ &
852 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
853 %
854 %
855 %
856 %Ch-Qu/Di-Di&
857 $v_{21}(r)$ &
858 $-\frac{1}{r^3} $ &
859 $\frac{g_2(r)}{r} $ &
860 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
861 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
862 $v_{22}(r)$ &
863 $\frac{3}{r^3} $ &
864 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
865 $\left(-\frac{g(r)}{r}+h(r) \right)
866 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
867 &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
868 \\
869 %
870 %
871 %
872 %Di-Qu &
873 $v_{31}(r)$ &
874 $\frac{3}{r^4} $ &
875 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
876 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
877 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
878 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
879 \\
880 %
881 $v_{32}(r)$ &
882 $-\frac{15}{r^4} $ &
883 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
884 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
885 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
886 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
887 \\
888 %
889 %
890 %
891 %Qu-Qu&
892 $v_{41}(r)$ &
893 $\frac{3}{r^5} $ &
894 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
895 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
896 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
897 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
898 \\
899 % 2
900 $v_{42}(r)$ &
901 $- \frac{15}{r^5} $ &
902 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
903 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
904 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
905 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
906 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
907 \\
908 % 3
909 $v_{43}(r)$ &
910 $ \frac{105}{r^5} $ &
911 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
912 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
913 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
914 &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
915 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
916 \end{tabular}
917 \end{sidewaystable}
918 %
919 %
920 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
921 %
922
923 \begin{sidewaystable}
924 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
925 \begin{tabular}{|c|c|l|l|} \hline
926 Function&Definition&Taylor-Shifted&Gradient-Shifted
927 \\ \hline
928 %
929 %
930 %
931 $w_a(r)$&
932 $\frac{d v_{01}}{dr}$&
933 $g_0(r)$&
934 $g(r)-g(r_c)$ \\
935 %
936 %
937 $w_b(r)$ &
938 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
939 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
940 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
941 %
942 $w_c(r)$ &
943 $\frac{v_{11}(r)}{r}$ &
944 $\frac{g_1(r)}{r} $ &
945 $\frac{v_{11}(r)}{r}$\\
946 %
947 %
948 $w_d(r)$&
949 $\frac{d v_{21}}{dr}$&
950 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
951 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
952 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
953 %
954 $w_e(r)$ &
955 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
956 $\frac{v_{22}(r)}{r}$ &
957 $\frac{v_{22}(r)}{r}$ \\
958 %
959 %
960 $w_f(r)$&
961 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
962 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
963 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
964 &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
965 \right)-\frac{2v_{22}(r)}{r}$\\
966 %
967 $w_g(r)$&
968 $\frac{v_{31}(r)}{r}$&
969 $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
970 $\frac{v_{31}(r)}{r}$\\
971 %
972 $w_h(r)$ &
973 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
974 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
975 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
976 &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
977 % 2
978 $w_i(r)$ &
979 $\frac{v_{32}(r)}{r}$ &
980 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
981 $\frac{v_{32}(r)}{r}$\\
982 %
983 $w_j(r)$ &
984 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
985 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
986 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
987 &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
988 -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
989 %
990 $w_k(r)$ &
991 $\frac{d v_{41}}{dr} $ &
992 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
993 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
994 -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
995 %
996 $w_l(r)$ &
997 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
998 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
999 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
1000 &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
1001 -\frac{2v_{42}(r)}{r}$\\
1002 %
1003 $w_m(r)$ &
1004 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
1005 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
1006 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
1007 &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
1008 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
1009 &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
1010 %
1011 $w_n(r)$ &
1012 $\frac{v_{42}(r)}{r}$ &
1013 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1014 $\frac{v_{42}(r)}{r}$\\
1015 %
1016 $w_o(r)$ &
1017 $\frac{v_{43}(r)}{r}$&
1018 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1019 $\frac{v_{43}(r)}{r}$ \\ \hline
1020 %
1021
1022 \end{tabular}
1023 \end{sidewaystable}
1024 %
1025 %
1026 %
1027
1028 \subsection{Forces}
1029 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1030 $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1031 a simple charge-charge interaction, these forces will point along the
1032 $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1033 \mathbf{r}_a $. Thus
1034 %
1035 \begin{equation}
1036 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1037 \quad \text{and} \quad F_{\bf b \alpha}
1038 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
1039 \end{equation}
1040 %
1041 We list below the force equations written in terms of lab-frame
1042 coordinates. The radial functions used in the two methods are listed
1043 in Table \ref{tab:tableFORCE}
1044 %
1045 %SPACE COORDINATES FORCE EQUATIONS
1046 %
1047 % **************************************************************************
1048 % f ca cb
1049 %
1050 \begin{align}
1051 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1052 C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1053 %
1054 %
1055 %
1056 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1057 C_{\bf a} \Bigl[
1058 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1059 w_b(r) \hat{r}
1060 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1061 %
1062 %
1063 %
1064 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1065 C_{\bf a } \Bigr[
1066 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1067 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1068 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1069 \right) w_f(r) \hat{r} \Bigr] \\
1070 %
1071 %
1072 %
1073 % \begin{equation}
1074 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1075 % -C_{\bf{b}} \Bigl[
1076 % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1077 % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1078 % \end{equation}
1079 %
1080 %
1081 %
1082 \begin{split}
1083 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1084 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1085 + \left( \mathbf{D}_{\mathbf {a}}
1086 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1087 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1088 % 2
1089 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1090 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1091 \end{split}\\
1092 %
1093 %
1094 %
1095 \begin{split}
1096 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1097 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1098 +2 \mathbf{D}_{\mathbf{a}} \cdot
1099 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1100 - \Bigl[
1101 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1102 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1103 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1104 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1105 % 3
1106 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1107 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1108 w_i(r)
1109 % 4
1110 -
1111 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1112 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1113 %
1114 %
1115 % \begin{equation}
1116 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1117 % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1118 % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1119 % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1120 % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1121 % \end{equation}
1122 % %
1123 % \begin{equation}
1124 % \begin{split}
1125 % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1126 % &\frac{1}{4\pi \epsilon_0} \Bigl[
1127 % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1128 % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1129 % % 2
1130 % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1131 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1132 % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1133 % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1134 % % 3
1135 % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1136 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1137 % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1138 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1139 % % 4
1140 % +\frac{1}{4\pi \epsilon_0}
1141 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1142 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1143 % \end{split}
1144 % \end{equation}
1145 %
1146 %
1147 %
1148 \begin{split}
1149 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1150 \Bigl[
1151 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1152 + 2 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1153 % 2
1154 &+ \Bigl[
1155 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1156 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1157 % 3
1158 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1159 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1160 % 4
1161 &+ \Bigl[
1162 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1163 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1164 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1165 % 5
1166 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1167 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1168 %
1169 &+ \Bigl[
1170 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1171 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1172 %6
1173 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1174 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1175 % 7
1176 &+
1177 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1178 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1179 \end{align}
1180 Note that the forces for higher multipoles on site $\mathbf{a}$
1181 interacting with those of lower order on site $\mathbf{b}$ can be
1182 obtained by swapping indices in the expressions above.
1183
1184 %
1185 % Torques SECTION -----------------------------------------------------------------------------------------
1186 %
1187 \subsection{Torques}
1188
1189 %
1190 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1191 methods are given in space-frame coordinates:
1192 %
1193 %
1194 \begin{align}
1195 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1196 C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1197 %
1198 %
1199 %
1200 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1201 2C_{\bf a}
1202 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1203 %
1204 %
1205 %
1206 % \begin{equation}
1207 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1208 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1209 % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1210 % \end{equation}
1211 %
1212 %
1213 %
1214 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1215 \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1216 % 2
1217 -
1218 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1219 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1220 %
1221 %
1222 %
1223 % \begin{equation}
1224 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1225 % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1226 % % 2
1227 % +\frac{1}{4\pi \epsilon_0}
1228 % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1229 % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1230 % \end{equation}
1231 %
1232 %
1233 %
1234 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1235 \Bigl[
1236 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1237 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1238 +2 \mathbf{D}_{\mathbf{a}} \times
1239 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1240 \Bigr] v_{31}(r)
1241 % 3
1242 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1243 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1244 %
1245 %
1246 %
1247 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1248 \Bigl[
1249 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1250 \hat{r}
1251 -2 \mathbf{D}_{\mathbf{a}} \times
1252 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1253 \Bigr] v_{31}(r)
1254 % 2
1255 +
1256 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1257 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1258 %
1259 %
1260 %
1261 % \begin{equation}
1262 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1263 % \frac{1}{4\pi \epsilon_0} \Bigl[
1264 % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1265 % +2 \mathbf{D}_{\mathbf{b}} \times
1266 % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1267 % \Bigr] v_{31}(r)
1268 % % 3
1269 % - \frac{2}{4\pi \epsilon_0}
1270 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1271 % (\hat{r} \cdot \mathbf
1272 % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1273 % \end{equation}
1274 %
1275 %
1276 %
1277 % \begin{equation}
1278 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1279 % \frac{1}{4\pi \epsilon_0} \Bigl[
1280 % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1281 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1282 % +2 \mathbf{D}_{\mathbf{b}} \times
1283 % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1284 % % 2
1285 % +\frac{1}{4\pi \epsilon_0}
1286 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1287 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1288 % \end{equation}
1289 %
1290 %
1291 %
1292 \begin{split}
1293 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1294 -4
1295 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1296 v_{41}(r) \\
1297 % 2
1298 &+
1299 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1300 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1301 +4 \hat{r} \times
1302 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1303 % 3
1304 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1305 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1306 % 4
1307 &+ 2
1308 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1309 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1310 %
1311 %
1312 %
1313 \begin{split}
1314 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1315 &4
1316 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1317 % 2
1318 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1319 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1320 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1321 \mathbf{Q}_{{\mathbf b}} ) \times
1322 \hat{r}
1323 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1324 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1325 \Bigr] v_{42}(r) \\
1326 % 4
1327 &+2
1328 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1329 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1330 \end{align}
1331 %
1332 Here, we have defined the matrix cross product in an identical form
1333 as in Ref. \onlinecite{Smith98}:
1334 \begin{equation}
1335 \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1336 \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1337 -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1338 \right]
1339 \end{equation}
1340 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1341 permuations of the matrix indices.
1342
1343 All of the radial functions required for torques are identical with
1344 the radial functions previously computed for the interaction energies.
1345 These are tabulated for both shifted force methods in table
1346 \ref{tab:tableenergy}. The torques for higher multipoles on site
1347 $\mathbf{a}$ interacting with those of lower order on site
1348 $\mathbf{b}$ can be obtained by swapping indices in the expressions
1349 above.
1350
1351 \section{Related real-space methods}
1352 One can also formulate an extension of the Wolf approach for point
1353 multipoles by simply projecting the image multipole onto the surface
1354 of the cutoff sphere, and including the interactions with the central
1355 multipole and the image. This effectively shifts the total potential
1356 to zero at the cutoff radius,
1357 \begin{equation}
1358 U^{\text{SP}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
1359 U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) \right]
1360 \label{eq:SP}
1361 \end{equation}
1362 where the sum describes separate potential shifting that is applied to
1363 each orientational contribution to the energy.
1364
1365 The energies and torques for the shifted potential (SP) can be easily
1366 obtained by zeroing out the $(r-r_c)$ terms in the final column of
1367 table \ref{tab:tableenergy}. Forces for the SP method retain
1368 discontinuities at the cutoff sphere, and can be obtained by
1369 eliminating all functions that depend on $r_c$ in the last column of
1370 table \ref{tab:tableFORCE}. The self-energy contributions for the SP
1371 potential are identical to both the GSF and TSF methods.
1372
1373 \section{Comparison to known multipolar energies}
1374
1375 To understand how these new real-space multipole methods behave in
1376 computer simulations, it is vital to test against established methods
1377 for computing electrostatic interactions in periodic systems, and to
1378 evaluate the size and sources of any errors that arise from the
1379 real-space cutoffs. In this paper we test both TSF and GSF
1380 electrostatics against analytical methods for computing the energies
1381 of ordered multipolar arrays. In the following paper, we test the new
1382 methods against the multipolar Ewald sum for computing the energies,
1383 forces and torques for a wide range of typical condensed-phase
1384 (disordered) systems.
1385
1386 Because long-range electrostatic effects can be significant in
1387 crystalline materials, ordered multipolar arrays present one of the
1388 biggest challenges for real-space cutoff methods. The dipolar
1389 analogues to the Madelung constants were first worked out by Sauer,
1390 who computed the energies of ordered dipole arrays of zero
1391 magnetization and obtained a number of these constants.\cite{Sauer}
1392 This theory was developed more completely by Luttinger and
1393 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1394 and other periodic structures.
1395
1396 To test the new electrostatic methods, we have constructed very large,
1397 $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1398 Ref. \onlinecite{LT}. These structures include ``A'' lattices with
1399 nearest neighbor chains of antiparallel dipoles, as well as ``B''
1400 lattices with nearest neighbor strings of antiparallel dipoles if the
1401 dipoles are contained in a plane perpendicular to the dipole direction
1402 that passes through the dipole. We have also studied the minimum
1403 energy structure for the BCC lattice that was found by Luttinger \&
1404 Tisza. The total electrostatic energy for any of the arrays is given
1405 by:
1406 \begin{equation}
1407 E = C N^2 \mu^2
1408 \end{equation}
1409 where $C$ is the energy constant (equivalent to the Madelung
1410 constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1411 the strength of the dipole. Energy constants (converged to 1 part in
1412 $10^9$) are given in the supplemental information.
1413 \begin{figure}[!htbp]
1414
1415 \includegraphics[width=3.5in]{Dipoles_rcutConvergence-crop.pdf}
1416
1417 \includegraphics[width=3.5in]{Quadrupoles_rcutConvergence-crop.pdf}
1418 \caption{Convergence to the analytic energy constants as a function of
1419 cutoff radius (normalized by the lattice constant) for the different
1420 real-space methods for (a) dipolar and (b) quadrupolar crystals.The energy constants for hard, SP, GSF, TSF and analytic methods are represented by black sold-circle, red solid-square,green solid-diamond and grey dashed line respectively.
1421 The left panel shows results for the undamped kernel ($1/r$), while the damped
1422 error function kernel, $B_0(r)$ was used in the right panel. }
1423 \label{fig:Dipoles_rcutCovergence-crop.pdf}
1424 \label{fig:QuadrupolesrcutCovergence-crop.pdf}
1425 \end{figure}
1426 For the purposes of testing the energy expressions and the
1427 self-neutralization schemes, the primary quantity of interest is the
1428 analytic energy constant for the perfect arrays. Convergence to these
1429 constants are shown as a function of both the cutoff radius, $r_c$,
1430 and the damping parameter, $\alpha$ in Figs.
1431 \ref{fig:energyConstVsCutoff} and XXX. We have simultaneously tested a
1432 hard cutoff (where the kernel is simply truncated at the cutoff
1433 radius), as well as a shifted potential (SP) form which includes a
1434 potential-shifting and self-interaction term, but does not shift the
1435 forces and torques smoothly at the cutoff radius. The SP method is
1436 essentially an extension of the original Wolf method for multipoles.
1437 \begin{figure}[!htbp]
1438
1439 \includegraphics[width=3.5in]{Dipoles_alphaConvergence-crop.pdf}
1440
1441 \includegraphics[width=3.5in]{Quadrupoles_alphaConvergence-crop.pdf}
1442 \caption{Convergence to the analytic energy constants as a function of
1443 cutoff damping alpha for the different
1444 real-space methods for (a) dipolar and (b) quadrupolar crystals.The energy constants for hard, SP, GSF, TSF, and analytic methods are represented by the black sold-circle, red solid-square, green solid-diamond, and grey dashed line respectively.
1445 The left panel shows results for the undamped kernel ($1/r$), while the damped
1446 error function kernel, $B_0(r)$ was used in the right panel. }
1447 \label{fig:Dipoles_alphaCovergence-crop.pdf}
1448 \label{fig:Quadrupoles_alphaCovergence-crop.pdf}
1449 \end{figure}
1450 The Hard cutoff exhibits oscillations around the analytic energy
1451 constants, and converges to incorrect energies when the complementary
1452 error function damping kernel is used. The shifted potential (SP) and
1453 gradient-shifted force (GSF) approximations converge to the correct
1454 energy smoothly by $r_c / 6 a$ even for the undamped case. This
1455 indicates that the correction provided by the self term is required
1456 for obtaining accurate energies. The Taylor-shifted force (TSF)
1457 approximation appears to perturb the potential too much inside the
1458 cutoff region to provide accurate measures of the energy constants.
1459 {\it Quadrupolar} analogues to the Madelung constants were first
1460 worked out by Nagai and Nakamura who computed the energies of selected
1461 quadrupole arrays based on extensions to the Luttinger and Tisza
1462 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1463 energy constants for the lowest energy configurations for linear
1464 quadrupoles.
1465
1466 In analogy to the dipolar arrays, the total electrostatic energy for
1467 the quadrupolar arrays is:
1468 \begin{equation}
1469 E = C N \frac{3\bar{Q}^2}{4a^5}
1470 \end{equation}
1471 where $a$ is the lattice parameter, and $\bar{Q}$ is the effective
1472 quadrupole moment,
1473 \begin{equation}
1474 \bar{Q}^2 = 2 \left(3 Q : Q - (\text{Tr} Q)^2 \right)
1475 \end{equation}
1476 for the primitive quadrupole as defined in Eq. \ref{eq:quadrupole}.
1477 (For the traceless quadrupole tensor, $\Theta = 3 Q - \text{Tr} Q$,
1478 the effective moment, $\bar{Q}^2 = \frac{2}{3} \Theta : \Theta$.)
1479
1480 \section{Conclusion}
1481 We have presented two efficient real-space methods for computing the
1482 interactions between point multipoles. These methods have the benefit
1483 of smoothly truncating the energies, forces, and torques at the cutoff
1484 radius, making them attractive for both molecular dynamics (MD) and
1485 Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1486 (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1487 correct lattice energies for ordered dipolar and quadrupolar arrays,
1488 while the Taylor-Shifted Force (TSF) is too severe an approximation to
1489 provide accurate convergence to lattice energies.
1490
1491 In most cases, GSF can obtain nearly quantitative agreement with the
1492 lattice energy constants with reasonably small cutoff radii. The only
1493 exception we have observed is for crystals which exhibit a bulk
1494 macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1495 In this particular case, the multipole neutralization scheme can
1496 interfere with the correct computation of the energies. We note that
1497 the energies for these arrangements are typically much larger than for
1498 crystals with net-zero moments, so this is not expected to be an issue
1499 in most simulations.
1500
1501 In large systems, these new methods can be made to scale approximately
1502 linearly with system size, and detailed comparisons with the Ewald sum
1503 for a wide range of chemical environments follows in the second paper.
1504
1505 \begin{acknowledgments}
1506 JDG acknowledges helpful discussions with Christopher
1507 Fennell. Support for this project was provided by the National
1508 Science Foundation under grant CHE-0848243. Computational time was
1509 provided by the Center for Research Computing (CRC) at the
1510 University of Notre Dame.
1511 \end{acknowledgments}
1512
1513 \newpage
1514 \appendix
1515
1516 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1517 \label{SmithFunc}
1518 The following summarizes Smith's $B_l(r)$ functions and includes
1519 formulas given in his appendix.\cite{Smith98} The first function
1520 $B_0(r)$ is defined by
1521 %
1522 \begin{equation}
1523 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1524 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1525 \end{equation}
1526 %
1527 The first derivative of this function is
1528 %
1529 \begin{equation}
1530 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1531 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1532 \end{equation}
1533 %
1534 which can be used to define a function $B_1(r)$:
1535 %
1536 \begin{equation}
1537 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1538 \end{equation}
1539 %
1540 In general, the recurrence relation,
1541 \begin{equation}
1542 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1543 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1544 \text{e}^{-{\alpha}^2r^2}
1545 \right] ,
1546 \end{equation}
1547 is very useful for building up higher derivatives. Using these
1548 formulas, we find:
1549 %
1550 \begin{align}
1551 \frac{dB_0}{dr}=&-rB_1(r) \\
1552 \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1553 \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1554 \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1555 \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1556 \end{align}
1557 %
1558 As noted by Smith, it is possible to approximate the $B_l(r)$
1559 functions,
1560 %
1561 \begin{equation}
1562 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1563 +\text{O}(r) .
1564 \end{equation}
1565 \newpage
1566 \section{The $r$-dependent factors for TSF electrostatics}
1567
1568 Using the shifted damped functions $f_n(r)$ defined by:
1569 %
1570 \begin{equation}
1571 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1572 \end{equation}
1573 %
1574 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1575 this Appendix, we provide formulas for successive derivatives of this
1576 function. (If there is no damping, then $B_0(r)$ is replaced by
1577 $1/r$.) First, we find:
1578 %
1579 \begin{equation}
1580 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1581 \end{equation}
1582 %
1583 This formula clearly brings in derivatives of Smith's $B_0(r)$
1584 function, and we define higher-order derivatives as follows:
1585 %
1586 \begin{align}
1587 g_n(r)=& \frac{d f_n}{d r} =
1588 B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1589 h_n(r)=& \frac{d^2f_n}{d r^2} =
1590 B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1591 s_n(r)=& \frac{d^3f_n}{d r^3} =
1592 B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1593 t_n(r)=& \frac{d^4f_n}{d r^4} =
1594 B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1595 u_n(r)=& \frac{d^5f_n}{d r^5} =
1596 B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1597 \end{align}
1598 %
1599 We note that the last function needed (for quadrupole-quadrupole interactions) is
1600 %
1601 \begin{equation}
1602 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1603 \end{equation}
1604 % The functions
1605 % needed are listed schematically below:
1606 % %
1607 % \begin{eqnarray}
1608 % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1609 % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1610 % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1611 % s_2 \quad s_3 \quad &s_4 \nonumber \\
1612 % t_3 \quad &t_4 \nonumber \\
1613 % &u_4 \nonumber .
1614 % \end{eqnarray}
1615 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1616 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1617 functions, we find
1618 %
1619 \begin{align}
1620 \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1621 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1622 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1623 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1624 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1625 \delta_{ \beta \gamma} r_\alpha \right)
1626 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1627 & + r_\alpha r_\beta r_\gamma
1628 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1629 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1630 r_\gamma \partial r_\delta} =&
1631 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1632 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1633 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1634 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1635 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1636 + \text{5 permutations}
1637 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1638 \right) \nonumber \\
1639 &+ r_\alpha r_\beta r_\gamma r_\delta
1640 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1641 + \frac{t_n}{r^4} \right)\\
1642 \frac{\partial^5 f_n}
1643 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1644 r_\delta \partial r_\epsilon} =&
1645 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1646 + \text{14 permutations} \right)
1647 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1648 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1649 + \text{9 permutations}
1650 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1651 \right) \nonumber \\
1652 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1653 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1654 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1655 \end{align}
1656 %
1657 %
1658 %
1659 \newpage
1660 \section{The $r$-dependent factors for GSF electrostatics}
1661
1662 In Gradient-shifted force electrostatics, the kernel is not expanded,
1663 rather the individual terms in the multipole interaction energies.
1664 For damped charges , this still brings into the algebra multiple
1665 derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1666 we generalize the notation of the previous appendix. For either
1667 $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1668 %
1669 \begin{align}
1670 g(r)=& \frac{df}{d r}\\
1671 h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1672 s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1673 t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1674 u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1675 \end{align}
1676 %
1677 For undamped charges Table I lists these derivatives under the column
1678 ``Bare Coulomb.'' Equations \ref{eq:b9} to \ref{eq:b13} are still
1679 correct for GSF electrostatics if the subscript $n$ is eliminated.
1680
1681 \bibliography{multipole}
1682
1683 \end{document}
1684 %
1685 % ****** End of file multipole.tex ******