ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
(Generate patch)

Comparing trunk/multipole/multipole1.tex (file contents):
Revision 3983 by gezelter, Fri Dec 27 18:09:59 2013 UTC vs.
Revision 3984 by gezelter, Sat Dec 28 18:41:19 2013 UTC

# Line 26 | Line 26 | preprint,%
26   % reprint,%
27   %author-year,%
28   %author-numerical,%
29 < ]{revtex4-1}
29 > jcp]{revtex4-1}
30  
31   \usepackage{graphicx}% Include figure files
32   \usepackage{dcolumn}% Align table columns on decimal point
# Line 316 | Line 316 | summarized in Appendix A.
316   these functions are known.  Smith's convenient functions $B_l(r)$ are
317   summarized in Appendix A.
318  
319 \subsection{Taylor-shifted force (TSF) electrostatics}
319  
320   The main goal of this work is to smoothly cut off the interaction
321   energy as well as forces and torques as $r\rightarrow r_c$.  To
# Line 324 | Line 323 | In the shifted-force approximation, the interaction en
323   and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
324   the idea.
325  
326 + \subsection{Shifted-force methods}
327   In the shifted-force approximation, the interaction energy for two
328   charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
329   written:
# Line 333 | Line 333 | neutralization procedure ($-1/r_c$), and one that will
333   \right) .
334   \end{equation}
335   Two shifting terms appear in this equations, one from the
336 < neutralization procedure ($-1/r_c$), and one that will make the first
337 < derivative also vanish at the cutoff radius.  
336 > neutralization procedure ($-1/r_c$), and one that causes the first
337 > derivative to vanish at the cutoff radius.
338  
339   Since one derivative of the interaction energy is needed for the
340   force, the minimal perturbation is a term linear in $(r-r_c)$ in the
# Line 346 | Line 346 | higher-order multipoles.
346   \right) .
347   \end{equation}
348   There are a number of ways to generalize this derivative shift for
349 < higher-order multipoles.
349 > higher-order multipoles.  Below, we present two methods, one based on
350 > higher-order Taylor series for $r$ near $r_c$, and the other based on
351 > linear shift of the kernel gradients at the cutoff itself.
352  
353 + \subsection{Taylor-shifted force (TSF) electrostatics}
354   In the Taylor-shifted force (TSF) method, the procedure that we follow
355   is based on a Taylor expansion containing the same number of
356   derivatives required for each force term to vanish at the cutoff.  For
# Line 357 | Line 360 | index $n$ indicates the number of derivatives to be ta
360   include enough terms so that all energies, forces, and torques are
361   zero as $r \rightarrow r_c$.  In each case, we will subtract off a
362   function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$.  The
363 < index $n$ indicates the number of derivatives to be taken when
363 > subscript $n$ indicates the number of derivatives to be taken when
364   deriving a given multipole energy.  We choose a function with
365   guaranteed smooth derivatives --- a truncated Taylor series of the
366   function $f(r)$, e.g.,
367   %
368   \begin{equation}
369 < f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert  _{r_c}  .
369 > f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c)  .
370   \end{equation}
371   %
372   The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
# Line 383 | Line 386 | The force that dipole  $\bf b$ puts on charge $\bf a$
386   \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
387   \end{equation}
388   %
389 < The force that dipole  $\bf b$ puts on charge $\bf a$ is
389 > The force that dipole  $\bf b$ exerts on charge $\bf a$ is
390   %
391   \begin{equation}
392   F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
# Line 393 | Line 396 | For $f(r)=1/r$, we find
396   + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
397   \end{equation}
398   %
399 < For $f(r)=1/r$, we find
399 > For undamped coulombic interactions, $f(r)=1/r$, we find
400   %
401   \begin{equation}
402   F_{C_{\bf a}D_{\bf b}\beta} =
# Line 405 | Line 408 | In general, we write
408   %
409   This expansion shows the expected $1/r^3$ dependence of the force.  
410  
411 < In general, we write
411 > In general, we can write
412   %
413   \begin{equation}
414   U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
# Line 419 | Line 422 | To apply this method  to the smeared-charge approach,
422   $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
423   implied summation combining the space indices.
424  
425 < To apply this method  to the smeared-charge approach,  
426 < we write $f(r)=\text{erfc}(\alpha r)/r$.  By using one function $f(r)$ for both
427 < approaches, we simplify the tabulation of equations used.  Because
428 < of the many derivatives that are taken, the algebra is tedious and are summarized
429 < in Appendices A and B.  
425 > In the formulas presented in the tables below, the placeholder
426 > function $f(r)$ is used to represent the electrostatic kernel (either
427 > damped or undamped).  The main functions that go into the force and
428 > torque terms, $f_n(r), g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$
429 > are successive derivatives of the shifted electrostatic kernel of the
430 > same index $n$.  The algebra required to evaluate energies, forces and
431 > torques is somewhat tedious and are summarized in Appendices A and B.
432  
433   \subsection{Gradient-shifted force (GSF) electrostatics}
434 <
435 < Note the method used in the previous subsection to shift a force is basically that of using
436 < a truncated Taylor Series in the radius $r$.  An alternate method exists, best explained by
437 < writing one shifted formula for all interaction energies $U(r)$:
434 > Note the method used in the previous subsection to smoothly shift the
435 > force to zero is a truncated Taylor Series in the radius $r$.  The
436 > second method maintains only the linear $(r-r_c)$ term and has a
437 > similar interaction energy for all multipole orders:
438   \begin{equation}
439   U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert  _{r_c} .
440   \end{equation}
441 < Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
442 < $(r-r_c)^n$ appear.   The primary difference between methods 1 and 2 originates
443 < with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
444 < kernel.  In method 2, it is applied to individual interaction energies of the multipole expansion.
441 > No higher order terms $(r-r_c)^n$ appear.  The primary difference
442 > between the TSF and GSF methods is the stage at which the Taylor
443 > Series is applied; in the Taylor-shifted approach, it is applied to
444 > the kernel itself.  In the Gradient-shifted approach, it is applied to
445 > individual radial interactions terms in the multipole expansion.
446   Terms from this method thus have the general form:
447   \begin{equation}
448   U=\frac{1}{4\pi \epsilon_0}\sum  (\text{angular factor}) (\text{radial factor}).
449   \label{generic2}
450   \end{equation}
451  
452 < Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
453 < and are listed in Table I below.
452 > Results for both methods can be summarized using the form of
453 > Eq.~(\ref{generic2}) and are listed in Table I below.
454  
455   \subsection{\label{sec:level2}Body and space axes}
456  
457 < Up to this point, all energies and forces have been written in terms of fixed space
458 < coordinates $x$, $y$, $z$.  Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
459 < combine prefactors with radial functions.  But because objects
460 < $\bf a$ and  $\bf b$ both translate and rotate as part of a MD simulation,
461 < it is desirable to contract all $r$-dependent terms with dipole and quadrupole
462 < moments expressed in terms of their body axes.  
463 < Since the interaction energy expressions will be used to derive both forces and torques,
464 < we follow here the development of Allen and Germano, which was itself based on an
465 < earlier paper by Price \em et al.\em
457 > So far, all energies and forces have been written in terms of fixed
458 > space coordinates $x$, $y$, $z$.  Interaction energies are computed
459 > from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2})
460 > which combine prefactors with radial functions.  Because objects $\bf
461 > a$ and $\bf b$ both translate and rotate during a molecular dynamics
462 > (MD) simulation, it is desirable to contract all $r$-dependent terms
463 > with dipole and quadrupole moments expressed in terms of their body
464 > axes.  To do so, we follow the methodology of Allen and
465 > Germano,\cite{Allen:2006fk} which was itself based on an earlier paper
466 > by Price {\em et al.}\cite{Price:1984fk}
467  
468 < Denote body axes for objects  $\bf a$ and  $\bf b$ by unit vectors
469 < $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
470 < set of inertial body axes.  (Note, these body axes are generally not the same as those for which the
471 < quadrupole moment is diagonal.)  Then,
468 > We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
469 > $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
470 > referring to a convenient set of inertial body axes.  (N.B., these
471 > body axes are generally not the same as those for which the quadrupole
472 > moment is diagonal.)  Then,
473   %
474   \begin{eqnarray}
475   \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z}  \\
# Line 925 | Line 933 | As is pointed out by Allen and Germano, this is straig
933   The concept of obtaining a force from an energy by taking a gradient is the same for
934   higher-order multipole interactions, the trick is to make sure that all
935   $r$-dependent derivatives are considered.
936 < As is pointed out by Allen and Germano, this is straightforward if the
936 > As is pointed out by Allen and Germano,\cite{Allen:2006fk} this is straightforward if the
937   interaction energies are written recognizing explicit
938   $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
939   %
# Line 950 | Line 958 | that of Allen and Germano.  In simplifying the algebra
958   \end{equation}
959   %
960   Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
961 < that of Allen and Germano.  In simplifying the algebra, we also use:
961 > that of Allen and Germano.\cite{Allen:2006fk}  In simplifying the algebra, we also use:
962   %
963   \begin{eqnarray}
964   \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
# Line 1116 | Line 1124 | Following again Allen and Germano, when energies are w
1124   %
1125   \subsection{Torques}
1126  
1127 < Following again Allen and Germano, when energies are written in the form
1127 > Following again Allen and Germano,\cite{Allen:2006fk} when energies are written in the form
1128   of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1129   %
1130   \begin{eqnarray}
# Line 1400 | Line 1408 | Dame.
1408   Dame.
1409   \end{acknowledgments}
1410  
1411 + \newpage
1412   \appendix
1413  
1414 < \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1414 > \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1415  
1416 < The following summarizes Smith's $B_l(r)$ functions and
1417 < includes formulas given in his appendix.  
1418 <
1410 < The first function $B_0(r)$ is defined by
1416 > The following summarizes Smith's $B_l(r)$ functions and includes
1417 > formulas given in his appendix.\cite{Smith98} The first function
1418 > $B_0(r)$ is defined by
1419   %
1420   \begin{equation}
1421   B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
# Line 1421 | Line 1429 | and can be rewritten in terms of a function $B_1(r)$:
1429   -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1430   \end{equation}
1431   %
1432 < and can be rewritten in terms of a function $B_1(r)$:
1432 > which can be used to define a function $B_1(r)$:
1433   %
1434   \begin{equation}
1435   B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1436   \end{equation}
1437   %
1438 < In general,
1438 > In general, the recurrence relation,
1439   \begin{equation}
1440   B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1441   = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1442   \text{e}^{-{\alpha}^2r^2}
1443 < \right] .
1443 > \right] ,
1444   \end{equation}
1445 + is very useful for building up higher derivatives.  Using these
1446 + formulas, we find:
1447   %
1448 < Using these formulas, we find
1448 > \begin{align}
1449 > \frac{dB_0}{dr}=&-rB_1(r) \\
1450 > \frac{d^2B_0}{dr^2}=&    - B_1(r) + r^2 B_2(r) \\
1451 > \frac{d^3B_0}{dr^3}=&   3 r B_2(r) - r^3 B_3(r) \\
1452 > \frac{d^4B_0}{dr^4}=&   3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1453 > \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1454 > \end{align}
1455   %
1456 < \begin{eqnarray}
1457 < \frac{dB_0}{dr}=-rB_1(r) \\
1442 < \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1443 < \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1444 < \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1445 < \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1446 < \end{eqnarray}
1456 > As noted by Smith, it is possible to approximate the $B_l(r)$
1457 > functions,
1458   %
1448 As noted by Smith,
1449 %
1459   \begin{equation}
1460   B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1461   +\text{O}(r) .
1462   \end{equation}
1463 + \newpage
1464 + \section{The $r$-dependent factors for TSF electrostatics}
1465  
1455 \section{Method 1, the $r$-dependent factors}
1456
1466   Using the shifted damped functions $f_n(r)$ defined by:
1467   %
1468   \begin{equation}
1469 < f_n(r)= B_0 \Big \lvert  _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert  _{r_c}  ,
1469 > f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c)  ,
1470   \end{equation}
1471   %
1472 < we first provide formulas for successive derivatives of this function.  (If there is
1473 < no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.)  First, we find:
1472 > where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1473 > this Appendix, we provide formulas for successive derivatives of this
1474 > function.  (If there is no damping, then $B_0(r)$ is replaced by
1475 > $1/r$.)  First, we find:
1476   %
1477   \begin{equation}
1478   \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1479   \end{equation}
1480   %
1481 < This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1482 < define higher-order derivatives as  follows:
1481 > This formula clearly brings in derivatives of Smith's $B_0(r)$
1482 > function, and we define higher-order derivatives as follows:
1483   %
1484 < \begin{eqnarray}
1485 < g_n(r)= \frac{d f_n}{d r} =
1486 < B_0^{(1)} \Big \lvert  _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert  _{r_c} \\
1487 < h_n(r)= \frac{d^2f_n}{d r^2} =
1488 < B_0^{(2)} \Big \lvert  _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert  _{r_c} \\
1489 < s_n(r)= \frac{d^3f_n}{d r^3} =
1490 < B_0^{(3)} \Big \lvert  _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert  _{r_c} \\
1491 < t_n(r)= \frac{d^4f_n}{d r^4} =
1492 < B_0^{(4)} \Big \lvert  _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert  _{r_c} \\
1493 < u_n(r)= \frac{d^5f_n}{d r^5} =
1494 < B_0^{(5)} \Big \lvert  _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert  _{r_c}  .
1495 < \end{eqnarray}
1484 > \begin{align}
1485 > g_n(r)=& \frac{d f_n}{d r} =
1486 > B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1487 > h_n(r)=& \frac{d^2f_n}{d r^2} =
1488 > B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1489 > s_n(r)=& \frac{d^3f_n}{d r^3} =
1490 > B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1491 > t_n(r)=& \frac{d^4f_n}{d r^4} =
1492 > B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1493 > u_n(r)=& \frac{d^5f_n}{d r^5} =
1494 > B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c)  .
1495 > \end{align}
1496   %
1497 < We note that the last function needed (for quadrupole-quadrupole) is
1497 > We note that the last function needed (for quadrupole-quadrupole interactions) is
1498   %
1499   \begin{equation}
1500 < u_4(r)=B_0^{(5)} \Big \lvert  _r - B_0^{(5)} \Big \lvert  _{r_c} .
1500 > u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1501   \end{equation}
1502  
1503 < The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1504 < from $0$ to $r_c$.  The functions needed are listed schematically below:
1503 > The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1504 > stored on a grid for values of $r$ from $0$ to $r_c$.  The functions
1505 > needed are listed schematically below:
1506   %
1507   \begin{eqnarray}
1508   f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
# Line 1503 | Line 1515 | Using these functions, we find
1515  
1516   Using these functions, we find
1517   %
1518 < \begin{equation}
1519 < \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1520 < \end{equation}
1521 < %
1522 < \begin{equation}
1511 < \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1512 < +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1513 < \end{equation}
1514 < %
1515 < \begin{equation}
1516 < \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1518 > \begin{align}
1519 > \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1520 > \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1521 > +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1522 > \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1523   \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1524   \delta_{ \beta \gamma} r_\alpha \right)  
1525   \left(  -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1526   + r_\alpha r_\beta r_\gamma
1527 < \left(  \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1528 < \end{equation}
1523 < %
1524 < \begin{eqnarray}
1525 < \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1527 > \left(  \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1528 > \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1529   \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1530   + \delta_{\alpha \gamma} \delta_{\beta \delta}
1531   +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1532   \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right)  \nonumber \\
1533 < + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1534 < + \text{5 perm}
1533 > &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1534 > + \text{5 permutations}
1535   \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1536   \right) \nonumber \\
1537 < + r_\alpha r_\beta r_\gamma r_\delta
1537 > &+ r_\alpha r_\beta r_\gamma r_\delta
1538   \left(  -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1539 < + \frac{t_n}{r^4} \right)
1537 < \end{eqnarray}
1538 < %
1539 < \begin{eqnarray}
1539 > + \frac{t_n}{r^4} \right)\\
1540   \frac{\partial^5 f_n}
1541 < {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1541 > {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1542   \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1543 < + \text{14 perm} \right)
1543 > + \text{14 permutations} \right)
1544   \left(  \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1545 < + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1546 < + \text{9 perm}
1545 > &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1546 > + \text{9 permutations}
1547   \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1548   \right) \nonumber \\
1549 < + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1549 > &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1550   \left(  \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1551 < - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1552 < \end{eqnarray}
1551 > - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1552 > \end{align}
1553   %
1554   %
1555   %
1556 < \section{Method 2, the $r$-dependent factors}
1556 > \newpage
1557 > \section{The $r$-dependent factors for GSF electrostatics}
1558  
1559 < In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1560 < see Eq. (20?).  For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1561 < of the kernel $B_0(r)$.  To denote these terms, we generalize the notation of the previous appendix.
1562 < For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1559 > In Gradient-shifted force electrostatics, the kernel is not expanded,
1560 > rather the individual terms in the multipole interaction energies.
1561 > For damped charges , this still brings into the algebra multiple
1562 > derivatives of the Smith's $B_0(r)$ function.  To denote these terms,
1563 > we generalize the notation of the previous appendix.  For $f(r)=1/r$
1564 > (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1565   %
1566 < \begin{eqnarray}
1567 < g(r)= \frac{df}{d r}\\
1568 < h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1569 < s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1570 < t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1571 < u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1572 < \end{eqnarray}
1566 > \begin{align}
1567 > g(r)=& \frac{df}{d r}\\
1568 > h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1569 > s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1570 > t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1571 > u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1572 > \end{align}
1573   %
1574 < For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.''  Checks of algebra can be made by using limiting forms
1575 < of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$.  Equations (B9) to B(13)
1576 < are correct for method 2 if one just eliminates the subscript $n$.
1574 > For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1575 > under the column ``Bare Coulomb.''  Equations \ref{eq:b9} to
1576 > \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1577 > $n$ is eliminated.
1578  
1579   \section{Extra Material}
1580   %
# Line 2167 | Line 2171 | Q_{{\mathbf b}np}
2171   \begin{table*}
2172   \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2173   \begin{ruledtabular}
2174 < \begin{tabular}{ccc}
2175 < Generic&Method 1&Method 2
2174 > \begin{tabular}{|l|l|l|}
2175 > Generic&Taylor-shifted Force&Gradient-shifted Force
2176   \\ \hline
2177   %
2178   %

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines