ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
(Generate patch)

Comparing trunk/multipole/multipole1.tex (file contents):
Revision 3985 by gezelter, Tue Dec 31 01:33:31 2013 UTC vs.
Revision 3986 by gezelter, Tue Dec 31 17:28:43 2013 UTC

# Line 99 | Line 99 | similar methods where the force vanishes at $R_\textrm
99   The computational efficiency and the accuracy of the DSF method are
100   surprisingly good, particularly for systems with uniform charge
101   density. Additionally, dielectric constants obtained using DSF and
102 < similar methods where the force vanishes at $R_\textrm{c}$ are
102 > similar methods where the force vanishes at $r_{c}$ are
103   essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
104   related methods have now been widely investigated,\cite{Hansen:2012uq}
105   and DSF is now used routinely in a diverse set of chemical
# Line 112 | Line 112 | energies.  The coarse-graining approaches of Ren \&
112   entire molecular subsystems as a single rigid body, is simplification
113   of the electrostatic interactions between these bodies so that fewer
114   site-site interactions are required to compute configurational
115 < energies.  The coarse-graining approaches of Ren \&
116 < coworkers,\cite{Golubkov06} and Essex \&
117 < coworkers,\cite{ISI:000276097500009,ISI:000298664400012} both utilize
118 < point multipoles to model electrostatics for entire molecules or
119 < functional groups.
115 > energies. To do this, the interactions between coarse-grained sites
116 > are typically taken to be point
117 > multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
118  
119 < Ichiye and coworkers have recently introduced a number of very fast
120 < water models based on a ``sticky'' multipole model which are
121 < qualitatively better at reproducing the behavior of real water than
122 < the more common point-charge models (SPC/E,
123 < TIPnP).\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The SSDQO
124 < model requires the use of an approximate multipole expansion (AME) as
125 < the exact multipole expansion is quite expensive (particularly when
126 < handled via the Ewald sum).\cite{Ichiye:2006qy}
129 <
130 < Another particularly important use of point multipoles (and multipole
131 < polarizability) is in the very high-quality AMOEBA water model and
119 > Water, in particular, has been modeled recently with point multipoles
120 > up to octupolar
121 > order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
122 > maximum efficiency, these models require the use of an approximate
123 > multipole expansion as the exact multipole expansion can become quite
124 > expensive (particularly when handled via the Ewald
125 > sum).\cite{Ichiye:2006qy} Point multipoles and multipole
126 > polarizability have also been utilized in the AMOEBA water model and
127   related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
128  
129   Higher-order multipoles present a peculiar issue for molecular
# Line 144 | Line 139 | the two methods yield related, but different expressio
139   Taylor expansions that are carried out at the cutoff radius.  We are
140   calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
141   electrostatics.  Because of differences in the initial assumptions,
142 < the two methods yield related, but different expressions for energies,
143 < forces, and torques.
142 > the two methods yield related, but somewhat different expressions for
143 > energies, forces, and torques.
144  
145   In this paper we outline the new methodology and give functional forms
146   for the energies, forces, and torques up to quadrupole-quadrupole
147   order.  We also compare the new methods to analytic energy constants
148 < for periodic arrays of point multipoles.  In the following paper, we
148 > for periodic arrays of point multipoles. In the following paper, we
149   provide numerical comparisons to Ewald-based electrostatics in common
150   simulation enviornments.
151  
152   \section{Methodology}
153 + An efficient real-space electrostatic method involves the use of a
154 + pair-wise functional form,
155 + \begin{equation}
156 + V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
157 + \sum_i V_i^\mathrm{correction}
158 + \end{equation}
159 + that is short-ranged and easily truncated at a cutoff radius,
160 + \begin{equation}
161 +  V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) = \left\{
162 + \begin{array}{ll}
163 + V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
164 + 0 & \quad r > r_c ,
165 + \end{array}
166 + \right.
167 + \end{equation}
168 + along with an easily computed correction term ($\sum_i
169 + V_i^\mathrm{correction}$) which has linear-scaling with the number of
170 + particles.  Here $\Omega_i$ and $\Omega_j$ represent orientational
171 + coordinates of the two sites.  The computational efficiency, energy
172 + conservation, and even some physical properties of a simulation can
173 + depend dramatically on how the $V_\mathrm{approx}$ function behaves at
174 + the cutoff radius. The goal of any approximation method should be to
175 + mimic the real behavior of the electrostatic interactions as closely
176 + as possible without sacrificing the near-linear scaling of a cutoff
177 + method.
178  
179   \subsection{Self-neutralization, damping, and force-shifting}
180   The DSF and Wolf methods operate by neutralizing the total charge
181   contained within the cutoff sphere surrounding each particle.  This is
182   accomplished by shifting the potential functions to generate image
183   charges on the surface of the cutoff sphere for each pair interaction
184 < computed within $R_\textrm{c}$. Damping using a complementary error
184 > computed within $r_c$. Damping using a complementary error
185   function is applied to the potential to accelerate convergence. The
186   potential for the DSF method, where $\alpha$ is the adjustable damping
187   parameter, is given by
188   \begin{equation*}
189 < V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
189 > V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
190   \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
191 < - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
191 > - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
192   + \frac{2\alpha}{\pi^{1/2}}
193 < \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
194 < \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
193 > \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
194 > \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
195   \label{eq:DSFPot}
196   \end{equation*}
197   Note that in this potential and in all electrostatic quantities that
198 < follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
198 > follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
199   clarity.
200  
201   To insure net charge neutrality within each cutoff sphere, an
# Line 187 | Line 207 | damping.\cite{deLeeuw80,Wolf99}
207   over the surface of the cutoff sphere.  A portion of the self term is
208   identical to the self term in the Ewald summation, and comes from the
209   utilization of the complimentary error function for electrostatic
210 < damping.\cite{deLeeuw80,Wolf99}
211 <
212 < There have been recent efforts to extend the Wolf self-neutralization
193 < method to zero out the dipole and higher order multipoles contained
194 < within the cutoff
210 > damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
211 > extend the Wolf self-neutralization method to zero out the dipole and
212 > higher order multipoles contained within the cutoff
213   sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
214  
215   In this work, we extend the idea of self-neutralization for the point
# Line 212 | Line 230 | As in the point-charge approach, there is a contributi
230   \label{fig:shiftedMultipoles}
231   \end{figure}
232  
233 < As in the point-charge approach, there is a contribution from
234 < self-neutralization of site $i$.  The self term for multipoles is
233 > As in the point-charge approach, there is an additional contribution
234 > from self-neutralization of site $i$.  The self term for multipoles is
235   described in section \ref{sec:selfTerm}.
236  
237   \subsection{The multipole expansion}
# Line 286 | Line 304 | of $\bf a$ interacting with the same multipoles $\bf b
304   \end{equation}
305   This form has the benefit of separating out the energies of
306   interaction into contributions from the charge, dipole, and quadrupole
307 < of $\bf a$ interacting with the same multipoles $\bf b$.
307 > of $\bf a$ interacting with the same multipoles on $\bf b$.
308  
309   \subsection{Damped Coulomb interactions}
310   In the standard multipole expansion, one typically uses the bare
# Line 301 | Line 319 | either $1/r$ or $B_0(r)$, and all of the techniques ca
319   \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
320   \end{equation}
321   We develop equations below using the function $f(r)$ to represent
322 < either $1/r$ or $B_0(r)$, and all of the techniques can be applied
323 < either to bare or damped Coulomb kernels as long as derivatives of
324 < these functions are known.  Smith's convenient functions $B_l(r)$ are
325 < summarized in Appendix A.
322 > either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
323 > bare or damped Coulomb kernels (or any other function) as long as
324 > derivatives of these functions are known.  Smith's convenient
325 > functions $B_l(r)$ are summarized in Appendix A.
326  
327   The main goal of this work is to smoothly cut off the interaction
328   energy as well as forces and torques as $r\rightarrow r_c$.  To
329   describe how this goal may be met, we use two examples, charge-charge
330 < and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
331 < the idea.
330 > and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
331 > explain the idea.
332  
333   \subsection{Shifted-force methods}
334   In the shifted-force approximation, the interaction energy for two
# Line 346 | Line 364 | derivative. We therefore require shifted energy expres
364   derivatives required for each force term to vanish at the cutoff.  For
365   example, the quadrupole-quadrupole interaction energy requires four
366   derivatives of the kernel, and the force requires one additional
367 < derivative. We therefore require shifted energy expressions that
368 < include enough terms so that all energies, forces, and torques are
369 < zero as $r \rightarrow r_c$.  In each case, we will subtract off a
370 < function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$.  The
371 < subscript $n$ indicates the number of derivatives to be taken when
372 < deriving a given multipole energy.  We choose a function with
373 < guaranteed smooth derivatives --- a truncated Taylor series of the
374 < function $f(r)$, e.g.,
367 > derivative. For quadrupole-quadrupole interactions, we therefore
368 > require shifted energy expressions that include up to $(r-r_c)^5$ so
369 > that all energies, forces, and torques are zero as $r \rightarrow
370 > r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
371 > from the kernel $f(r)=1/r$.  The subscript $n$ indicates the number of
372 > derivatives to be taken when deriving a given multipole energy.  We
373 > choose a function with guaranteed smooth derivatives -- a truncated
374 > Taylor series of the function $f(r)$, e.g.,
375   %
376   \begin{equation}
377   f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c)  .
# Line 421 | Line 439 | presented in tables XX and YY.
439   successive derivatives of the shifted electrostatic kernel, $f_n(r)$
440   of the same index $n$.  The algebra required to evaluate energies,
441   forces and torques is somewhat tedious, so only the final forms are
442 < presented in tables XX and YY.
442 > presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
443  
444   \subsection{Gradient-shifted force (GSF) electrostatics}
445   The second, and conceptually simpler approach to force-shifting
# Line 434 | Line 452 | multipole on the surface of the cutoff sphere (see fig
452   \label{generic2}
453   \end{equation}
454   Here the gradient for force shifting is evaluated for an image
455 < multipole on the surface of the cutoff sphere (see fig
455 > multipole projected onto the surface of the cutoff sphere (see fig
456   \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
457   appear.  The primary difference between the TSF and GSF methods is the
458   stage at which the Taylor Series is applied; in the Taylor-shifted
# Line 447 | Line 465 | Functional forms for both methods (TSF and GSF) can be
465   \label{generic3}
466   \end{equation}
467  
468 < Functional forms for both methods (TSF and GSF) can be summarized
468 > Functional forms for both methods (TSF and GSF) can both be summarized
469   using the form of Eq.~(\ref{generic3}).  The basic forms for the
470   energy, force, and torque expressions are tabulated for both shifting
471 < approaches below - for each separate orientational contribution, only
471 > approaches below -- for each separate orientational contribution, only
472   the radial factors differ between the two methods.
473  
474   \subsection{\label{sec:level2}Body and space axes}
# Line 1358 | Line 1376 | Tisza\cite{LT,LT2} who tabulated energy constants for
1376   who computed the energies of ordered dipole arrays of zero
1377   magnetization and obtained a number of these constants.\cite{Sauer}
1378   This theory was developed more completely by Luttinger and
1379 < Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1380 < other periodic structures.  We have repeated the Luttinger \& Tisza
1381 < series summations to much higher order and obtained the following
1382 < energy constants (converged to one part in $10^9$):
1383 < \begin{table*}
1379 > Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1380 > and other periodic structures.  We have repeated the Luttinger \&
1381 > Tisza series summations to much higher order and obtained the energy
1382 > constants (converged to one part in $10^9$) in table \ref{tab:LT}.
1383 >
1384 > \begin{table*}[h]
1385   \centering{
1386    \caption{Luttinger \& Tisza arrays and their associated
1387      energy constants. Type "A" arrays have nearest neighbor strings of
# Line 1380 | Line 1399 | Array Type &  Lattice &   Dipole Direction &    Energy
1399     A     &      BCC      &      111         &      -1.770078733 \\
1400     A     &      FCC      &      001         &       2.166932835 \\
1401     A     &      FCC      &      011         &      -1.083466417 \\
1402 <
1403 <   *     &      BCC      &    minimum       &      -1.985920929 \\
1404 <
1405 <   B     &      SC        &     001         &      -2.676788684 \\
1406 <   B     &      BCC       &     001         &      -1.338394342 \\
1407 <   B     &      BCC       &     111         &     -1.770078733 \\
1389 <   B     &      FCC       &     001         &      -1.083466417 \\
1390 <   B     &      FCC       &     011         &      -1.807573634
1402 >   B     &      SC       &      001         &      -2.676788684 \\
1403 >   B     &      BCC      &      001         &      -1.338394342 \\
1404 >   B     &      BCC      &      111         &      -1.770078733 \\
1405 >   B     &      FCC      &      001         &      -1.083466417 \\
1406 >   B     &      FCC      &      011         &      -1.807573634 \\
1407 >  --     &      BCC      &    minimum       &      -1.985920929 \\
1408   \end{tabular}
1409   \end{ruledtabular}
1410   \end{table*}
1411  
1412   In addition to the A and B arrays, there is an additional minimum
1413   energy structure for the BCC lattice that was found by Luttinger \&
1414 < Tisza.  The total electrostatic energy for an array is given by:
1414 > Tisza.  The total electrostatic energy for any of the arrays is given
1415 > by:
1416   \begin{equation}
1417    E = C N^2 \mu^2
1418   \end{equation}
1419 < where $C$ is the energy constant given above, $N$ is the number of
1420 < dipoles per unit volume, and $\mu$ is the strength of the dipole.
1419 > where $C$ is the energy constant given in table \ref{tab:LT}, $N$ is
1420 > the number of dipoles per unit volume, and $\mu$ is the strength of
1421 > the dipole.
1422  
1423 < {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1424 < computed the energies of selected quadrupole arrays based on
1425 < extensions to the Luttinger and Tisza
1426 < approach.\cite{Nagai01081960,Nagai01091963}  We have compared the
1423 > To test the new electrostatic methods, we have constructed very large
1424 > ($N = 8,000, 16,000, 32,000$) arrays of dipoles in the orientations
1425 > described in \ref{tab:LT}. For the purposes of this paper, the primary
1426 > quantity of interest is the analytic energy constant for the perfect
1427 > arrays. Convergence to these constants are shown as a function of both
1428 > the cutoff radius, $r_c$, and the damping parameter, $\alpha$ in Fig.
1429 > XXX. We have simultaneously tested a hard cutoff (where the kernel is
1430 > simply truncated at the cutoff radius), as well as a shifted potential
1431 > (SP) form which includes a potential-shifting and self-interaction
1432 > term, but does not shift the forces and torques smoothly at the cutoff
1433 > radius.
1434 >
1435 > {\it Quadrupolar} analogues to the Madelung constants were first
1436 > worked out by Nagai and Nakamura who computed the energies of selected
1437 > quadrupole arrays based on extensions to the Luttinger and Tisza
1438 > approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1439   energy constants for the lowest energy configurations for linear
1440   quadrupoles shown in table \ref{tab:NNQ}
1441  
# Line 1629 | Line 1660 | $n$ is eliminated.
1660   under the column ``Bare Coulomb.''  Equations \ref{eq:b9} to
1661   \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1662   $n$ is eliminated.
1632
1633 % \section{Extra Material}
1634 % %
1635 % %
1636 % %Energy in body coordinate form ---------------------------------------------------------------
1637 % %
1638 % Here are the interaction energies written in terms of the body coordinates:
1639
1640 % %
1641 % % u ca cb
1642 % %
1643 % \begin{equation}
1644 % U_{C_{\bf a}C_{\bf b}}(r)=
1645 % \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  v_{01}(r)
1646 % \end{equation}
1647 % %
1648 % % u ca db
1649 % %
1650 % \begin{equation}
1651 % U_{C_{\bf a}D_{\bf b}}(r)=
1652 % \frac{C_{\bf a}}{4\pi \epsilon_0}
1653 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \,  v_{11}(r)
1654 % \end{equation}
1655 % %
1656 % % u ca qb
1657 % %
1658 % \begin{equation}
1659 % U_{C_{\bf a}Q_{\bf b}}(r)=
1660 % \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}  
1661 % v_{21}(r) \nonumber \\
1662 % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1663 % \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1664 % v_{22}(r)
1665 % \end{equation}
1666 % %
1667 % % u da cb
1668 % %
1669 % \begin{equation}
1670 % U_{D_{\bf a}C_{\bf b}}(r)=
1671 % -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1672 % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \,  v_{11}(r)
1673 % \end{equation}
1674 % %
1675 % % u da db
1676 % %
1677 % \begin{equation}
1678 % \begin{split}
1679 % % 1
1680 % U_{D_{\bf a}D_{\bf b}}(r)&=
1681 % -\frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
1682 % (\hat{a}_m \cdot   \hat{b}_n)
1683 % D_{\mathbf{b}n} v_{21}(r) \\
1684 % % 2
1685 % &-\frac{1}{4\pi \epsilon_0}
1686 % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1687 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1688 % v_{22}(r)
1689 % \end{split}
1690 % \end{equation}
1691 % %
1692 % % u da qb
1693 % %
1694 % \begin{equation}
1695 % \begin{split}
1696 % % 1
1697 % U_{D_{\bf a}Q_{\bf b}}(r)&=
1698 % -\frac{1}{4\pi \epsilon_0} \left(
1699 % \text{Tr}Q_{\mathbf{b}}
1700 % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1701 % +2\sum_{lmn}D_{\mathbf{a}l}
1702 % (\hat{a}_l \cdot \hat{b}_m)
1703 % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1704 % \right)  v_{31}(r) \\
1705 % % 2
1706 % &-\frac{1}{4\pi \epsilon_0}
1707 % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1708 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1709 % Q_{{\mathbf b}mn}
1710 % (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1711 % \end{split}
1712 % \end{equation}
1713 % %
1714 % % u qa cb
1715 % %
1716 % \begin{equation}
1717 % U_{Q_{\bf a}C_{\bf b}}(r)=
1718 % \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0}  v_{21}(r)
1719 % +\frac{C_{\bf b}}{4\pi \epsilon_0}
1720 % \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1721 % \end{equation}
1722 % %
1723 % % u qa db
1724 % %
1725 % \begin{equation}
1726 % \begin{split}
1727 % %1
1728 % U_{Q_{\bf a}D_{\bf b}}(r)&=
1729 % \frac{1}{4\pi \epsilon_0} \left(
1730 % \text{Tr}Q_{\mathbf{a}}
1731 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1732 % +2\sum_{lmn}D_{\mathbf{b}l}
1733 % (\hat{b}_l \cdot \hat{a}_m)
1734 % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1735 % \right) v_{31}(r)  \\
1736 % % 2
1737 % &+\frac{1}{4\pi \epsilon_0}
1738 % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1739 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1740 % Q_{{\mathbf a}mn}
1741 % (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1742 % \end{split}
1743 % \end{equation}
1744 % %
1745 % % u qa qb
1746 % %
1747 % \begin{equation}
1748 % \begin{split}
1749 % %1
1750 % U_{Q_{\bf a}Q_{\bf b}}(r)&=
1751 % \frac{1}{4\pi \epsilon_0} \Bigl[
1752 % \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1753 % +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1754 % Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1755 % (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1756 % v_{41}(r) \\
1757 % % 2
1758 % &+ \frac{1}{4\pi \epsilon_0}
1759 % \Bigl[ \text{Tr}Q_{\mathbf{a}}
1760 % \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1761 % Q_{{\mathbf b}lm}
1762 % (\hat{b}_m \cdot \hat{r})
1763 % +\text{Tr}Q_{\mathbf{b}}
1764 % \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1765 % Q_{{\mathbf a}lm}
1766 % (\hat{a}_m \cdot \hat{r}) \\
1767 % % 3
1768 % &+4 \sum_{lmnp}
1769 % (\hat{r} \cdot \hat{a}_l )
1770 % Q_{{\mathbf a}lm}
1771 % (\hat{a}_m \cdot \hat{b}_n)
1772 % Q_{{\mathbf b}np}
1773 % (\hat{b}_p \cdot \hat{r})
1774 % \Bigr] v_{42}(r)  \\
1775 % % 4
1776 % &+ \frac{1}{4\pi \epsilon_0}
1777 % \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1778 % Q_{{\mathbf a}lm}
1779 % (\hat{a}_m \cdot \hat{r})
1780 % \sum_{np}  (\hat{r} \cdot \hat{b}_n)
1781 % Q_{{\mathbf b}np}
1782 % (\hat{b}_p \cdot \hat{r})  v_{43}(r).
1783 % \end{split}
1784 % \end{equation}
1785 % %
1663  
1787
1788 % % BODY coordinates force equations --------------------------------------------
1789 % %
1790 % %
1791 % Here are the force equations written in terms of body coordinates.
1792 % %
1793 % % f ca cb
1794 % %
1795 % \begin{equation}
1796 % \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1797 % \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  w_a(r) \hat{r}
1798 % \end{equation}
1799 % %
1800 % % f ca db
1801 % %
1802 % \begin{equation}
1803 % \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1804 % \frac{C_{\bf a}}{4\pi \epsilon_0}  
1805 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1806 % +\frac{C_{\bf a}}{4\pi \epsilon_0}  
1807 % \sum_n  D_{\mathbf{b}n} \hat{b}_n w_c(r)
1808 % \end{equation}
1809 % %
1810 % % f ca qb
1811 % %
1812 % \begin{equation}
1813 % \begin{split}
1814 % % 1
1815 % \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1816 % \frac{1}{4\pi \epsilon_0}  
1817 % C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1818 % + 2C_{\bf a } \sum_l  \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1819 % % 2
1820 % +\frac{C_{\bf a}}{4\pi \epsilon_0}
1821 % \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1822 % \end{split}
1823 % \end{equation}
1824 % %
1825 % % f da cb
1826 % %
1827 % \begin{equation}
1828 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1829 % -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1830 % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r)  \hat{r}
1831 % -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1832 % \sum_n  D_{\mathbf{a}n} \hat{a}_n w_c(r)
1833 % \end{equation}
1834 % %
1835 % % f da db
1836 % %
1837 % \begin{equation}
1838 % \begin{split}
1839 % % 1
1840 % \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1841 % -\frac{1}{4\pi \epsilon_0}
1842 %  \sum_{mn} D_{\mathbf {a}m}
1843 % (\hat{a}_m \cdot   \hat{b}_n)
1844 % D_{\mathbf{b}n}  w_d(r) \hat{r}
1845 % -\frac{1}{4\pi \epsilon_0}
1846 % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1847 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1848 % % 2
1849 % & \quad + \frac{1}{4\pi \epsilon_0}
1850 % \Bigl[ \sum_m D_{\mathbf {a}m}
1851 % \hat{a}_m \sum_n D_{\mathbf{b}n}
1852 % (\hat{b}_n \cdot \hat{r})
1853 % + \sum_m D_{\mathbf {b}m}
1854 % \hat{b}_m \sum_n D_{\mathbf{a}n}
1855 % (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r)  \\
1856 % \end{split}
1857 % \end{equation}
1858 % %
1859 % % f da qb
1860 % %
1861 % \begin{equation}
1862 % \begin{split}
1863 % % 1
1864 % &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1865 %  - \frac{1}{4\pi \epsilon_0} \Bigl[
1866 % \text{Tr}Q_{\mathbf{b}}
1867 % \sum_l  D_{\mathbf{a}l} \hat{a}_l
1868 % +2\sum_{lmn} D_{\mathbf{a}l}
1869 % (\hat{a}_l \cdot \hat{b}_m)
1870 % Q_{\mathbf{b}mn} \hat{b}_n  \Bigr] w_g(r) \\
1871 % % 3
1872 % &  - \frac{1}{4\pi \epsilon_0} \Bigl[
1873 % \text{Tr}Q_{\mathbf{b}}
1874 % \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1875 % +2\sum_{lmn}D_{\mathbf{a}l}
1876 % (\hat{a}_l \cdot \hat{b}_m)
1877 % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1878 % % 4
1879 % &+ \frac{1}{4\pi \epsilon_0}
1880 % \Bigl[\sum_l  D_{\mathbf{a}l} \hat{a}_l
1881 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1882 % Q_{{\mathbf b}mn}
1883 % (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1884 %  D_{\mathbf{a}l}
1885 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1886 % Q_{{\mathbf b}mn} \hat{b}_n \Bigr]   w_i(r)\\
1887 % % 6
1888 % &  -\frac{1}{4\pi \epsilon_0}
1889 % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1890 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1891 % Q_{{\mathbf b}mn}
1892 % (\hat{b}_n \cdot \hat{r})  w_j(r)  \hat{r}
1893 % \end{split}
1894 % \end{equation}
1895 % %
1896 % % force qa cb
1897 % %
1898 % \begin{equation}
1899 % \begin{split}
1900 % % 1
1901 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1902 % \frac{1}{4\pi \epsilon_0}  
1903 % C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1904 % + \frac{2C_{\bf b }}{4\pi \epsilon_0}  \sum_l  \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1905 % % 2
1906 % &  +\frac{C_{\bf b}}{4\pi \epsilon_0}
1907 % \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1908 % \end{split}
1909 % \end{equation}
1910 % %
1911 % % f qa db
1912 % %
1913 % \begin{equation}
1914 % \begin{split}
1915 % % 1
1916 % &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1917 % \frac{1}{4\pi \epsilon_0} \Bigl[
1918 % \text{Tr}Q_{\mathbf{a}}
1919 % \sum_l  D_{\mathbf{b}l} \hat{b}_l
1920 % +2\sum_{lmn} D_{\mathbf{b}l}
1921 % (\hat{b}_l \cdot \hat{a}_m)
1922 % Q_{\mathbf{a}mn} \hat{a}_n  \Bigr]
1923 % w_g(r)\\
1924 % % 3
1925 % &  + \frac{1}{4\pi \epsilon_0} \Bigl[
1926 % \text{Tr}Q_{\mathbf{a}}
1927 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1928 % +2\sum_{lmn}D_{\mathbf{b}l}
1929 % (\hat{b}_l \cdot \hat{a}_m)
1930 % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1931 % % 4
1932 % &  + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l  D_{\mathbf{b}l} \hat{b}_l
1933 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1934 % Q_{{\mathbf a}mn}
1935 % (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1936 %  D_{\mathbf{b}l}
1937 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1938 % Q_{{\mathbf a}mn} \hat{a}_n \Bigr]   w_i(r) \\
1939 % % 6
1940 % &  +\frac{1}{4\pi \epsilon_0}
1941 % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1942 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1943 % Q_{{\mathbf a}mn}
1944 % (\hat{a}_n \cdot \hat{r})  w_j(r)  \hat{r}
1945 % \end{split}
1946 % \end{equation}
1947 % %
1948 % % f qa qb
1949 % %
1950 % \begin{equation}
1951 % \begin{split}
1952 % &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1953 % \frac{1}{4\pi \epsilon_0} \Bigl[
1954 % \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1955 % + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1956 % Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1957 % (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1958 % &+\frac{1}{4\pi \epsilon_0} \Bigl[
1959 % 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm}  \hat{a}_m  
1960 % + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm}  \hat{b}_m \\
1961 % &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})  
1962 % + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1963 % \Bigr] w_n(r) \\
1964 % &+ \frac{1}{4\pi \epsilon_0}
1965 % \Bigl[ \text{Tr}Q_{\mathbf{a}}
1966 % \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1967 % + \text{Tr}Q_{\mathbf{b}}
1968 % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm}  (\hat{a}_m \cdot \hat{r}) \\
1969 % &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1970 % Q_{\mathbf{b}np}  (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1971 % %
1972 % &+\frac{1}{4\pi \epsilon_0} \Bigl[
1973 % 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1974 % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1975 % &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1976 % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1977 % &  + \frac{1}{4\pi \epsilon_0}
1978 % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1979 % \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1980 % \end{split}
1981 % \end{equation}
1982 % %
1983 % Here we list the form of the non-zero damped shifted multipole torques showing
1984 % explicitly dependences on body axes:
1985 % %
1986 % %  t ca db
1987 % %
1988 % \begin{equation}
1989 % \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1990 % \frac{C_{\bf a}}{4\pi \epsilon_0}  
1991 % \sum_n  (\hat{r} \times \hat{b}_n)  D_{\mathbf{b}n} \,  v_{11}(r)
1992 % \end{equation}
1993 % %
1994 % % t ca qb
1995 % %
1996 % \begin{equation}
1997 % \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1998 % \frac{2C_{\bf a}}{4\pi \epsilon_0}
1999 % \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
2000 % \end{equation}
2001 % %
2002 % %  t da cb
2003 % %
2004 % \begin{equation}
2005 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
2006 % -\frac{C_{\bf b}}{4\pi \epsilon_0}  
2007 % \sum_n  (\hat{r} \times \hat{a}_n)  D_{\mathbf{a}n} \,  v_{11}(r)
2008 % \end{equation}%
2009 % %
2010 % %
2011 % %  ta da db
2012 % %
2013 % \begin{equation}
2014 % \begin{split}
2015 % % 1
2016 % \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
2017 % \frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
2018 % (\hat{a}_m \times  \hat{b}_n)
2019 % D_{\mathbf{b}n} v_{21}(r) \\
2020 % % 2
2021 % &-\frac{1}{4\pi \epsilon_0}
2022 % \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
2023 % \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
2024 % \end{split}
2025 % \end{equation}
2026 % %
2027 % %  tb da db
2028 % %
2029 % \begin{equation}
2030 % \begin{split}
2031 % % 1
2032 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
2033 % -\frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
2034 % (\hat{a}_m \times  \hat{b}_n)
2035 % D_{\mathbf{b}n} v_{21}(r) \\
2036 % % 2
2037 % &+\frac{1}{4\pi \epsilon_0}
2038 % \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
2039 % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
2040 % \end{split}
2041 % \end{equation}
2042 % %
2043 % % ta da qb
2044 % %
2045 % \begin{equation}
2046 % \begin{split}
2047 % % 1
2048 % \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
2049 % \frac{1}{4\pi \epsilon_0} \left(
2050 % -\text{Tr}Q_{\mathbf{b}}
2051 % \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
2052 % +2\sum_{lmn}D_{\mathbf{a}l}
2053 % (\hat{a}_l \times \hat{b}_m)
2054 % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2055 % \right) v_{31}(r)\\
2056 % % 2
2057 % &-\frac{1}{4\pi \epsilon_0}
2058 % \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2059 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2060 % Q_{{\mathbf b}mn}
2061 % (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2062 % \end{split}
2063 % \end{equation}
2064 % %
2065 % % tb da qb
2066 % %
2067 % \begin{equation}
2068 % \begin{split}
2069 % % 1
2070 % \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2071 % \frac{1}{4\pi \epsilon_0} \left(
2072 % -2\sum_{lmn}D_{\mathbf{a}l}
2073 % (\hat{a}_l \cdot \hat{b}_m)
2074 % Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2075 % -2\sum_{lmn}D_{\mathbf{a}l}
2076 % (\hat{a}_l \times \hat{b}_m)
2077 % Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2078 % \right) v_{31}(r) \\
2079 % % 2
2080 % &-\frac{2}{4\pi \epsilon_0}
2081 % \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2082 % \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2083 % Q_{{\mathbf b}mn}
2084 % (\hat{r}\times \hat{b}_n) v_{32}(r)
2085 % \end{split}
2086 % \end{equation}
2087 % %
2088 % % ta qa cb
2089 % %
2090 % \begin{equation}
2091 % \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2092 % \frac{2C_{\bf a}}{4\pi \epsilon_0}
2093 % \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2094 % \end{equation}
2095 % %
2096 % % ta qa db
2097 % %
2098 % \begin{equation}
2099 % \begin{split}
2100 % % 1
2101 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2102 % \frac{1}{4\pi \epsilon_0} \left(
2103 % 2\sum_{lmn}D_{\mathbf{b}l}
2104 % (\hat{b}_l \cdot \hat{a}_m)
2105 % Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2106 % +2\sum_{lmn}D_{\mathbf{b}l}
2107 % (\hat{a}_l \times \hat{b}_m)
2108 % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2109 % \right) v_{31}(r) \\
2110 % % 2
2111 % &+\frac{2}{4\pi \epsilon_0}
2112 % \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2113 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2114 % Q_{{\mathbf a}mn}
2115 % (\hat{r}\times \hat{a}_n) v_{32}(r)
2116 % \end{split}
2117 % \end{equation}
2118 % %
2119 % % tb qa db
2120 % %
2121 % \begin{equation}
2122 % \begin{split}
2123 % % 1
2124 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2125 % \frac{1}{4\pi \epsilon_0} \left(
2126 % \text{Tr}Q_{\mathbf{a}}
2127 % \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2128 % +2\sum_{lmn}D_{\mathbf{b}l}
2129 % (\hat{a}_l \times \hat{b}_m)
2130 % Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2131 % \right) v_{31}(r)\\
2132 % % 2
2133 % &\frac{1}{4\pi \epsilon_0}
2134 % \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2135 % \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2136 % Q_{{\mathbf a}mn}
2137 % (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2138 % \end{split}
2139 % \end{equation}
2140 % %
2141 % % ta qa qb
2142 % %
2143 % \begin{equation}
2144 % \begin{split}
2145 % % 1
2146 % \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2147 % -\frac{4}{4\pi \epsilon_0}
2148 % \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2149 % Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
2150 % (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2151 % % 2
2152 % &+ \frac{1}{4\pi \epsilon_0}
2153 % \Bigl[
2154 % 2\text{Tr}Q_{\mathbf{b}}
2155 % \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2156 % Q_{{\mathbf a}lm}
2157 % (\hat{r} \times \hat{a}_m)
2158 % +4 \sum_{lmnp}
2159 % (\hat{r} \times \hat{a}_l )
2160 % Q_{{\mathbf a}lm}
2161 % (\hat{a}_m \cdot \hat{b}_n)
2162 % Q_{{\mathbf b}np}
2163 % (\hat{b}_p \cdot \hat{r}) \\
2164 % % 3
2165 % &-4 \sum_{lmnp}
2166 % (\hat{r} \cdot \hat{a}_l )
2167 % Q_{{\mathbf a}lm}
2168 % (\hat{a}_m \times \hat{b}_n)
2169 % Q_{{\mathbf b}np}
2170 % (\hat{b}_p \cdot \hat{r})
2171 % \Bigr] v_{42}(r) \\
2172 % % 4
2173 % &+ \frac{2}{4\pi \epsilon_0}
2174 % \sum_{lm} (\hat{r} \times \hat{a}_l)
2175 % Q_{{\mathbf a}lm}
2176 % (\hat{a}_m \cdot \hat{r})
2177 % \sum_{np}  (\hat{r} \cdot \hat{b}_n)
2178 % Q_{{\mathbf b}np}
2179 % (\hat{b}_p \cdot \hat{r})  v_{43}(r)\\
2180 % \end{split}
2181 % \end{equation}
2182 % %
2183 % % tb qa qb
2184 % %
2185 % \begin{equation}
2186 % \begin{split}
2187 % % 1
2188 % \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2189 % \frac{4}{4\pi \epsilon_0}
2190 % \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2191 % Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
2192 % (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2193 % % 2
2194 % &+ \frac{1}{4\pi \epsilon_0}
2195 % \Bigl[
2196 % 2\text{Tr}Q_{\mathbf{a}}
2197 % \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2198 % Q_{{\mathbf b}lm}
2199 % (\hat{r} \times \hat{b}_m)
2200 % +4 \sum_{lmnp}
2201 % (\hat{r} \cdot \hat{a}_l )
2202 % Q_{{\mathbf a}lm}
2203 % (\hat{a}_m \cdot \hat{b}_n)
2204 % Q_{{\mathbf b}np}
2205 % (\hat{r} \times \hat{b}_p) \\
2206 % % 3
2207 % &+4 \sum_{lmnp}
2208 % (\hat{r} \cdot \hat{a}_l )
2209 % Q_{{\mathbf a}lm}
2210 % (\hat{a}_m \times \hat{b}_n)
2211 % Q_{{\mathbf b}np}
2212 % (\hat{b}_p \cdot \hat{r})
2213 % \Bigr] v_{42}(r)  \\
2214 % % 4
2215 % &+ \frac{2}{4\pi \epsilon_0}
2216 % \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2217 % Q_{{\mathbf a}lm}
2218 % (\hat{a}_m \cdot \hat{r})
2219 % \sum_{np}  (\hat{r} \times \hat{b}_n)
2220 % Q_{{\mathbf b}np}
2221 % (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2222 % \end{split}
2223 % \end{equation}
2224 %
2225 % \begin{table*}
2226 % \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2227 % \begin{ruledtabular}
2228 % \begin{tabular}{|l|l|l|}
2229 % Generic&Taylor-shifted Force&Gradient-shifted Force
2230 % \\ \hline
2231 % %
2232 % %
2233 % %
2234 % $w_a(r)$&
2235 % $g_0(r)$&
2236 % $g(r)-g(r_c)$ \\
2237 % %
2238 % %
2239 % $w_b(r)$ &
2240 % $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2241 % $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2242 % %
2243 % $w_c(r)$ &
2244 % $\frac{g_1(r)}{r} $ &
2245 % $\frac{v_{11}(r)}{r}$ \\
2246 % %
2247 % %
2248 % $w_d(r)$&
2249 % $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2250 % $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2251 % -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2252 % %
2253 % $w_e(r)$ &
2254 % $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2255 % $\frac{v_{22}(r)}{r}$ \\
2256 % %
2257 % %
2258 % $w_f(r)$&
2259 % $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2260 % $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2261 % &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2262 % %
2263 % $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2264 % $\frac{v_{31}(r)}{r}$\\
2265 % %
2266 % $w_h(r)$ &
2267 % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
2268 % $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2269 % &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2270 % &&$-\frac{v_{31}(r)}{r}$\\
2271 % % 2
2272 % $w_i(r)$ &
2273 % $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
2274 % $\frac{v_{32}(r)}{r}$ \\
2275 % %
2276 % $w_j(r)$ &
2277 % $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right)  $ &
2278 % $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $  \\
2279 % &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2280 % %
2281 % $w_k(r)$ &
2282 % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
2283 % $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}  \right)$  \\
2284 % &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2}  \right)$ \\
2285 % %
2286 % $w_l(r)$ &
2287 % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2288 % $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2289 % &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2290 % -\frac{2v_{42}(r)}{r}$ \\
2291 % %
2292 % $w_m(r)$ &
2293 % $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2294 % $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2295 % &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2296 % +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2297 % &&$-\frac{4v_{43}(r)}{r}$ \\
2298 % %
2299 % $w_n(r)$ &
2300 % $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
2301 % $\frac{v_{42}(r)}{r}$ \\
2302 % %
2303 % $w_o(r)$ &
2304 % $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2305 % $\frac{v_{43}(r)}{r}$ \\
2306 % %
2307 % \end{tabular}
2308 % \end{ruledtabular}
2309 % \end{table*}
2310
1664   \newpage
1665  
1666   \bibliography{multipole}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines