ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
(Generate patch)

Comparing trunk/multipole/multipole1.tex (file contents):
Revision 3988 by gezelter, Thu Jan 2 15:46:58 2014 UTC vs.
Revision 3989 by gezelter, Thu Jan 2 21:17:44 2014 UTC

# Line 153 | Line 153 | V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i
153   pair-wise functional form,
154   \begin{equation}
155   V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
156 < \sum_i V_i^\mathrm{correction}
156 > \sum_i V_i^\mathrm{self}
157   \end{equation}
158   that is short-ranged and easily truncated at a cutoff radius,
159   \begin{equation}
160 <  V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) = \left\{
160 >  V_\mathrm{pair}(r_{ij},\Omega_i, \Omega_j) = \left\{
161   \begin{array}{ll}
162   V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
163   0 & \quad r > r_c ,
164   \end{array}
165   \right.
166   \end{equation}
167 < along with an easily computed correction term ($\sum_i
168 < V_i^\mathrm{correction}$) which has linear-scaling with the number of
167 > along with an easily computed self-interaction term ($\sum_i
168 > V_i^\mathrm{self}$) which has linear-scaling with the number of
169   particles.  Here $\Omega_i$ and $\Omega_j$ represent orientational
170   coordinates of the two sites.  The computational efficiency, energy
171   conservation, and even some physical properties of a simulation can
# Line 471 | Line 471 | the radial factors differ between the two methods.
471   the radial factors differ between the two methods.
472  
473   \subsection{\label{sec:level2}Body and space axes}
474 <
475 < [XXX Do we need this section in the main paper? or should it go in the
476 < extra materials?]
477 <
478 < So far, all energies and forces have been written in terms of fixed
479 < space coordinates.  Interaction energies are computed from the generic
480 < formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which combine
481 < orientational prefactors with radial functions.  Because objects $\bf
482 < a$ and $\bf b$ both translate and rotate during a molecular dynamics
483 < (MD) simulation, it is desirable to contract all $r$-dependent terms
484 < with dipole and quadrupole moments expressed in terms of their body
485 < axes.  To do so, we have followed the methodology of Allen and
486 < Germano,\cite{Allen:2006fk} which was itself based on earlier work by
487 < Price {\em et al.}\cite{Price:1984fk}
474 > Although objects $\bf a$ and $\bf b$ rotate during a molecular
475 > dynamics (MD) simulation, their multipole tensors remain fixed in
476 > body-frame coordinates. While deriving force and torque expressions,
477 > it is therefore convenient to write the energies, forces, and torques
478 > in intermediate forms involving the vectors of the rotation matrices.
479 > We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
480 > $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
481 > In a typical simulation , the initial axes are obtained by
482 > diagonalizing the moment of inertia tensors for the objects.  (N.B.,
483 > the body axes are generally {\it not} the same as those for which the
484 > quadrupole moment is diagonal.)  The rotation matrices are then
485 > propagated during the simulation.
486  
487 < We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
490 < $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
491 < referring to a convenient set of inertial body axes.  (N.B., these
492 < body axes are generally not the same as those for which the quadrupole
493 < moment is diagonal.)  Then,
494 < %
495 < \begin{eqnarray}
496 < \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z}  \\
497 < \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z}  .
498 < \end{eqnarray}
499 < Rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
487 > The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
488   expressed using these unit vectors:
489   \begin{eqnarray}
490   \hat{\mathbf {a}} =
# Line 504 | Line 492 | expressed using these unit vectors:
492   \hat{a}_1 \\
493   \hat{a}_2 \\
494   \hat{a}_3
495 < \end{pmatrix}
508 < =
509 < \begin{pmatrix}
510 < a_{1x} \quad a_{1y} \quad a_{1z} \\
511 < a_{2x} \quad a_{2y} \quad a_{2z} \\
512 < a_{3x} \quad a_{3y} \quad a_{3z}
513 < \end{pmatrix}\\
495 > \end{pmatrix}, \qquad
496   \hat{\mathbf {b}} =
497   \begin{pmatrix}
498   \hat{b}_1 \\
499   \hat{b}_2 \\
500   \hat{b}_3
501   \end{pmatrix}
520 =
521 \begin{pmatrix}
522 b_{1x} \quad  b_{1y} \quad b_{1z} \\
523 b_{2x} \quad b_{2y} \quad b_{2z} \\
524 b_{3x} \quad b_{3y} \quad b_{3z}
525 \end{pmatrix}  .
502   \end{eqnarray}
503   %
504   These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
505 < coordinates.  All contractions of prefactors with derivatives of
506 < functions can be written in terms of these matrices. It proves to be
507 < equally convenient to just write any contraction in terms of unit
508 < vectors $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. In the torque
509 < expressions, it is useful to have the angular-dependent terms
510 < available in three different fashions, e.g. for the dipole-dipole
535 < contraction:
505 > coordinates.
506 >
507 > Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
508 > {\em et al.},\cite{Price:1984fk} showed that if the interaction
509 > energies are written explicitly in terms of $\hat{r}$ and the body
510 > axes ($\hat{a}_m$, $\hat{b}_n$) :
511   %
512   \begin{equation}
513 + U(r, \{\hat{a}_m \cdot \hat{r} \},
514 + \{\hat{b}_n\cdot \hat{r} \},
515 + \{\hat{a}_m \cdot \hat{b}_n \}) .
516 + \label{ugeneral}
517 + \end{equation}
518 + %
519 + the forces come out relatively cleanly,
520 + %
521 + \begin{equation}
522 + \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} =  \frac{\partial U}{\partial \mathbf{r}}
523 + = \frac{\partial U}{\partial r} \hat{r}
524 + + \sum_m \left[
525 + \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
526 + \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
527 + + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
528 + \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
529 + \right] \label{forceequation}.
530 + \end{equation}
531 +
532 + The torques can also be found in a relatively similar
533 + manner,
534 + %
535 + \begin{eqnarray}
536 + \mathbf{\tau}_{\bf a} =
537 + \sum_m
538 + \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
539 + ( \hat{r} \times \hat{a}_m )
540 + -\sum_{mn}
541 + \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
542 + (\hat{a}_m \times \hat{b}_n) \\
543 + %
544 + \mathbf{\tau}_{\bf b} =
545 + \sum_m
546 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
547 + ( \hat{r} \times \hat{b}_m)
548 + +\sum_{mn}
549 + \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
550 + (\hat{a}_m \times \hat{b}_n) .
551 + \end{eqnarray}
552 +
553 + Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
554 + is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
555 + We also made use of the identities,
556 + %
557 + \begin{align}
558 + \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
559 + =& \frac{1}{r} \left(  \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
560 + \right) \\
561 + \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
562 + =& \frac{1}{r} \left(  \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
563 + \right) .
564 + \end{align}
565 +
566 + Many of the multipole contractions required can be written in one of
567 + three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
568 + and $\hat{b}_n$. In the torque expressions, it is useful to have the
569 + angular-dependent terms available in all three fashions, e.g. for the
570 + dipole-dipole contraction:
571 + %
572 + \begin{equation}
573   \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
574   = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
575   \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
# Line 546 | Line 581 | contractions using space indices.
581   explicit sums over body indices and the dot products now indicate
582   contractions using space indices.
583  
584 + In computing our force and torque expressions, we carried out most of
585 + the work in body coordinates, and have transformed the expressions
586 + back to space-frame coordinates, which are reported below.  Interested
587 + readers may consult the supplemental information for this paper for
588 + the intermediate body-frame expressions.
589  
590   \subsection{The Self-Interaction \label{sec:selfTerm}}
591  
# Line 611 | Line 651 | Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \tex
651   Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
652   Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
653    \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
654 < Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
654 > Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
655   $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
656   $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
657   Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
# Line 741 | Line 781 | +2 \text{Tr} \left(
781   U_{Q_{\bf a}Q_{\bf b}}(r)=&
782   \Bigl[
783   \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
784 < +2 \text{Tr} \left(
785 < \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
784 > +2
785 > \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
786   \\
787   % 2
788   &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
# Line 981 | Line 1021 | F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_
1021   F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1022   \quad \text{and} \quad  F_{\bf b \alpha}
1023   = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r}  .
984 \end{equation}
985 %
986 Obtaining the force from the interaction energy expressions is the
987 same for higher-order multipole interactions -- the trick is to make
988 sure that all $r$-dependent derivatives are considered.  This is
989 straighforward if the interaction energies are written explicitly in
990 terms of $\hat{r}$ and the body axes ($\hat{a}_m$,
991 $\hat{b}_n$) :
992 %
993 \begin{equation}
994 U(r,\{\hat{a}_m \cdot \hat{r} \},
995 \{\hat{b}_n\cdot \hat{r} \},
996 \{\hat{a}_m \cdot \hat{b}_n \}) .
997 \label{ugeneral}
1024   \end{equation}
1025   %
1000 Allen and Germano,\cite{Allen:2006fk} showed that if the energy is
1001 written in this form, the forces come out relatively cleanly,
1002 %
1003 \begin{equation}
1004 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} =  \frac{\partial U}{\partial \mathbf{r}}
1005 = \frac{\partial U}{\partial r} \hat{r}
1006 + \sum_m \left[
1007 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1008 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1009 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1010 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1011 \right] \label{forceequation}.
1012 \end{equation}
1013 %
1014 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
1015 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
1016 In simplifying the algebra, we have also used:
1017 %
1018 \begin{align}
1019 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1020 =& \frac{1}{r} \left(  \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1021 \right) \\
1022 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1023 =& \frac{1}{r} \left(  \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1024 \right) .
1025 \end{align}
1026 %
1026   We list below the force equations written in terms of lab-frame
1027   coordinates.  The radial functions used in the two methods are listed
1028   in Table \ref{tab:tableFORCE}
# Line 1134 | Line 1133 | w_i(r)
1133   \begin{split}
1134   \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1135   \Bigl[
1136 < \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1137 < + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot  \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1136 > \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1137 > + 2  \mathbf{Q}_{\mathbf{a}} :  \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1138   % 2
1139   &+ \Bigl[
1140   2\text{Tr}\mathbf{Q}_{\mathbf{b}}  (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )  
# Line 1171 | Line 1170 | When energies are written in the form of Eq.~({\ref{ug
1170   % Torques SECTION -----------------------------------------------------------------------------------------
1171   %
1172   \subsection{Torques}
1173 < When energies are written in the form of Eq.~({\ref{ugeneral}), then
1175 <  torques can be found in a relatively straightforward
1176 <  manner,\cite{Allen:2006fk}
1177 < %
1178 < \begin{eqnarray}
1179 < \mathbf{\tau}_{\bf a} =
1180 < \sum_m
1181 < \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1182 < ( \hat{r} \times \hat{a}_m )
1183 < -\sum_{mn}
1184 < \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1185 < (\hat{a}_m \times \hat{b}_n) \\
1186 < %
1187 < \mathbf{\tau}_{\bf b} =
1188 < \sum_m
1189 < \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1190 < ( \hat{r} \times \hat{b}_m)
1191 < +\sum_{mn}
1192 < \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1193 < (\hat{a}_m \times \hat{b}_n) .
1194 < \end{eqnarray}
1173 >
1174   %
1196 %
1175   The torques for both the Taylor-Shifted as well as Gradient-Shifted
1176   methods are given in space-frame coordinates:
1177   %
# Line 1383 | Line 1361 | constants (converged to one part in $10^9$) in table \
1361   \begin{table*}[h]
1362   \centering{
1363    \caption{Luttinger \& Tisza arrays and their associated
1364 <    energy constants. Type "A" arrays have nearest neighbor strings of
1365 <    antiparallel dipoles.  Type "B" arrays have nearest neighbor
1364 >    energy constants. Type ``A'' arrays have nearest neighbor strings of
1365 >    antiparallel dipoles.  Type ``B'' arrays have nearest neighbor
1366      strings of antiparallel dipoles if the dipoles are contained in a
1367      plane perpendicular to the dipole direction that passes through
1368      the dipole.}
# Line 1431 | Line 1409 | radius.
1409   truncated at the cutoff radius), as well as a shifted potential (SP)
1410   form which includes a potential-shifting and self-interaction term,
1411   but does not shift the forces and torques smoothly at the cutoff
1412 < radius.
1412 > radius.  The SP method is essentially an extension of the original
1413 > Wolf method for multipoles.  
1414  
1415 < \begin{figure}
1415 > \begin{figure}[!htbp]
1416   \includegraphics[width=4.5in]{energyConstVsCutoff}
1417   \caption{Convergence to the analytic energy constants as a function of
1418    cutoff radius (normalized by the lattice constant) for the different
# Line 1609 | Line 1588 | u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1588   \begin{equation}
1589   u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1590   \end{equation}
1591 <
1591 > % The functions
1592 > % needed are listed schematically below:
1593 > % %
1594 > % \begin{eqnarray}
1595 > % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1596 > % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1597 > % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1598 > % s_2 \quad s_3 \quad &s_4 \nonumber \\
1599 > % t_3 \quad &t_4 \nonumber \\
1600 > % &u_4 \nonumber .
1601 > % \end{eqnarray}
1602   The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1603 < stored on a grid for values of $r$ from $0$ to $r_c$.  The functions
1604 < needed are listed schematically below:
1616 < %
1617 < \begin{eqnarray}
1618 < f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1619 < g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1620 < h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1621 < s_2 \quad s_3 \quad &s_4 \nonumber \\
1622 < t_3 \quad &t_4 \nonumber \\
1623 < &u_4 \nonumber .
1624 < \end{eqnarray}
1625 <
1626 < Using these functions, we find
1603 > stored on a grid for values of $r$ from $0$ to $r_c$.  Using these
1604 > functions, we find
1605   %
1606   \begin{align}
1607   \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1608   \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1609   +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1610 < \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1610 > \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1611   \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1612   \delta_{ \beta \gamma} r_\alpha \right)  
1613 < \left(  -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1614 < + r_\alpha r_\beta r_\gamma
1613 > \left(  -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1614 > & + r_\alpha r_\beta r_\gamma
1615   \left(  \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1616 < \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1616 > \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1617 >  r_\gamma \partial r_\delta} =&
1618   \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1619   + \delta_{\alpha \gamma} \delta_{\beta \delta}
1620   +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
# Line 1648 | Line 1627 | + \frac{t_n}{r^4} \right)\\
1627   \left(  -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1628   + \frac{t_n}{r^4} \right)\\
1629   \frac{\partial^5 f_n}
1630 < {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1630 > {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1631 >  r_\delta \partial r_\epsilon} =&
1632   \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1633   + \text{14 permutations} \right)
1634   \left(  \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
# Line 1670 | Line 1650 | we generalize the notation of the previous appendix.  
1650   rather the individual terms in the multipole interaction energies.
1651   For damped charges , this still brings into the algebra multiple
1652   derivatives of the Smith's $B_0(r)$ function.  To denote these terms,
1653 < we generalize the notation of the previous appendix.  For $f(r)=1/r$
1654 < (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1653 > we generalize the notation of the previous appendix.  For either
1654 > $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1655   %
1656   \begin{align}
1657   g(r)=& \frac{df}{d r}\\
# Line 1681 | Line 1661 | For undamped charges, $f(r)=1/r$, Table I lists these
1661   u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1662   \end{align}
1663   %
1664 < For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1665 < under the column ``Bare Coulomb.''  Equations \ref{eq:b9} to
1666 < \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1687 < $n$ is eliminated.
1664 > For undamped charges Table I lists these derivatives under the column
1665 > ``Bare Coulomb.''  Equations \ref{eq:b9} to \ref{eq:b13} are still
1666 > correct for GSF electrostatics if the subscript $n$ is eliminated.
1667  
1668   \newpage
1669  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines