ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
(Generate patch)

Comparing:
trunk/multipole/multipole3.tex (file contents), Revision 3906 by gezelter, Tue Jul 9 21:45:05 2013 UTC vs.
trunk/multipole/multipole1.tex (file contents), Revision 3990 by gezelter, Fri Jan 3 18:28:01 2014 UTC

# Line 20 | Line 20
20   % Use this file as a source of example code for your aip document.
21   % Use the file aiptemplate.tex as a template for your document.
22   \documentclass[%
23 < aip,
24 < jmp,
23 > aip,jcp,
24   amsmath,amssymb,
25   preprint,%
26   % reprint,%
27   %author-year,%
28   %author-numerical,%
29 < ]{revtex4-1}
29 > jcp]{revtex4-1}
30  
31   \usepackage{graphicx}% Include figure files
32   \usepackage{dcolumn}% Align table columns on decimal point
33 < \usepackage{bm}% bold math
33 > %\usepackage{bm}% bold math
34 > \usepackage{times}
35 > \usepackage[version=3]{mhchem}  % this is a great package for formatting chemical reactions
36 > \usepackage{url}
37 > \usepackage{rotating}
38 >
39   %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40   %\linenumbers\relax % Commence numbering lines
41  
42   \begin{document}
43  
44 < \preprint{AIP/123-QED}
44 > %\preprint{AIP/123-QED}
45  
46 < \title[Generalization of the Shifted-Force Potential to Higher-Order Potentials]
47 < {Generalization of the Shifted-Force Potential to Higher-Order Potentials}
46 > \title{Real space alternatives to the Ewald
47 > Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48  
49   \author{Madan Lamichhane}
50   \affiliation{Department of Physics, University
# Line 60 | Line 64 | Over the past several years, there has been increasing
64               %  but any date may be explicitly specified
65  
66   \begin{abstract}
67 < Over the past several years, there has been increasing interest
68 < in real space methods for calculating electrostatic interactions
69 < in computer simulations of condensed molecular systems. We
70 < have extended our original damped-shifted force (DSF)
71 < electrostatic kernel and have been able to derive a set of
72 < interaction models for higher-order multipoles based on
73 < truncated Taylor expansions around the cutoff. For multipolemultipole
74 < interactions, we find that each of the distinct
75 < orientational contributions has a separate radial function to
76 < ensure that the overall forces and torques vanish at the cutoff
73 < radius.
67 >  We have extended the original damped-shifted force (DSF)
68 >  electrostatic kernel and have been able to derive two new
69 >  electrostatic potentials for higher-order multipoles that are based
70 >  on truncated Taylor expansions around the cutoff radius.  For
71 >  multipole-multipole interactions, we find that each of the distinct
72 >  orientational contributions has a separate radial function to ensure
73 >  that the overall forces and torques vanish at the cutoff radius. In
74 >  this paper, we present energy, force, and torque expressions for the
75 >  new models, and compare these real-space interaction models to exact
76 >  results for ordered arrays of multipoles.
77   \end{abstract}
78  
79 < \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
79 > %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80                               % Classification Scheme.
81 < \keywords{Suggested keywords}%Use showkeys class option if keyword
81 > %\keywords{Suggested keywords}%Use showkeys class option if keyword
82                                %display desired
83   \maketitle
84  
85   \section{Introduction}
86 + There has been increasing interest in real-space methods for
87 + calculating electrostatic interactions in computer simulations of
88 + condensed molecular
89 + systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90 + The simplest of these techniques was developed by Wolf {\it et al.}
91 + in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 + For systems of point charges, Fennell and Gezelter showed that a
93 + simple damped shifted force (DSF) modification to Wolf's method could
94 + give nearly quantitative agreement with smooth particle mesh Ewald
95 + (SPME)\cite{Essmann95} configurational energy differences as well as
96 + atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97  
98 < The Coulomb electrostatic interaction is of importance in a number of physical chemistry problems
99 < [background needed, do we mention gases, liquids, solids?].
98 > The computational efficiency and the accuracy of the DSF method are
99 > surprisingly good, particularly for systems with uniform charge
100 > density. Additionally, dielectric constants obtained using DSF and
101 > similar methods where the force vanishes at $r_{c}$ are
102 > essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103 > related methods have now been widely investigated,\cite{Hansen:2012uq}
104 > and DSF is now used routinely in a diverse set of chemical
105 > environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
106 > DSF electrostatics provides a compromise between the computational
107 > speed of real-space cutoffs and the accuracy of fully-periodic Ewald
108 > treatments.
109  
110 < [...]
110 > One common feature of many coarse-graining approaches, which treat
111 > entire molecular subsystems as a single rigid body, is simplification
112 > of the electrostatic interactions between these bodies so that fewer
113 > site-site interactions are required to compute configurational
114 > energies. To do this, the interactions between coarse-grained sites
115 > are typically taken to be point
116 > multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
117  
118 < The methods that we develop in this paper are meant specifically for problems involving interacting rigid molecules which will be described
119 < in terms of classical mechanics and electrodynamics.  From mechanics, the molecule's mass distribution
120 < determines its total mass and moment of inertia tensor.
121 < From electrostatics, its charge distribution is conveniently described using multipoles.
122 < Our goal is to advance methods for handling inter-molecular interactions in molecular dynamics simulations.
123 < To do this, we must develop consistent approximate equations for
124 < interaction energies, forces, and torques.
118 > Water, in particular, has been modeled recently with point multipoles
119 > up to octupolar
120 > order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
121 > maximum efficiency, these models require the use of an approximate
122 > multipole expansion as the exact multipole expansion can become quite
123 > expensive (particularly when handled via the Ewald
124 > sum).\cite{Ichiye:2006qy} Point multipoles and multipole
125 > polarizability have also been utilized in the AMOEBA water model and
126 > related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
127  
128 < [...]
128 > Higher-order multipoles present a peculiar issue for molecular
129 > dynamics. Multipolar interactions are inherently short-ranged, and
130 > should not need the relatively expensive Ewald treatment.  However,
131 > real-space cutoff methods are normally applied in an orientation-blind
132 > fashion so multipoles which leave and then re-enter a cutoff sphere in
133 > a different orientation can cause energy discontinuities.
134  
135 < This paper extends the shifted-force potential method
136 < of Fennel and Gezelter to higher-order multipole interactions.  [describe?]
137 < Extending an idea from Wolf, multipole images are placed on the surface of a
138 < ``cutoff'' sphere of radius $r_c$. These images are used to make all  interaction energies, forces, and torques
139 < be zero for $r < r_c$.
140 < Two such methods have been developed, both based on Taylor-series expansions.  
141 < The first is applied to the Coulomb kernel of the multipole expansion.  The second is
142 < applied to individual terms for interaction energies in the multipole expansion.
107 < Because of differences in the initial assumptions, the two methods yield different results.
135 > This paper outlines an extension of the original DSF electrostatic
136 > kernel to point multipoles.  We describe two distinct real-space
137 > interaction models for higher-order multipoles based on two truncated
138 > Taylor expansions that are carried out at the cutoff radius.  We are
139 > calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
140 > electrostatics.  Because of differences in the initial assumptions,
141 > the two methods yield related, but somewhat different expressions for
142 > energies, forces, and torques.
143  
144 < Also explored here is the effect of replacing the bare Coulomb kernel with that of a smeared
145 < charge distribution.  Thus four methods are compared in this paper:  
146 < (1) Shifted force, Coulomb, method 1;
147 < (2) Sihfted force, Coulomb, method 2;
148 < (3) Shifted force, smeared charge, method 1; and
149 < (4) Shifted force, smeared charge, method 2.
115 < The last of these methods is our preferred method and is called the Extended Shifted Force Method.  
116 < Subsequent papers will apply this method to various problems of physical and chemical interest.
144 > In this paper we outline the new methodology and give functional forms
145 > for the energies, forces, and torques up to quadrupole-quadrupole
146 > order.  We also compare the new methods to analytic energy constants
147 > for periodic arrays of point multipoles. In the following paper, we
148 > provide numerical comparisons to Ewald-based electrostatics in common
149 > simulation enviornments.
150  
151 < [...]
151 > \section{Methodology}
152 > An efficient real-space electrostatic method involves the use of a
153 > pair-wise functional form,
154 > \begin{equation}
155 > V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
156 > \sum_i V_i^\mathrm{self}
157 > \end{equation}
158 > that is short-ranged and easily truncated at a cutoff radius,
159 > \begin{equation}
160 >  V_\mathrm{pair}(r_{ij},\Omega_i, \Omega_j) = \left\{
161 > \begin{array}{ll}
162 > V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
163 > 0 & \quad r > r_c ,
164 > \end{array}
165 > \right.
166 > \end{equation}
167 > along with an easily computed self-interaction term ($\sum_i
168 > V_i^\mathrm{self}$) which has linear-scaling with the number of
169 > particles.  Here $\Omega_i$ and $\Omega_j$ represent orientational
170 > coordinates of the two sites.  The computational efficiency, energy
171 > conservation, and even some physical properties of a simulation can
172 > depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173 > the cutoff radius. The goal of any approximation method should be to
174 > mimic the real behavior of the electrostatic interactions as closely
175 > as possible without sacrificing the near-linear scaling of a cutoff
176 > method.
177  
178 + \subsection{Self-neutralization, damping, and force-shifting}
179 + The DSF and Wolf methods operate by neutralizing the total charge
180 + contained within the cutoff sphere surrounding each particle.  This is
181 + accomplished by shifting the potential functions to generate image
182 + charges on the surface of the cutoff sphere for each pair interaction
183 + computed within $r_c$. Damping using a complementary error
184 + function is applied to the potential to accelerate convergence. The
185 + potential for the DSF method, where $\alpha$ is the adjustable damping
186 + parameter, is given by
187 + \begin{equation*}
188 + V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
189 + \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
190 + - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
191 + + \frac{2\alpha}{\pi^{1/2}}
192 + \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
193 + \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
194 + \label{eq:DSFPot}
195 + \end{equation*}
196 + Note that in this potential and in all electrostatic quantities that
197 + follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
198 + clarity.
199  
200 < \section{Development of the Methods}
200 > To insure net charge neutrality within each cutoff sphere, an
201 > additional ``self'' term is added to the potential. This term is
202 > constant (as long as the charges and cutoff radius do not change), and
203 > exists outside the normal pair-loop for molecular simulations.  It can
204 > be thought of as a contribution from a charge opposite in sign, but
205 > equal in magnitude, to the central charge, which has been spread out
206 > over the surface of the cutoff sphere.  A portion of the self term is
207 > identical to the self term in the Ewald summation, and comes from the
208 > utilization of the complimentary error function for electrostatic
209 > damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
210 > extend the Wolf self-neutralization method to zero out the dipole and
211 > higher order multipoles contained within the cutoff
212 > sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
213  
214 < \subsection{Multipole Expansion}
214 > In this work, we extend the idea of self-neutralization for the point
215 > multipoles by insuring net charge-neutrality and net-zero moments
216 > within each cutoff sphere.  In Figure \ref{fig:shiftedMultipoles}, the
217 > central dipolar site $\mathbf{D}_i$ is interacting with point dipole
218 > $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$.  The
219 > self-neutralization scheme for point multipoles involves projecting
220 > opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
221 > sphere.  There are also significant modifications made to make the
222 > forces and torques go smoothly to zero at the cutoff distance.
223  
224 < Consider two discrete rigid collections of atoms and ions, denoted as objects $\bf a$ and $\bf b$.  
225 < In the following, we assume
226 < that the two objects only interact via electrostatics and describe those interactions in terms of
227 < a multipole expansion.  Putting the origin of the coordinate system at the center of mass of $\bf a$, we use
228 < vectors $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf a$.
229 < Then the electrostatic potential of object $\bf a$ at $\mathbf{r}$ is given by
224 > \begin{figure}
225 > \includegraphics[width=3in]{SM}
226 > \caption{Reversed multipoles are projected onto the surface of the
227 >  cutoff sphere. The forces, torques, and potential are then smoothly
228 >  shifted to zero as the sites leave the cutoff region.}
229 > \label{fig:shiftedMultipoles}
230 > \end{figure}
231 >
232 > As in the point-charge approach, there is an additional contribution
233 > from self-neutralization of site $i$.  The self term for multipoles is
234 > described in section \ref{sec:selfTerm}.
235 >
236 > \subsection{The multipole expansion}
237 >
238 > Consider two discrete rigid collections of point charges, denoted as
239 > $\bf a$ and $\bf b$.  In the following, we assume that the two objects
240 > interact via electrostatics only and describe those interactions in
241 > terms of a standard multipole expansion.  Putting the origin of the
242 > coordinate system at the center of mass of $\bf a$, we use vectors
243 > $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
244 > a$.  Then the electrostatic potential of object $\bf a$ at
245 > $\mathbf{r}$ is given by
246   \begin{equation}
247 < V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
247 > V_a(\mathbf r) =
248   \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
249   \end{equation}
250 < We write the Taylor series expansion in $r$ using an implied summation notation,
251 < Greek indices are used to indicate space coordinates $x$, $y$, $z$ and the subscripts
252 < $k$ and $j$ are reserved for labelling specific charges in $\bf a$ and $\bf b$ respectively, and find:
250 > The Taylor expansion in $r$ can be written using an implied summation
251 > notation.  Here Greek indices are used to indicate space coordinates
252 > ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
253 > labelling specific charges in $\bf a$ and $\bf b$ respectively.  The
254 > Taylor expansion,
255   \begin{equation}
256   \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
257   \left( 1
258   -  r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
259   + \frac{1}{2}  r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
260   \right)
261 < \frac{1}{r}  .
261 > \frac{1}{r}  ,
262   \end{equation}
263 < We then follow Smith in defining an operator for the expansion:
263 > can then be used to express the electrostatic potential on $\bf a$ in
264 > terms of multipole operators,
265   \begin{equation}
266 < V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
266 > V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
267   \end{equation}
268   where
269   \begin{equation}
# Line 153 | Line 271 | and the charge $C_{\bf a}$, dipole $D_{{\bf a}\alpha}$
271   +  Q_{{\bf a}\alpha\beta}
272   \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
273   \end{equation}
274 < and the charge $C_{\bf a}$, dipole $D_{{\bf a}\alpha}$,
275 < and quadrupole $Q_{{\bf a}\alpha\beta}$ are defined by
276 < \begin{equation}
277 < C_{\bf a}=\sum_{k \, \text{in \bf a}} q_k ,
278 < \end{equation}
279 < \begin{equation}
280 < D_{{\bf a}\alpha} = \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,
281 < \end{equation}
282 < \begin{equation}
283 < Q_{{\bf a}\alpha\beta} = \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha}  r_{k\beta} .
284 < \end{equation}
274 > Here, the point charge, dipole, and quadrupole for object $\bf a$ are
275 > given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
276 >    a}\alpha\beta}$, respectively.  These are the primitive multipoles
277 > which can be expressed as a distribution of charges,
278 > \begin{align}
279 > C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
280 > D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
281 > Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha}  r_{k\beta} .
282 > \end{align}
283 > Note that the definition of the primitive quadrupole here differs from
284 > the standard traceless form, and contains an additional Taylor-series
285 > based factor of $1/2$.
286  
287   It is convenient to locate charges $q_j$ relative to the center of mass of  $\bf b$.  Then with $\bf{r}$ pointing from
288   $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
170 \begin{eqnarray}
171 U_{\bf{ab}}(r) =&& \frac{1}{4\pi \epsilon_0}
172 \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
173 \frac{q_k q_j}{\vert \bf{r}_k - (\bf{r}+\bf{r}_j) \vert} \nonumber\\
174 =&& \frac{1}{4\pi \epsilon_0}
175 \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
176 \frac{q_k q_j}{\vert \bf{r}+ (\bf{r}_j-\bf{r}_k) \vert} \nonumber\\
177 =&&\frac{1}{4\pi \epsilon_0}  \sum_{j \, \text{in \bf b}}  q_j V_a(\bf{r}+\bf{r}_j) \nonumber\\
178 =&&\frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
179 \end{eqnarray}
180 The last expression can also be expanded as a Taylor series in $r$.  Using a notation similar to before, we define
289   \begin{equation}
290 + U_{\bf{ab}}(r)
291 + = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
292 + \end{equation}
293 + This can also be expanded as a Taylor series in $r$.  Using a notation
294 + similar to before to define the multipoles on object {\bf b},
295 + \begin{equation}
296   \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
297   +   Q_{{\bf b}\alpha\beta}
298   \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
299   \end{equation}
300 < and
300 > we arrive at the multipole expression for the total interaction energy.
301   \begin{equation}
302 < U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r}  \label{kernel}.
302 > U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
303   \end{equation}
304 < Note the ease of separting out the respective energies of interaction of the charge, dipole, and quadrupole of $\bf a$  from those of $\bf b$.
304 > This form has the benefit of separating out the energies of
305 > interaction into contributions from the charge, dipole, and quadrupole
306 > of $\bf a$ interacting with the same multipoles on $\bf b$.
307  
308 < \subsection{Bare Coulomb versus smeared charge}
309 <
310 < With the four types of methods being considered here, it is desirable to list the approximations in as transparent a form
311 < as possible.  First, one may use the bare Coulomb potential, with radial dependence $1/r$,
312 < as shown in Eq.~(\ref{kernel}).  Alternatively, one may use
313 < a smeared charge distribution, then the``kernel'' $1/r$ of the expansion is replaced with a function:
308 > \subsection{Damped Coulomb interactions}
309 > In the standard multipole expansion, one typically uses the bare
310 > Coulomb potential, with radial dependence $1/r$, as shown in
311 > Eq.~(\ref{kernel}).  It is also quite common to use a damped Coulomb
312 > interaction, which results from replacing point charges with Gaussian
313 > distributions of charge with width $\alpha$.  In damped multipole
314 > electrostatics, the kernel ($1/r$) of the expansion is replaced with
315 > the function:
316   \begin{equation}
317   B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318   \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319   \end{equation}
320 < We develop equations using a function $f(r)$ to represent either $1/r$ or $B_0(r)$, dependent on the the type of approach being considered.
321 < Smith's convenient functions $B_l(r)$ are summarized in Appendix A.
320 > We develop equations below using the function $f(r)$ to represent
321 > either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322 > bare or damped Coulomb kernels (or any other function) as long as
323 > derivatives of these functions are known.  Smith's convenient
324 > functions $B_l(r)$ are summarized in Appendix A.
325  
326 < \subsection{Shifting the force, method 1}
326 > The main goal of this work is to smoothly cut off the interaction
327 > energy as well as forces and torques as $r\rightarrow r_c$.  To
328 > describe how this goal may be met, we use two examples, charge-charge
329 > and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
330 > explain the idea.
331  
332 < As discussed in the introduction, it is desirable to cutoff the electrostatic energy at a radius
333 < $r_c$.  For consistency in approximation, we want the interaction energy as well as the force and
334 < torque to go to zero at $r=r_c$.  
335 < To describe how this goal may be met using a radial approximation, we use two examples, charge-charge
211 < and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain the idea.
212 <
213 < In the shifted-force approximation, the interaction energy $U_{\bf{ab}}(r_c)=0$
214 < for two charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is written:
332 > \subsection{Shifted-force methods}
333 > In the shifted-force approximation, the interaction energy for two
334 > charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
335 > written:
336   \begin{equation}
337 < U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
337 > U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
338   \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2}  }
339   \right) .
340   \end{equation}
341 < Two shifting terms appear in this equations because we want the force to
342 < also be shifted due to an image charge located at a distance $r_c$.  
343 < Since one derivative of the interaction energy is needed for the force, we want a term
344 < linear in $(r-r_c)$ in the interaction energy, that is:
341 > Two shifting terms appear in this equations, one from the
342 > neutralization procedure ($-1/r_c$), and one that causes the first
343 > derivative to vanish at the cutoff radius.
344 >
345 > Since one derivative of the interaction energy is needed for the
346 > force, the minimal perturbation is a term linear in $(r-r_c)$ in the
347 > interaction energy, that is:
348   \begin{equation}
349   \frac{d\,}{dr}
350   \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2}  }
351   \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
352   \right) .
353   \end{equation}
354 < This demonstrates the need of the third term in the brackets of the energy expression, but  leads to the question, how does this idea generalize for higher-order multipole energies?
354 > which clearly vanishes as the $r$ approaches the cutoff radius. There
355 > are a number of ways to generalize this derivative shift for
356 > higher-order multipoles.  Below, we present two methods, one based on
357 > higher-order Taylor series for $r$ near $r_c$, and the other based on
358 > linear shift of the kernel gradients at the cutoff itself.
359  
360 < In method 1, the procedure that we follow is based on the number of derivatives need for each energy, force, or torque.  That is,
361 < a quadrupole-quadrupole interaction energy will have four derivatives,
362 < $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$,
363 < and the force or torque will bring in yet another derivative.  
364 < We thus want shifted energy expressions to include terms so that all energies, forces, and torques
365 < are zero at $r=r_c$.  In each case, we will subtract off a function $f_n^{\text{shift}}(r)$ from the
366 < kernel $f(r)=1/r$.  The index $n$ indicates the number of derivatives to be taken when
367 < deriving a given multipole energy.
368 < We choose a function with guaranteed smooth derivatives --- a truncated Taylor series of the function
369 < $f(r)$, e.g.,
360 > \subsection{Taylor-shifted force (TSF) electrostatics}
361 > In the Taylor-shifted force (TSF) method, the procedure that we follow
362 > is based on a Taylor expansion containing the same number of
363 > derivatives required for each force term to vanish at the cutoff.  For
364 > example, the quadrupole-quadrupole interaction energy requires four
365 > derivatives of the kernel, and the force requires one additional
366 > derivative. For quadrupole-quadrupole interactions, we therefore
367 > require shifted energy expressions that include up to $(r-r_c)^5$ so
368 > that all energies, forces, and torques are zero as $r \rightarrow
369 > r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
370 > from the kernel $f(r)=1/r$.  The subscript $n$ indicates the number of
371 > derivatives to be taken when deriving a given multipole energy.  We
372 > choose a function with guaranteed smooth derivatives -- a truncated
373 > Taylor series of the function $f(r)$, e.g.,
374   %
375   \begin{equation}
376 < f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert  _{r_c}  .
376 > f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c)  .
377   \end{equation}
378   %
379   The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
# Line 251 | Line 383 | Continuing with the example of a charge  $\bf a$  inte
383   f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
384   \end{equation}
385   %
386 < Continuing with the example of a charge  $\bf a$  interacting with a dipole  $\bf b$, we write
386 > Continuing with the example of a charge $\bf a$ interacting with a
387 > dipole $\bf b$, we write
388   %
389   \begin{equation}
390   U_{C_{\bf a}D_{\bf b}}(r)=
391 < \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}  \frac {\partial f_1(r) }{\partial r_\alpha}
392 < =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}  
391 > C_{\bf a} D_{{\bf b}\alpha}  \frac {\partial f_1(r) }{\partial r_\alpha}
392 > = C_{\bf a} D_{{\bf b}\alpha}
393   \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
394   \end{equation}
395   %
396 < The force that dipole  $\bf b$ puts on charge $\bf a$ is
396 > The force that dipole  $\bf b$ exerts on charge $\bf a$ is
397   %
398   \begin{equation}
399 < F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
399 > F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
400   \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
401   \frac{r_\alpha r_\beta}{r^2}
402   \left( -\frac{1}{r} \frac {\partial} {\partial r}
403   + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
404   \end{equation}
405   %
406 < For $f(r)=1/r$, we find
406 > For undamped coulombic interactions, $f(r)=1/r$, we find
407   %
408   \begin{equation}
409   F_{C_{\bf a}D_{\bf b}\beta} =
410 < \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
410 > \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
411   \left[  -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
412 < +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
412 > +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
413   \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
414   \end{equation}
415   %
416   This expansion shows the expected $1/r^3$ dependence of the force.  
417  
418 < In general, we write
418 > In general, we can write
419   %
420   \begin{equation}
421 < U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
421 > U= (\text{prefactor}) (\text{derivatives}) f_n(r)
422   \label{generic}
423   \end{equation}
424   %
425 < where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
426 < and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
427 < An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
428 < $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
429 < $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
430 < implied summation combining the space indices.
425 > with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
426 > charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
427 > $n=4$ for quadrupole-quadrupole.  For example, in
428 > quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
429 > $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
430 > $\partial^4/\partial r_\alpha \partial r_\beta \partial
431 > r_\gamma \partial r_\delta$, with implied summation combining the
432 > space indices.
433  
434 < To apply this method  to the smeared-charge approach,  
435 < we write $f(r)=\text{erfc}(\alpha r)/r$.  By using one function $f(r)$ for both
436 < approaches, we simplify the tabulation of equations used.  Because
437 < of the many derivatives that are taken, the algebra is tedious and are summarized
438 < in Appendices A and B.  
434 > In the formulas presented in the tables below, the placeholder
435 > function $f(r)$ is used to represent the electrostatic kernel (either
436 > damped or undamped).  The main functions that go into the force and
437 > torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
438 > successive derivatives of the shifted electrostatic kernel, $f_n(r)$
439 > of the same index $n$.  The algebra required to evaluate energies,
440 > forces and torques is somewhat tedious, so only the final forms are
441 > presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
442  
443 < \subsection{Shifting the force, method 2}
444 <
445 < Note the method used in the previous subsection to shift a force is basically that of using
446 < a truncated Taylor Series in the radius $r$.  An alternate method exists, best explained by
447 < writing one shifted formula for all interaction energies $U(r)$:
443 > \subsection{Gradient-shifted force (GSF) electrostatics}
444 > The second, and conceptually simpler approach to force-shifting
445 > maintains only the linear $(r-r_c)$ term in the truncated Taylor
446 > expansion, and has a similar interaction energy for all multipole
447 > orders:
448   \begin{equation}
449 < U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert  _{r_c} .
449 > U^{\text{GSF}} =
450 > U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
451 > U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) - (r-r_c) \hat{r}
452 > \cdot \nabla U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) \Big \lvert  _{r_c} .
453 > \label{generic2}
454   \end{equation}
455 < Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
456 < $(r-r_c)^n$ appear.   The primary difference between methods 1 and 2 originates
457 < with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
458 < kernel.  In method 2, it is applied to individual interaction energies of the multipole expansion.
459 < Terms from this method thus have the general form:
455 > Both the potential and the gradient for force shifting are evaluated
456 > for an image multipole projected onto the surface of the cutoff sphere
457 > (see fig \ref{fig:shiftedMultipoles}).  The image multipole retains
458 > the orientation ($\hat{\mathbf{b}}$) of the interacting multipole.  No
459 > higher order terms $(r-r_c)^n$ appear.  The primary difference between
460 > the TSF and GSF methods is the stage at which the Taylor Series is
461 > applied; in the Taylor-shifted approach, it is applied to the kernel
462 > itself.  In the Gradient-shifted approach, it is applied to individual
463 > radial interactions terms in the multipole expansion.  Energies from
464 > this method thus have the general form:
465   \begin{equation}
466 < U=\frac{1}{4\pi \epsilon_0}\sum  (\text{angular factor}) (\text{radial factor}).
467 < \label{generic2}
466 > U= \sum  (\text{angular factor}) (\text{radial factor}).
467 > \label{generic3}
468   \end{equation}
469  
470 < Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
471 < and are listed in Table I below.
470 > Functional forms for both methods (TSF and GSF) can both be summarized
471 > using the form of Eq.~(\ref{generic3}).  The basic forms for the
472 > energy, force, and torque expressions are tabulated for both shifting
473 > approaches below -- for each separate orientational contribution, only
474 > the radial factors differ between the two methods.
475  
476   \subsection{\label{sec:level2}Body and space axes}
477 + Although objects $\bf a$ and $\bf b$ rotate during a molecular
478 + dynamics (MD) simulation, their multipole tensors remain fixed in
479 + body-frame coordinates. While deriving force and torque expressions,
480 + it is therefore convenient to write the energies, forces, and torques
481 + in intermediate forms involving the vectors of the rotation matrices.
482 + We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
483 + $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
484 + In a typical simulation , the initial axes are obtained by
485 + diagonalizing the moment of inertia tensors for the objects.  (N.B.,
486 + the body axes are generally {\it not} the same as those for which the
487 + quadrupole moment is diagonal.)  The rotation matrices are then
488 + propagated during the simulation.
489  
490 < Up to this point, all energies and forces have been written in terms of fixed space
491 < coordinates $x$, $y$, $z$.  Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
330 < combine prefactors with radial functions.  But because objects
331 < $\bf a$ and  $\bf b$ both translate and rotate as part of a MD simulation,
332 < it is desirable to contract all $r$-dependent terms with dipole and quadrupole
333 < moments expressed in terms of their body axes.  
334 < Since the interaction energy expressions will be used to derive both forces and torques,
335 < we follow here the development of Allen and Germano, which was itself based on an
336 < earlier paper by Price \em et al.\em
337 <
338 < Denote body axes for objects  $\bf a$ and  $\bf b$ by unit vectors
339 < $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
340 < set of inertial body axes.  (Note, these body axes are generally not the same as those for which the
341 < quadrupole moment is diagonal.)  Then,
342 < %
490 > The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
491 > expressed using these unit vectors:
492   \begin{eqnarray}
344 \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z}  \\
345 \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z}  .
346 \end{eqnarray}
347 Allen and Germano define matrices $\hat{\mathbf {a}}$
348 and  $\hat{\mathbf {b}}$ using these unit vectors:
349 \begin{eqnarray}
493   \hat{\mathbf {a}} =
494   \begin{pmatrix}
495   \hat{a}_1 \\
496   \hat{a}_2 \\
497   \hat{a}_3
498 < \end{pmatrix}
356 < =
357 < \begin{pmatrix}
358 < a_{1x} \quad a_{1y} \quad a_{1z} \\
359 < a_{2x} \quad a_{2y} \quad a_{2z} \\
360 < a_{3x} \quad a_{3y} \quad a_{3z}
361 < \end{pmatrix}\\
498 > \end{pmatrix}, \qquad
499   \hat{\mathbf {b}} =
500   \begin{pmatrix}
501   \hat{b}_1 \\
502   \hat{b}_2 \\
503   \hat{b}_3
504   \end{pmatrix}
368 =
369 \begin{pmatrix}
370 b_{1x}\quad  b_{1y} \quad b_{1z} \\
371 b_{2x} \quad b_{2y} \quad b_{2z} \\
372 b_{3x} \quad b_{3y} \quad b_{3z}
373 \end{pmatrix}  .
505   \end{eqnarray}
506   %
507 < These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
508 < All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
509 < It proves to be equally convenient to just write any contraction in terms of unit vectors
510 < $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.  
511 < We have found it useful to write angular-dependent terms in three different fashions,
512 < illustrated by the following
513 < three examples from the interaction-energy expressions:
507 > These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
508 > coordinates.
509 >
510 > Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
511 > {\em et al.},\cite{Price:1984fk} showed that if the interaction
512 > energies are written explicitly in terms of $\hat{r}$ and the body
513 > axes ($\hat{a}_m$, $\hat{b}_n$) :
514   %
515 + \begin{equation}
516 + U(r, \{\hat{a}_m \cdot \hat{r} \},
517 + \{\hat{b}_n\cdot \hat{r} \},
518 + \{\hat{a}_m \cdot \hat{b}_n \}) .
519 + \label{ugeneral}
520 + \end{equation}
521 + %
522 + the forces come out relatively cleanly,
523 + %
524 + \begin{equation}
525 + \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} =  \frac{\partial U}{\partial \mathbf{r}}
526 + = \frac{\partial U}{\partial r} \hat{r}
527 + + \sum_m \left[
528 + \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
529 + \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
530 + + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
531 + \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
532 + \right] \label{forceequation}.
533 + \end{equation}
534 +
535 + The torques can also be found in a relatively similar
536 + manner,
537 + %
538   \begin{eqnarray}
539 < \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
540 < =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
541 < \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
542 < r^2 \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
543 < r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
544 < \sum_{mn}(\hat{r} \cdot \hat{b}_m)  Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
545 < r ( \mathbf{D}_{\mathbf{a}} \cdot
546 < \mathbf{Q}_{\mathbf{b}}  \cdot \hat{r})=
547 < D_{\bf {a}\alpha}  Q_{\bf b \alpha \beta} r_\beta
548 < =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
549 < (\hat{b}_n \cdot \hat{r}) .
539 > \mathbf{\tau}_{\bf a} =
540 > \sum_m
541 > \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
542 > ( \hat{r} \times \hat{a}_m )
543 > -\sum_{mn}
544 > \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
545 > (\hat{a}_m \times \hat{b}_n) \\
546 > %
547 > \mathbf{\tau}_{\bf b} =
548 > \sum_m
549 > \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
550 > ( \hat{r} \times \hat{b}_m)
551 > +\sum_{mn}
552 > \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
553 > (\hat{a}_m \times \hat{b}_n) .
554   \end{eqnarray}
555 +
556 + Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
557 + is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
558 + We also made use of the identities,
559   %
560 < [Dan, perhaps there are better examples to show here.]
560 > \begin{align}
561 > \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
562 > =& \frac{1}{r} \left(  \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
563 > \right) \\
564 > \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
565 > =& \frac{1}{r} \left(  \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
566 > \right) .
567 > \end{align}
568  
569 < In each line, the first two terms are written using space coordinates.  The first form is standard
570 < in the chemistry literature, and the second is ``physicist style'' using implied summation notation.  The third
571 < form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
572 < We find the first form to be useful in writing equations prior to converting to computer code.  The second form is helpful
573 < in derivations of the interaction energy expressions.  The third one is specifically helpful when deriving forces and torques, as will
574 < be discussed below.  
569 > Many of the multipole contractions required can be written in one of
570 > three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
571 > and $\hat{b}_n$. In the torque expressions, it is useful to have the
572 > angular-dependent terms available in all three fashions, e.g. for the
573 > dipole-dipole contraction:
574 > %
575 > \begin{equation}
576 > \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
577 > = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
578 > \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
579 > \end{equation}
580 > %
581 > The first two forms are written using space coordinates.  The first
582 > form is standard in the chemistry literature, while the second is
583 > expressed using implied summation notation.  The third form shows
584 > explicit sums over body indices and the dot products now indicate
585 > contractions using space indices.
586  
587 < \section{Energies, forces, and torques}
588 < \subsection{Interaction energies}
587 > In computing our force and torque expressions, we carried out most of
588 > the work in body coordinates, and have transformed the expressions
589 > back to space-frame coordinates, which are reported below.  Interested
590 > readers may consult the supplemental information for this paper for
591 > the intermediate body-frame expressions.
592  
593 < We now list multipole interaction energies for the four types of approximation.  
411 < A ``generic'' set of radial functions is introduced so to be able to present the results in Table I.  This set of
412 < equations is written in terms of space coordinates:
593 > \subsection{The Self-Interaction \label{sec:selfTerm}}
594  
595 + In addition to cutoff-sphere neutralization, the Wolf
596 + summation~\cite{Wolf99} and the damped shifted force (DSF)
597 + extension~\cite{Fennell:2006zl} also included self-interactions that
598 + are handled separately from the pairwise interactions between
599 + sites. The self-term is normally calculated via a single loop over all
600 + sites in the system, and is relatively cheap to evaluate. The
601 + self-interaction has contributions from two sources.
602 +
603 + First, the neutralization procedure within the cutoff radius requires
604 + a contribution from a charge opposite in sign, but equal in magnitude,
605 + to the central charge, which has been spread out over the surface of
606 + the cutoff sphere.  For a system of undamped charges, the total
607 + self-term is
608 + \begin{equation}
609 + V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
610 + \label{eq:selfTerm}
611 + \end{equation}
612 +
613 + Second, charge damping with the complementary error function is a
614 + partial analogy to the Ewald procedure which splits the interaction
615 + into real and reciprocal space sums.  The real space sum is retained
616 + in the Wolf and DSF methods.  The reciprocal space sum is first
617 + minimized by folding the largest contribution (the self-interaction)
618 + into the self-interaction from charge neutralization of the damped
619 + potential.  The remainder of the reciprocal space portion is then
620 + discarded (as this contributes the largest computational cost and
621 + complexity to the Ewald sum).  For a system containing only damped
622 + charges, the complete self-interaction can be written as
623 + \begin{equation}
624 + V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
625 +  \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
626 +      C_{\bf a}^{2}.
627 + \label{eq:dampSelfTerm}
628 + \end{equation}
629 +
630 + The extension of DSF electrostatics to point multipoles requires
631 + treatment of {\it both} the self-neutralization and reciprocal
632 + contributions to the self-interaction for higher order multipoles.  In
633 + this section we give formulae for these interactions up to quadrupolar
634 + order.
635 +
636 + The self-neutralization term is computed by taking the {\it
637 +  non-shifted} kernel for each interaction, placing a multipole of
638 + equal magnitude (but opposite in polarization) on the surface of the
639 + cutoff sphere, and averaging over the surface of the cutoff sphere.
640 + Because the self term is carried out as a single sum over sites, the
641 + reciprocal-space portion is identical to half of the self-term
642 + obtained by Smith and Aguado and Madden for the application of the
643 + Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
644 + site which posesses a charge, dipole, and multipole, both types of
645 + contribution are given in table \ref{tab:tableSelf}.
646 +
647 + \begin{table*}
648 +  \caption{\label{tab:tableSelf} Self-interaction contributions for
649 +    site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
650 +    $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
651 + \begin{ruledtabular}
652 + \begin{tabular}{lccc}
653 + Multipole order & Summed Quantity & Self-neutralization  & Reciprocal \\ \hline
654 + Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
655 + Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
656 +  \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
657 + Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
658 + $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
659 + $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
660 + Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
661 +  h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
662 + \end{tabular}
663 + \end{ruledtabular}
664 + \end{table*}
665 +
666 + For sites which simultaneously contain charges and quadrupoles, the
667 + self-interaction includes a cross-interaction between these two
668 + multipole orders.  Symmetry prevents the charge-dipole and
669 + dipole-quadrupole interactions from contributing to the
670 + self-interaction.  The functions that go into the self-neutralization
671 + terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
672 + derivatives of the electrostatic kernel, $f(r)$ (either the undamped
673 + $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
674 + have been evaluated at the cutoff distance.  For undamped
675 + interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on.  For
676 + damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
677 + on.  Appendix \ref{SmithFunc} contains recursion relations that allow
678 + rapid evaluation of these derivatives.
679 +
680 + \section{Interaction energies, forces, and torques}
681 + The main result of this paper is a set of expressions for the
682 + energies, forces and torques (up to quadrupole-quadrupole order) that
683 + work for both the Taylor-shifted and Gradient-shifted approximations.
684 + These expressions were derived using a set of generic radial
685 + functions.  Without using the shifting approximations mentioned above,
686 + some of these radial functions would be identical, and the expressions
687 + coalesce into the familiar forms for unmodified multipole-multipole
688 + interactions.  Table \ref{tab:tableenergy} maps between the generic
689 + functions and the radial functions derived for both the Taylor-shifted
690 + and Gradient-shifted methods.  The energy equations are written in
691 + terms of lab-frame representations of the dipoles, quadrupoles, and
692 + the unit vector connecting the two objects,
693 +
694   % Energy in space coordinate form ----------------------------------------------------------------------------------------------
695   %
696   %
697   % u ca cb
698   %
699 < \begin{equation}
700 < U_{C_{\bf a}C_{\bf b}}(r)=
701 < \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  v_{01}(r)  \label{uchch}
702 < \end{equation}
699 > \begin{align}
700 > U_{C_{\bf a}C_{\bf b}}(r)=&
701 > C_{\bf a} C_{\bf b}  v_{01}(r)  \label{uchch}
702 > \\
703   %
704   % u ca db
705   %
706 < \begin{equation}
707 < U_{C_{\bf a}D_{\bf b}}(r)=
428 < \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)  v_{11}(r)  
706 > U_{C_{\bf a}D_{\bf b}}(r)=&
707 > C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)  v_{11}(r)  
708   \label{uchdip}
709 < \end{equation}
709 > \\
710   %
711   % u ca qb
712   %
713 < \begin{equation}
714 < U_{C_{\bf a}Q_{\bf b}}(r)=
715 < \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
437 < \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
713 > U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
714 > v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
715 >  \hat{r} \right) v_{22}(r) \Bigr]
716   \label{uchquad}
717 < \end{equation}
717 > \\
718   %
719   % u da cb
720   %
721 < \begin{equation}
722 < U_{D_{\bf a}C_{\bf b}}(r)=
723 < -\frac{C_{\bf b}}{4\pi \epsilon_0}  
724 < \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)   v_{11}(r) \label{udipch}
447 < \end{equation}
721 > %U_{D_{\bf a}C_{\bf b}}(r)=&
722 > %-\frac{C_{\bf b}}{4\pi \epsilon_0}  
723 > %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)   v_{11}(r) \label{udipch}
724 > %\\
725   %
726   % u da db
727   %
728 < \begin{equation}
729 < U_{D_{\bf a}D_{\bf b}}(r)=
453 < -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
728 > U_{D_{\bf a}D_{\bf b}}(r)=&
729 > -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
730   \mathbf{D}_{\mathbf{b}} \right)  v_{21}(r)
731   +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
732   \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)  
733   v_{22}(r) \Bigr]
734   \label{udipdip}
735 < \end{equation}
735 > \\
736   %
737   % u da qb
738   %
463 \begin{equation}
739   \begin{split}
740   % 1
741 < U_{D_{\bf a}Q_{\bf b}}(r)&=
742 < -\frac{1}{4\pi \epsilon_0} \Bigl[
741 > U_{D_{\bf a}Q_{\bf b}}(r) =&
742 > -\Bigl[
743   \text{Tr}\mathbf{Q}_{\mathbf{b}}
744   \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
745   +2 ( \mathbf{D}_{\mathbf{a}} \cdot
746   \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
747   % 2
748 < &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
748 > &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
749   \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
750   \label{udipquad}
751   \end{split}
752 < \end{equation}
752 > \\
753   %
754   % u qa cb
755   %
756 < \begin{equation}
757 < U_{Q_{\bf a}C_{\bf b}}(r)=
758 < \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a}  v_{21}(r)
759 < \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)  v_{22}(r)  \Bigr]
760 < \label{uquadch}
486 < \end{equation}
756 > %U_{Q_{\bf a}C_{\bf b}}(r)=&
757 > %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a}  v_{21}(r)
758 > %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)  v_{22}(r)  \Bigr]
759 > %\label{uquadch}
760 > %\\
761   %
762   % u qa db
763   %
764 < \begin{equation}
491 < \begin{split}
764 > %\begin{split}
765   %1
766 < U_{Q_{\bf a}D_{\bf b}}(r)&=
767 < \frac{1}{4\pi \epsilon_0} \Bigl[
768 < \text{Tr}\mathbf{Q}_{\mathbf{a}}
769 < \left(  \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
770 < +2 ( \mathbf{D}_{\mathbf{b}} \cdot
771 < \mathbf{Q}_{\mathbf{a}}  \cdot \hat{r}) \Bigr] v_{31}(r)
766 > %U_{Q_{\bf a}D_{\bf b}}(r)=&
767 > %\frac{1}{4\pi \epsilon_0} \Bigl[
768 > %\text{Tr}\mathbf{Q}_{\mathbf{a}}
769 > %\left(  \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
770 > %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
771 > %\mathbf{Q}_{\mathbf{a}}  \cdot \hat{r}) \Bigr] v_{31}(r)\\
772   % 2
773 < +\frac{1}{4\pi \epsilon_0}
774 < \left(  \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
775 < \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
776 < \label{uquaddip}
777 < \end{split}
778 < \end{equation}
773 > %&+\frac{1}{4\pi \epsilon_0}
774 > %\left(  \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
775 > %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
776 > %\label{uquaddip}
777 > %\end{split}
778 > %\\
779   %
780   % u qa qb
781   %
509 \begin{equation}
782   \begin{split}
783   %1
784 < U_{Q_{\bf a}Q_{\bf b}}(r)&=
785 < \frac{1}{4\pi \epsilon_0} \Bigl[
784 > U_{Q_{\bf a}Q_{\bf b}}(r)=&
785 > \Bigl[
786   \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
787 < +2 \text{Tr} \left(
788 < \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
787 > +2
788 > \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
789   \\
790   % 2
791 < &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
791 > &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
792   \left( \hat{r} \cdot
793   \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
794   +\text{Tr}\mathbf{Q}_{\mathbf{b}}
# Line 526 | Line 798 | +\text{Tr}\mathbf{Q}_{\mathbf{b}}
798   \Bigr] v_{42}(r)
799   \\
800   % 4
801 < &+ \frac{1}{4\pi \epsilon_0}
801 > &+
802   \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
803   \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}}  \cdot \hat{r} \right) v_{43}(r).
804   \label{uquadquad}
805   \end{split}
806 < \end{equation}
806 > \end{align}
807 > %
808 > Note that the energies of multipoles on site $\mathbf{b}$ interacting
809 > with those on site $\mathbf{a}$ can be obtained by swapping indices
810 > along with the sign of the intersite vector, $\hat{r}$.
811  
536
812   %
813   %
814   % TABLE of radial functions  ----------------------------------------------------------------------------------------------------------------
815   %
816  
817 < \begin{table*}
818 < \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations.  Functions
819 < used in this table are defined in Appendices B and C.}
820 < \begin{ruledtabular}
821 < \begin{tabular}{cccc}
822 < Generic&Coulomb&Method 1&Method 2
817 > \begin{sidewaystable}
818 >  \caption{\label{tab:tableenergy}Radial functions used in the energy
819 >    and torque equations.  The $f, g, h, s, t, \mathrm{and} u$
820 >    functions used in this table are defined in Appendices B and C.}
821 > \begin{tabular}{|c|c|l|l|} \hline
822 > Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
823   \\ \hline
824   %
825   %
# Line 576 | Line 851 | -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
851   $\frac{3}{r^3}  $ &
852   $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
853   $\left(-\frac{g(r)}{r}+h(r) \right)
854 < -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
855 < &&&$  -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
854 > -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$  \\
855 > &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
856   \\
857   %
858   %
# Line 588 | Line 863 | -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right
863   $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
864   $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
865   -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
866 < &&&$  -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
866 > &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
867   \\
868   %
869   $v_{32}(r)$ &
# Line 596 | Line 871 | - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} +
871   $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
872   $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
873   - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
874 < &&&$  -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
874 > &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
875   \\
876   %
877   %
# Line 607 | Line 882 | - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2}
882   $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $  &
883   $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
884   - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
885 < &&&$  -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
885 > &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
886   \\
887   % 2
888   $v_{42}(r)$ &
# Line 615 | Line 890 | -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+
890   $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
891   $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
892   -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
893 < &&&$  -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
893 > &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
894   -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
895   \\
896   % 3
# Line 623 | Line 898 | $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s
898   $ \frac{105}{r^5}  $ &
899   $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
900   $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
901 < &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
902 < &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
903 < -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
901 > &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
902 > &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
903 > -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
904   \end{tabular}
905 < \end{ruledtabular}
631 < \end{table*}
905 > \end{sidewaystable}
906   %
907   %
908   % FORCE  TABLE of radial functions  ----------------------------------------------------------------------------------------------------------------
909   %
910  
911 < \begin{table}
911 > \begin{sidewaystable}
912   \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
913 < \begin{ruledtabular}
914 < \begin{tabular}{cc}
641 < Generic&Method 1 or Method 2
913 > \begin{tabular}{|c|c|l|l|} \hline
914 > Function&Definition&Taylor-Shifted&Gradient-Shifted
915   \\ \hline
916   %
917   %
918   %
919   $w_a(r)$&
920 < $\frac{d v_{01}}{dr}$ \\
920 > $\frac{d v_{01}}{dr}$&
921 > $g_0(r)$&
922 > $g(r)-g(r_c)$ \\
923   %
924   %
925   $w_b(r)$ &
926 < $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
926 > $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
927 > $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
928 > $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
929   %
930   $w_c(r)$ &
931 < $\frac{v_{11}(r)}{r}$ \\
931 > $\frac{v_{11}(r)}{r}$ &
932 > $\frac{g_1(r)}{r} $ &
933 > $\frac{v_{11}(r)}{r}$\\
934   %
935   %
936   $w_d(r)$&
937 < $\frac{d v_{21}}{dr}$ \\
937 > $\frac{d v_{21}}{dr}$&
938 > $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
939 > $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
940 > -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
941   %
942   $w_e(r)$ &
943 + $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
944 + $\frac{v_{22}(r)}{r}$ &
945   $\frac{v_{22}(r)}{r}$ \\
946   %
947   %
948   $w_f(r)$&
949 < $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
949 > $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
950 > $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
951 >  $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $  \\
952 >  &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
953 >     \right)-\frac{2v_{22}(r)}{r}$\\
954   %
955   $w_g(r)$&
956 + $\frac{v_{31}(r)}{r}$&
957 + $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
958   $\frac{v_{31}(r)}{r}$\\
959   %
960   $w_h(r)$ &
961 < $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
961 > $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
962 > $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
963 > $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
964 > &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
965   % 2
966   $w_i(r)$ &
967 < $\frac{v_{32}(r)}{r}$ \\
967 > $\frac{v_{32}(r)}{r}$ &
968 > $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
969 > $\frac{v_{32}(r)}{r}$\\
970   %
971   $w_j(r)$ &
972 < $\frac{d v_{32}}{dr}  - \frac{3v_{32}}{r}$ \\
972 > $\frac{d v_{32}}{dr}  - \frac{3v_{32}}{r}$&
973 > $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right)  $ &
974 > $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
975 > &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
976 >  -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
977   %
978   $w_k(r)$ &
979 < $\frac{d v_{41}}{dr} $  \\
979 > $\frac{d v_{41}}{dr} $ &
980 > $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
981 > $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}  \right)
982 > -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2}  \right)$ \\
983   %
984   $w_l(r)$ &
985 < $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
985 > $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
986 > $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
987 > $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
988 > &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
989 > -\frac{2v_{42}(r)}{r}$\\
990   %
991   $w_m(r)$ &
992 < $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
992 > $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
993 > $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
994 > $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
995 > &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
996 > +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
997 > &&& $~~~-\frac{4v_{43}(r)}{r}$  \\
998   %
999   $w_n(r)$ &
1000 < $\frac{v_{42}(r)}{r}$ \\
1000 > $\frac{v_{42}(r)}{r}$ &
1001 > $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
1002 > $\frac{v_{42}(r)}{r}$\\
1003   %
1004   $w_o(r)$ &
1005 < $\frac{v_{43}(r)}{r}$ \\
1005 > $\frac{v_{43}(r)}{r}$&
1006 > $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1007 > $\frac{v_{43}(r)}{r}$  \\ \hline
1008   %
1009  
1010   \end{tabular}
1011 < \end{ruledtabular}
697 < \end{table}
1011 > \end{sidewaystable}
1012   %
1013   %
1014   %
1015  
1016   \subsection{Forces}
1017 <
1018 < The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
1019 < the force  $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$.  For a simple charge-charge
1020 < interaction, these forces will point along the $\pm \hat{r}$ directions, where
1021 < $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $.  Thus
1017 > The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1018 > $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1019 > a simple charge-charge interaction, these forces will point along the
1020 > $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1021 > \mathbf{r}_a $.  Thus
1022   %
1023   \begin{equation}
1024   F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
# Line 712 | Line 1026 | The concept of obtaining a force from an energy by tak
1026   = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r}  .
1027   \end{equation}
1028   %
1029 < The concept of obtaining a force from an energy by taking a gradient is the same for
1030 < higher-order multipole interactions, the trick is to make sure that all
1031 < $r$-dependent derivatives are considered.
718 < As is pointed out by Allen and Germano, this is straightforward if the
719 < interaction energies are written recognizing explicit
720 < $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
1029 > We list below the force equations written in terms of lab-frame
1030 > coordinates.  The radial functions used in the two methods are listed
1031 > in Table \ref{tab:tableFORCE}
1032   %
1033 < \begin{equation}
723 < U(r,\{\hat{a}_m \cdot \hat{r} \},
724 < \{\hat{b}_n\cdot \hat{r} \}
725 < \{\hat{a}_m \cdot \hat{b}_n \}) .
726 < \label{ugeneral}
727 < \end{equation}
1033 > %SPACE COORDINATES FORCE EQUATIONS
1034   %
729 Then,
730 %
731 \begin{equation}
732 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} =  \frac{\partial U}{\partial \mathbf{r}}
733 = \frac{\partial U}{\partial r} \hat{r}
734 + \sum_m \left[
735 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
736 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
737 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
738 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
739 \right] \label{forceequation}.
740 \end{equation}
741 %
742 Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
743 that of Allen and Germano.  In simplifying the algebra, we also use:
744 %
745 \begin{eqnarray}
746 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
747 = \frac{1}{r} \left(  \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
748 \right) \\
749 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
750 = \frac{1}{r} \left(  \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
751 \right) .
752 \end{eqnarray}
753 %
754 We list below the force equations written in terms  of space coordinates.  The
755 radial functions used in the two methods are listed in Table II.
756 %
757 %SPACE COORDINATES FORCE EQUTIONS
758 %
1035   % **************************************************************************
1036   % f ca cb
1037   %
1038 < \begin{equation}
1039 < \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1040 < \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  w_a(r) \hat{r}
765 < \end{equation}
1038 > \begin{align}
1039 > \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1040 > C_{\bf a} C_{\bf b}  w_a(r) \hat{r} \\
1041   %
1042   %
1043   %
1044 < \begin{equation}
1045 < \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
771 < \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
1044 > \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1045 > C_{\bf a} \Bigl[
1046   \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1047   w_b(r) \hat{r}  
1048 < + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
775 < \end{equation}
1048 > + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1049   %
1050   %
1051   %
1052 < \begin{equation}
1053 < \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
781 < \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
1052 > \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1053 > C_{\bf a } \Bigr[
1054   \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1055   + 2  \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1056 < + \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1057 < \end{equation}
1056 > + \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1057 > \right) w_f(r) \hat{r} \Bigr] \\
1058   %
1059   %
1060   %
1061 < \begin{equation}
1062 < \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1063 < -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
1064 < \left( \hat{r} \cdot  \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1065 < + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1066 < \end{equation}
1061 > % \begin{equation}
1062 > % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1063 > % -C_{\bf{b}} \Bigl[
1064 > % \left( \hat{r} \cdot  \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1065 > % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1066 > % \end{equation}
1067   %
1068   %
1069   %
1070 < \begin{equation}
1071 < \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
800 < \frac{1}{4\pi \epsilon_0} \Bigl[
1070 > \begin{split}
1071 > \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1072   - \mathbf{D}_{\mathbf {a}} \cdot  \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1073   + \left( \mathbf{D}_{\mathbf {a}}
1074   \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1075 < + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}}  \cdot \hat{r} \right) \right) w_e(r)
1075 > + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}}  \cdot \hat{r} \right) \right) w_e(r)\\
1076   % 2
1077 < - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1078 < \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
1079 < \end{equation}
1077 > & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1078 > \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1079 > \end{split}\\
1080   %
1081   %
1082   %
812 \begin{equation}
1083   \begin{split}
1084 < \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
815 < & - \frac{1}{4\pi \epsilon_0} \Bigl[
1084 > \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1085   \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1086   +2 \mathbf{D}_{\mathbf{a}} \cdot
1087   \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1088 < - \frac{1}{4\pi \epsilon_0} \Bigl[
1088 > - \Bigl[
1089   \text{Tr}\mathbf{Q}_{\mathbf{b}}
1090   \left( \hat{r} \cdot  \mathbf{D}_{\mathbf{a}} \right)
1091   +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1092   \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r}  \\
1093   % 3
1094 < & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}}  (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1094 > & - \Bigl[\mathbf{ D}_{\mathbf{a}}  (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1095   +2  (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} )  \Bigr]
1096   w_i(r)
1097   % 4
1098 < -\frac{1}{4\pi \epsilon_0}
1098 > -
1099   (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1100 < (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}  
832 < \end{split}
833 < \end{equation}
1100 > (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1101   %
1102   %
1103 < \begin{equation}
1104 < \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1105 < \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1106 < \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1107 < + 2  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1108 < + \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1109 < \end{equation}
1103 > % \begin{equation}
1104 > % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1105 > % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1106 > % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1107 > % + 2  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1108 > %  + \left( \hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1109 > % \end{equation}
1110 > % %
1111 > % \begin{equation}
1112 > % \begin{split}
1113 > % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1114 > % &\frac{1}{4\pi \epsilon_0} \Bigl[
1115 > % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1116 > % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}}  \Bigr] w_g(r)
1117 > % % 2
1118 > % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1119 > % (\hat{r} \cdot  \mathbf{D}_{\mathbf{b}})
1120 > % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1121 > % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r}  \\
1122 > % % 3
1123 > % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1124 > % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1125 > % +2  (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1126 > % (\hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} ) \Bigr]   w_i(r)
1127 > % % 4
1128 > % +\frac{1}{4\pi \epsilon_0}
1129 > % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1130 > % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}  \cdot \hat{r}) w_j(r) \hat{r}
1131 > % \end{split}
1132 > % \end{equation}
1133   %
844 \begin{equation}
845 \begin{split}
846 \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
847 &\frac{1}{4\pi \epsilon_0} \Bigl[
848 \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
849 +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}}  \Bigr] w_g(r)
850 % 2
851 + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
852 (\hat{r} \cdot  \mathbf{D}_{\mathbf{b}})
853 +2 (\mathbf{D}_{\mathbf{b}} \cdot
854 \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r}  \\
855 % 3
856 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
857 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
858 +2  (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
859 (\hat{r} \cdot  \mathbf{Q}_{{\mathbf a}} ) \Bigr]   w_i(r)
860 % 4
861 +\frac{1}{4\pi \epsilon_0}
862 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
863 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}  \cdot \hat{r}) w_j(r) \hat{r}
864 \end{split}
865 \end{equation}
1134   %
1135   %
868 %
869 \begin{equation}
1136   \begin{split}
1137 < \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1138 < +\frac{1}{4\pi \epsilon_0} \Bigl[
1139 < \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1140 < + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot  \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1137 > \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1138 > \Bigl[
1139 > \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1140 > + 2  \mathbf{Q}_{\mathbf{a}} :  \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1141   % 2
1142 < +\frac{1}{4\pi \epsilon_0} \Bigl[
1142 > &+ \Bigl[
1143   2\text{Tr}\mathbf{Q}_{\mathbf{b}}  (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )  
1144   + 2\text{Tr}\mathbf{Q}_{\mathbf{a}}  (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1145   % 3
1146   +4 (\mathbf{Q}_{\mathbf{a}}  \cdot  \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})  
1147   +  4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1148   % 4
1149 < + \frac{1}{4\pi \epsilon_0} \Bigl[
1149 > &+  \Bigl[
1150   \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1151   + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1152   (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}}  \cdot \hat{r})  
# Line 888 | Line 1154 | + \frac{1}{4\pi \epsilon_0} \Bigl[
1154   +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot  
1155   \mathbf{Q}_{\mathbf{b}}   \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1156   %
1157 < + \frac{1}{4\pi \epsilon_0} \Bigl[
1157 > &+ \Bigl[
1158   + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1159   (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1160   %6
1161   +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1162   (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1163   %  7
1164 < + \frac{1}{4\pi \epsilon_0}
1164 > &+
1165   (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}}  \cdot \hat{r})
1166 < (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1167 < \end{split}
1168 < \end{equation}
1166 > (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1167 > \end{align}
1168 > Note that the forces for higher multipoles on site $\mathbf{a}$
1169 > interacting with those of lower order on site $\mathbf{b}$ can be
1170 > obtained by swapping indices in the expressions above.
1171 >
1172   %
1173 + % Torques SECTION -----------------------------------------------------------------------------------------
1174   %
905 % TORQUES SECTION -----------------------------------------------------------------------------------------
906 %
1175   \subsection{Torques}
1176  
909 Following again Allen and Germano, when energies are written in the form
910 of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1177   %
1178 < \begin{eqnarray}
1179 < \mathbf{\tau}_{\bf a} =
914 < \sum_m
915 < \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
916 < ( \hat{r} \times \hat{a}_m )
917 < -\sum_{mn}
918 < \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
919 < (\hat{a}_m \times \hat{b}_n) \\
1178 > The torques for both the Taylor-Shifted as well as Gradient-Shifted
1179 > methods are given in space-frame coordinates:
1180   %
921 \mathbf{\tau}_{\bf b} =
922 \sum_m
923 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
924 ( \hat{r} \times \hat{b}_m)
925 +\sum_{mn}
926 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
927 (\hat{a}_m \times \hat{b}_n) .
928 \end{eqnarray}
1181   %
1182 + \begin{align}
1183 + \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1184 + C_{\bf a}  (\hat{r} \times  \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1185   %
931 Here we list the torque equations written in terms of space coordinates.
1186   %
1187   %
1188 + \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1189 + 2C_{\bf a}
1190 + \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1191   %
935 \begin{equation}
936 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
937 \frac{C_{\bf a}}{4\pi \epsilon_0}  (\hat{r} \times  \mathbf{D}_{\mathbf{b}}) v_{11}(r)
938 \end{equation}
1192   %
1193   %
1194 + % \begin{equation}
1195 + % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =  
1196 + % -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1197 + % (\hat{r} \times \mathbf{D}_{\mathbf{a}})  v_{11}(r)
1198 + % \end{equation}
1199   %
942 \begin{equation}
943 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
944 \frac{2C_{\bf a}}{4\pi \epsilon_0}
945 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
946 \end{equation}
1200   %
1201   %
1202 < %
1203 < \begin{equation}
951 < \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =  
952 < -\frac{C_{\bf b}}{4\pi \epsilon_0}  
953 < (\hat{r} \times \mathbf{D}_{\mathbf{a}})  v_{11}(r)
954 < \end{equation}
955 < %
956 < %
957 < %
958 < \begin{equation}
959 < \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
960 < \frac{1}{4\pi \epsilon_0}  \mathbf{D}_{\mathbf {a}}  \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1202 > \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1203 > \mathbf{D}_{\mathbf {a}}  \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1204   % 2
1205 < -\frac{1}{4\pi \epsilon_0}
1205 > -
1206   (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1207 < (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} )  v_{22}(r)
965 < \end{equation}
1207 > (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} )  v_{22}(r)\\
1208   %
1209   %
1210   %
1211 < \begin{equation}
1212 < \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1213 < -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1214 < % 2
1215 < +\frac{1}{4\pi \epsilon_0}
1216 < (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1217 < (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1218 < \end{equation}
1211 > % \begin{equation}
1212 > % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1213 > % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1214 > % % 2
1215 > % +\frac{1}{4\pi \epsilon_0}
1216 > % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1217 > % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1218 > % \end{equation}
1219   %
1220   %
1221   %
1222 < \begin{equation}
1223 < \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
982 < \frac{1}{4\pi \epsilon_0} \Bigl[
1222 > \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1223 > \Bigl[
1224   -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1225   (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1226   +2 \mathbf{D}_{\mathbf{a}}  \times
1227   (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1228   \Bigr] v_{31}(r)
1229   % 3
1230 < -\frac{1}{4\pi \epsilon_0}
1231 < \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
991 < (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
992 < \end{equation}
1230 > - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1231 > (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1232   %
1233   %
1234   %
1235 < \begin{equation}
1236 < \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
998 < \frac{1}{4\pi \epsilon_0} \Bigl[
1235 > \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1236 > \Bigl[
1237   +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1238   \hat{r}
1239   -2 \mathbf{D}_{\mathbf{a}}  \times
1240   (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1241   \Bigr] v_{31}(r)
1242   % 2
1243 < +\frac{2}{4\pi \epsilon_0}
1243 > +
1244   (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1245 < (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1008 < \end{equation}
1245 > (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1246   %
1247   %
1248   %
1249 < \begin{equation}
1250 < \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1251 < \frac{1}{4\pi \epsilon_0} \Bigl[
1252 < -2 (\mathbf{D}_{\mathbf{b}}  \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1253 < +2 \mathbf{D}_{\mathbf{b}}  \times
1254 < (\mathbf{Q}_{\mathbf{a}}  \cdot \hat{r})
1255 < \Bigr] v_{31}(r)
1256 < % 3
1257 < - \frac{2}{4\pi \epsilon_0}
1258 < (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1259 < (\hat{r} \cdot  \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1260 < \end{equation}
1249 > % \begin{equation}
1250 > % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1251 > % \frac{1}{4\pi \epsilon_0} \Bigl[
1252 > % -2 (\mathbf{D}_{\mathbf{b}}  \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1253 > % +2 \mathbf{D}_{\mathbf{b}}  \times
1254 > % (\mathbf{Q}_{\mathbf{a}}  \cdot \hat{r})
1255 > % \Bigr] v_{31}(r)
1256 > % % 3
1257 > % - \frac{2}{4\pi \epsilon_0}
1258 > % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1259 > % (\hat{r} \cdot  \mathbf
1260 > % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1261 > % \end{equation}
1262   %
1263   %
1264   %
1265 < \begin{equation}
1266 < \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1267 < \frac{1}{4\pi \epsilon_0} \Bigl[
1268 < \text{Tr}\mathbf{Q}_{\mathbf{a}}
1269 < (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1270 < +2 \mathbf{D}_{\mathbf{b}}  \times
1271 < ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1272 < % 2
1273 < +\frac{1}{4\pi \epsilon_0}
1274 < (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1275 < (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1276 < \end{equation}
1265 > % \begin{equation}
1266 > % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1267 > % \frac{1}{4\pi \epsilon_0} \Bigl[
1268 > % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1269 > % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1270 > % +2 \mathbf{D}_{\mathbf{b}}  \times
1271 > % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1272 > % % 2
1273 > % +\frac{1}{4\pi \epsilon_0}
1274 > % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1275 > % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1276 > % \end{equation}
1277   %
1278   %
1279   %
1042 \begin{equation}
1280   \begin{split}
1281 < \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1282 < &-\frac{4}{4\pi \epsilon_0}
1281 > \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1282 > -4
1283   \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1284   v_{41}(r) \\
1285   % 2
1286 < &+ \frac{1}{4\pi \epsilon_0}
1286 > &+
1287   \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1288   (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1289   +4 \hat{r} \times
# Line 1055 | Line 1292 | -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1292   -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1293   ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1294   % 4
1295 < &+ \frac{2}{4\pi \epsilon_0}
1295 > &+ 2
1296   \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1297 < (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1061 < \end{split}
1062 < \end{equation}
1297 > (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1298   %
1299   %
1300   %
1066 \begin{equation}
1301   \begin{split}
1302   \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =  
1303 < &\frac{4}{4\pi \epsilon_0}
1303 > &4
1304   \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1305   % 2
1306 < &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1306 > &+  \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1307   (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1308   -4  (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1309   \mathbf{Q}_{{\mathbf b}} ) \times
# Line 1078 | Line 1312 | +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1312   ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1313   \Bigr] v_{42}(r) \\
1314   % 4
1315 < &+ \frac{2}{4\pi \epsilon_0}
1315 > &+2
1316   (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1317 < \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1318 < \end{split}
1085 < \end{equation}
1317 > \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1318 > \end{align}
1319   %
1320 < %
1321 < %
1320 > Here, we have defined the matrix cross product in an identical form
1321 > as in Ref. \onlinecite{Smith98}:
1322 > \begin{equation}
1323 > \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1324 > \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1325 >  -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1326 > \right]
1327 > \end{equation}
1328 > where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1329 > permuations of the matrix indices.
1330 >
1331 > All of the radial functions required for torques are identical with
1332 > the radial functions previously computed for the interaction energies.
1333 > These are tabulated for both shifted force methods in table
1334 > \ref{tab:tableenergy}.  The torques for higher multipoles on site
1335 > $\mathbf{a}$ interacting with those of lower order on site
1336 > $\mathbf{b}$ can be obtained by swapping indices in the expressions
1337 > above.
1338 >
1339 > \section{Related real-space methods}
1340 > One can also formulate a shifted potential,
1341 > \begin{equation}
1342 > U^{\text{SP}} = U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) -
1343 > U(\mathbf{r}_c, \hat{\mathbf{a}}, \hat{\mathbf{b}}),
1344 > \label{eq:SP}
1345 > \end{equation}
1346 > obtained by projecting the image multipole onto the surface of the
1347 > cutoff sphere.  The shifted potential (SP) can be thought of as a
1348 > simple extension to the original Wolf method.  The energies and
1349 > torques for the SP can be easily obtained by zeroing out the $(r-r_c)$
1350 > terms in the final column of table \ref{tab:tableenergy}.  SP forces
1351 > (which retain discontinuities at the cutoff sphere) can be obtained by
1352 > eliminating all functions that depend on $r_c$ in the last column of
1353 > table \ref{tab:tableFORCE}.  The self-energy contributions to the SP
1354 > potential are identical to both the GSF and TSF methods.
1355 >
1356 > \section{Comparison to known multipolar energies}
1357 >
1358 > To understand how these new real-space multipole methods behave in
1359 > computer simulations, it is vital to test against established methods
1360 > for computing electrostatic interactions in periodic systems, and to
1361 > evaluate the size and sources of any errors that arise from the
1362 > real-space cutoffs. In this paper we test both TSF and GSF
1363 > electrostatics against analytical methods for computing the energies
1364 > of ordered multipolar arrays.  In the following paper, we test the new
1365 > methods against the multipolar Ewald sum for computing the energies,
1366 > forces and torques for a wide range of typical condensed-phase
1367 > (disordered) systems.
1368 >
1369 > Because long-range electrostatic effects can be significant in
1370 > crystalline materials, ordered multipolar arrays present one of the
1371 > biggest challenges for real-space cutoff methods.  The dipolar
1372 > analogues to the Madelung constants were first worked out by Sauer,
1373 > who computed the energies of ordered dipole arrays of zero
1374 > magnetization and obtained a number of these constants.\cite{Sauer}
1375 > This theory was developed more completely by Luttinger and
1376 > Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1377 > and other periodic structures.  
1378 >
1379 > To test the new electrostatic methods, we have constructed very large,
1380 > $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1381 > Ref. \onlinecite{LT}.  These structures include ``A'' lattices with
1382 > nearest neighbor chains of antiparallel dipoles, as well as ``B''
1383 > lattices with nearest neighbor strings of antiparallel dipoles if the
1384 > dipoles are contained in a plane perpendicular to the dipole direction
1385 > that passes through the dipole.  We have also studied the minimum
1386 > energy structure for the BCC lattice that was found by Luttinger \&
1387 > Tisza.  The total electrostatic energy for any of the arrays is given
1388 > by:
1389 > \begin{equation}
1390 >  E = C N^2 \mu^2
1391 > \end{equation}
1392 > where $C$ is the energy constant (equivalent to the Madelung
1393 > constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1394 > the strength of the dipole. Energy constants (converged to 1 part in
1395 > $10^9$) are given in the supplemental information.
1396 >
1397 > For the purposes of testing the energy expressions and the
1398 > self-neutralization schemes, the primary quantity of interest is the
1399 > analytic energy constant for the perfect arrays.  Convergence to these
1400 > constants are shown as a function of both the cutoff radius, $r_c$,
1401 > and the damping parameter, $\alpha$ in Figs.
1402 > \ref{fig:energyConstVsCutoff} and XXX. We have simultaneously tested a
1403 > hard cutoff (where the kernel is simply truncated at the cutoff
1404 > radius), as well as a shifted potential (SP) form which includes a
1405 > potential-shifting and self-interaction term, but does not shift the
1406 > forces and torques smoothly at the cutoff radius.  The SP method is
1407 > essentially an extension of the original Wolf method for multipoles.
1408 >
1409 > \begin{figure}[!htbp]
1410 > \includegraphics[width=4.5in]{energyConstVsCutoff}
1411 > \caption{Convergence to the analytic energy constants as a function of
1412 >  cutoff radius (normalized by the lattice constant) for the different
1413 >  real-space methods. The two crystals shown here are the ``B'' array
1414 >  for bcc crystals with the dipoles along the 001 direction (upper),
1415 >  as well as the minimum energy bcc lattice (lower).  The analytic
1416 >  energy constants are shown as a grey dashed line.  The left panel
1417 >  shows results for the undamped kernel ($1/r$), while the damped
1418 >  error function kernel, $B_0(r)$ was used in the right panel. }
1419 > \label{fig:energyConstVsCutoff}
1420 > \end{figure}
1421 >
1422 > The Hard cutoff exhibits oscillations around the analytic energy
1423 > constants, and converges to incorrect energies when the complementary
1424 > error function damping kernel is used.  The shifted potential (SP) and
1425 > gradient-shifted force (GSF) approximations converge to the correct
1426 > energy smoothly by $r_c / 6 a$ even for the undamped case.  This
1427 > indicates that the correction provided by the self term is required
1428 > for obtaining accurate energies.  The Taylor-shifted force (TSF)
1429 > approximation appears to perturb the potential too much inside the
1430 > cutoff region to provide accurate measures of the energy constants.
1431 >
1432 > {\it Quadrupolar} analogues to the Madelung constants were first
1433 > worked out by Nagai and Nakamura who computed the energies of selected
1434 > quadrupole arrays based on extensions to the Luttinger and Tisza
1435 > approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1436 > energy constants for the lowest energy configurations for linear
1437 > quadrupoles.  
1438 >
1439 > In analogy to the dipolar arrays, the total electrostatic energy for
1440 > the quadrupolar arrays is:
1441 > \begin{equation}
1442 > E = C \frac{3}{4} N^2 Q^2
1443 > \end{equation}
1444 > where $Q$ is the quadrupole moment.  The lowest energy
1445 >
1446 > \section{Conclusion}
1447 > We have presented two efficient real-space methods for computing the
1448 > interactions between point multipoles.  These methods have the benefit
1449 > of smoothly truncating the energies, forces, and torques at the cutoff
1450 > radius, making them attractive for both molecular dynamics (MD) and
1451 > Monte Carlo (MC) simulations.  We find that the Gradient-Shifted Force
1452 > (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1453 > correct lattice energies for ordered dipolar and quadrupolar arrays,
1454 > while the Taylor-Shifted Force (TSF) is too severe an approximation to
1455 > provide accurate convergence to lattice energies.  
1456 >
1457 > In most cases, GSF can obtain nearly quantitative agreement with the
1458 > lattice energy constants with reasonably small cutoff radii.  The only
1459 > exception we have observed is for crystals which exhibit a bulk
1460 > macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1461 > In this particular case, the multipole neutralization scheme can
1462 > interfere with the correct computation of the energies.  We note that
1463 > the energies for these arrangements are typically much larger than for
1464 > crystals with net-zero moments, so this is not expected to be an issue
1465 > in most simulations.
1466 >
1467 > In large systems, these new methods can be made to scale approximately
1468 > linearly with system size, and detailed comparisons with the Ewald sum
1469 > for a wide range of chemical environments follows in the second paper.
1470 >
1471   \begin{acknowledgments}
1472 < We wish to acknowledge the support of the author community in using
1473 < REV\TeX{}, offering suggestions and encouragement, testing new versions,
1474 < \dots.
1472 >  JDG acknowledges helpful discussions with Christopher
1473 >  Fennell. Support for this project was provided by the National
1474 >  Science Foundation under grant CHE-0848243. Computational time was
1475 >  provided by the Center for Research Computing (CRC) at the
1476 >  University of Notre Dame.
1477   \end{acknowledgments}
1478  
1479 + \newpage
1480   \appendix
1481  
1482 < \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1483 <
1484 < The following summarizes Smith's $B_l(r)$ functions and
1485 < includes formulas given in his appendix.  
1486 <
1102 < The first function $B_0(r)$ is defined by
1482 > \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1483 > \label{SmithFunc}
1484 > The following summarizes Smith's $B_l(r)$ functions and includes
1485 > formulas given in his appendix.\cite{Smith98} The first function
1486 > $B_0(r)$ is defined by
1487   %
1488   \begin{equation}
1489   B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
# Line 1113 | Line 1497 | and can be rewritten in terms of a function $B_1(r)$:
1497   -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1498   \end{equation}
1499   %
1500 < and can be rewritten in terms of a function $B_1(r)$:
1500 > which can be used to define a function $B_1(r)$:
1501   %
1502   \begin{equation}
1503   B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1504   \end{equation}
1505   %
1506 < In general,
1506 > In general, the recurrence relation,
1507   \begin{equation}
1508   B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1509   = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1510   \text{e}^{-{\alpha}^2r^2}
1511 < \right] .
1511 > \right] ,
1512   \end{equation}
1513 + is very useful for building up higher derivatives.  Using these
1514 + formulas, we find:
1515   %
1516 < Using these formulas, we find
1516 > \begin{align}
1517 > \frac{dB_0}{dr}=&-rB_1(r) \\
1518 > \frac{d^2B_0}{dr^2}=&    - B_1(r) + r^2 B_2(r) \\
1519 > \frac{d^3B_0}{dr^3}=&   3 r B_2(r) - r^3 B_3(r) \\
1520 > \frac{d^4B_0}{dr^4}=&   3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1521 > \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1522 > \end{align}
1523   %
1524 < \begin{eqnarray}
1525 < \frac{dB_0}{dr}=-rB_1(r) \\
1134 < \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1135 < \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1136 < \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1137 < \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1138 < \end{eqnarray}
1524 > As noted by Smith, it is possible to approximate the $B_l(r)$
1525 > functions,
1526   %
1140 As noted by Smith,
1141 %
1527   \begin{equation}
1528   B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1529   +\text{O}(r) .
1530   \end{equation}
1531 + \newpage
1532 + \section{The $r$-dependent factors for TSF electrostatics}
1533  
1147 \section{Method 1, the $r$-dependent factors}
1148
1534   Using the shifted damped functions $f_n(r)$ defined by:
1535   %
1536   \begin{equation}
1537 < f_n(r)= B_0 \Big \lvert  _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert  _{r_c}  ,
1537 > f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c)  ,
1538   \end{equation}
1539   %
1540 < we first provide formulas for successive derivatives of this function.  (If there is
1541 < no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.)  First, we find:
1540 > where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1541 > this Appendix, we provide formulas for successive derivatives of this
1542 > function.  (If there is no damping, then $B_0(r)$ is replaced by
1543 > $1/r$.)  First, we find:
1544   %
1545   \begin{equation}
1546   \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1547   \end{equation}
1548   %
1549 < This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1550 < define higher-order derivatives as  follows:
1549 > This formula clearly brings in derivatives of Smith's $B_0(r)$
1550 > function, and we define higher-order derivatives as follows:
1551   %
1552 < \begin{eqnarray}
1553 < g_n(r)= \frac{d f_n}{d r} =
1554 < B_0^{(1)} \Big \lvert  _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert  _{r_c} \\
1555 < h_n(r)= \frac{d^2f_n}{d r^2} =
1556 < B_0^{(2)} \Big \lvert  _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert  _{r_c} \\
1557 < s_n(r)= \frac{d^3f_n}{d r^3} =
1558 < B_0^{(3)} \Big \lvert  _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert  _{r_c} \\
1559 < t_n(r)= \frac{d^4f_n}{d r^4} =
1560 < B_0^{(4)} \Big \lvert  _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert  _{r_c} \\
1561 < u_n(r)= \frac{d^5f_n}{d r^5} =
1562 < B_0^{(5)} \Big \lvert  _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert  _{r_c}  .
1563 < \end{eqnarray}
1552 > \begin{align}
1553 > g_n(r)=& \frac{d f_n}{d r} =
1554 > B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1555 > h_n(r)=& \frac{d^2f_n}{d r^2} =
1556 > B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1557 > s_n(r)=& \frac{d^3f_n}{d r^3} =
1558 > B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1559 > t_n(r)=& \frac{d^4f_n}{d r^4} =
1560 > B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1561 > u_n(r)=& \frac{d^5f_n}{d r^5} =
1562 > B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c)  .
1563 > \end{align}
1564   %
1565 < We note that the last function needed (for quadrupole-quadrupole) is
1565 > We note that the last function needed (for quadrupole-quadrupole interactions) is
1566   %
1567   \begin{equation}
1568 < u_4(r)=B_0^{(5)} \Big \lvert  _r - B_0^{(5)} \Big \lvert  _{r_c} .
1568 > u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1569   \end{equation}
1570 <
1571 < The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1572 < from $0$ to $r_c$.  The functions needed are listed schematically below:
1570 > % The functions
1571 > % needed are listed schematically below:
1572 > % %
1573 > % \begin{eqnarray}
1574 > % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1575 > % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1576 > % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1577 > % s_2 \quad s_3 \quad &s_4 \nonumber \\
1578 > % t_3 \quad &t_4 \nonumber \\
1579 > % &u_4 \nonumber .
1580 > % \end{eqnarray}
1581 > The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1582 > stored on a grid for values of $r$ from $0$ to $r_c$.  Using these
1583 > functions, we find
1584   %
1585 < \begin{eqnarray}
1586 < f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1587 < g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1588 < h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1589 < s_2 \quad s_3 \quad &s_4 \nonumber \\
1192 < t_3 \quad &t_4 \nonumber \\
1193 < &u_4 \nonumber .
1194 < \end{eqnarray}
1195 <
1196 < Using these functions, we find
1197 < %
1198 < \begin{equation}
1199 < \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1200 < \end{equation}
1201 < %
1202 < \begin{equation}
1203 < \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1204 < +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1205 < \end{equation}
1206 < %
1207 < \begin{equation}
1208 < \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1585 > \begin{align}
1586 > \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1587 > \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1588 > +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1589 > \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1590   \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1591   \delta_{ \beta \gamma} r_\alpha \right)  
1592 < \left(  -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1593 < + r_\alpha r_\beta r_\gamma
1594 < \left(  \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1595 < \end{equation}
1596 < %
1216 < \begin{eqnarray}
1217 < \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1592 > \left(  -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1593 > & + r_\alpha r_\beta r_\gamma
1594 > \left(  \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1595 > \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1596 >  r_\gamma \partial r_\delta} =&
1597   \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1598   + \delta_{\alpha \gamma} \delta_{\beta \delta}
1599   +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1600   \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right)  \nonumber \\
1601 < + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1602 < + \text{5 perm}
1601 > &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1602 > + \text{5 permutations}
1603   \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1604   \right) \nonumber \\
1605 < + r_\alpha r_\beta r_\gamma r_\delta
1605 > &+ r_\alpha r_\beta r_\gamma r_\delta
1606   \left(  -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1607 < + \frac{t_n}{r^4} \right)
1229 < \end{eqnarray}
1230 < %
1231 < \begin{eqnarray}
1607 > + \frac{t_n}{r^4} \right)\\
1608   \frac{\partial^5 f_n}
1609 < {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1609 > {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1610 >  r_\delta \partial r_\epsilon} =&
1611   \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1612 < + \text{14 perm} \right)
1612 > + \text{14 permutations} \right)
1613   \left(  \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1614 < + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1615 < + \text{9 perm}
1614 > &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1615 > + \text{9 permutations}
1616   \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1617   \right) \nonumber \\
1618 < + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1618 > &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1619   \left(  \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1620 < - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1621 < \end{eqnarray}
1620 > - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1621 > \end{align}
1622   %
1623   %
1624   %
1625 < \section{Method 2, the $r$-dependent factors}
1625 > \newpage
1626 > \section{The $r$-dependent factors for GSF electrostatics}
1627  
1628 < In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1629 < see Eq. (20?).  For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1630 < of the kernel $B_0(r)$.  To denote these terms, we generalize the notation of the previous appendix.
1631 < For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1628 > In Gradient-shifted force electrostatics, the kernel is not expanded,
1629 > rather the individual terms in the multipole interaction energies.
1630 > For damped charges , this still brings into the algebra multiple
1631 > derivatives of the Smith's $B_0(r)$ function.  To denote these terms,
1632 > we generalize the notation of the previous appendix.  For either
1633 > $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1634   %
1635 < \begin{eqnarray}
1636 < g(r)= \frac{df}{d r}\\
1637 < h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1638 < s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1639 < t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1640 < u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1641 < \end{eqnarray}
1635 > \begin{align}
1636 > g(r)=& \frac{df}{d r}\\
1637 > h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1638 > s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1639 > t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1640 > u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1641 > \end{align}
1642   %
1643 < For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.''  Checks of algebra can be made by using limiting forms
1644 < of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$.  Equations (B9) to B(13)
1645 < are correct for method 2 if one just eliminates the subscript $n$.
1643 > For undamped charges Table I lists these derivatives under the column
1644 > ``Bare Coulomb.''  Equations \ref{eq:b9} to \ref{eq:b13} are still
1645 > correct for GSF electrostatics if the subscript $n$ is eliminated.
1646  
1647 < \section{Extra Material}
1268 < %
1269 < %
1270 < %Energy in body coordinate form ---------------------------------------------------------------
1271 < %
1272 < Here are the interaction energies written in terms of the body coordinates:
1647 > \newpage
1648  
1649 < %
1275 < % u ca cb
1276 < %
1277 < \begin{equation}
1278 < U_{C_{\bf a}C_{\bf b}}(r)=
1279 < \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  v_{01}(r)
1280 < \end{equation}
1281 < %
1282 < % u ca db
1283 < %
1284 < \begin{equation}
1285 < U_{C_{\bf a}D_{\bf b}}(r)=
1286 < \frac{C_{\bf a}}{4\pi \epsilon_0}
1287 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \,  v_{11}(r)
1288 < \end{equation}
1289 < %
1290 < % u ca qb
1291 < %
1292 < \begin{equation}
1293 < U_{C_{\bf a}Q_{\bf b}}(r)=
1294 < \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}  
1295 < v_{21}(r) \nonumber \\
1296 < +\frac{C_{\bf a}}{4\pi \epsilon_0}
1297 < \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1298 < v_{22}(r)
1299 < \end{equation}
1300 < %
1301 < % u da cb
1302 < %
1303 < \begin{equation}
1304 < U_{D_{\bf a}C_{\bf b}}(r)=
1305 < -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1306 < \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \,  v_{11}(r)
1307 < \end{equation}
1308 < %
1309 < % u da db
1310 < %
1311 < \begin{equation}
1312 < \begin{split}
1313 < % 1
1314 < U_{D_{\bf a}D_{\bf b}}(r)&=
1315 < -\frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
1316 < (\hat{a}_m \cdot   \hat{b}_n)
1317 < D_{\mathbf{b}n} v_{21}(r) \\
1318 < % 2
1319 < &-\frac{1}{4\pi \epsilon_0}
1320 < \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1321 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1322 < v_{22}(r)
1323 < \end{split}
1324 < \end{equation}
1325 < %
1326 < % u da qb
1327 < %
1328 < \begin{equation}
1329 < \begin{split}
1330 < % 1
1331 < U_{D_{\bf a}Q_{\bf b}}(r)&=
1332 < -\frac{1}{4\pi \epsilon_0} \left(
1333 < \text{Tr}Q_{\mathbf{b}}
1334 < \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1335 < +2\sum_{lmn}D_{\mathbf{a}l}
1336 < (\hat{a}_l \cdot \hat{b}_m)
1337 < Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1338 < \right)  v_{31}(r) \\
1339 < % 2
1340 < &-\frac{1}{4\pi \epsilon_0}
1341 < \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1342 < \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1343 < Q_{{\mathbf b}mn}
1344 < (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1345 < \end{split}
1346 < \end{equation}
1347 < %
1348 < % u qa cb
1349 < %
1350 < \begin{equation}
1351 < U_{Q_{\bf a}C_{\bf b}}(r)=
1352 < \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0}  v_{21}(r)
1353 < +\frac{C_{\bf b}}{4\pi \epsilon_0}
1354 < \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1355 < \end{equation}
1356 < %
1357 < % u qa db
1358 < %
1359 < \begin{equation}
1360 < \begin{split}
1361 < %1
1362 < U_{Q_{\bf a}D_{\bf b}}(r)&=
1363 < \frac{1}{4\pi \epsilon_0} \left(
1364 < \text{Tr}Q_{\mathbf{a}}
1365 < \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1366 < +2\sum_{lmn}D_{\mathbf{b}l}
1367 < (\hat{b}_l \cdot \hat{a}_m)
1368 < Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1369 < \right) v_{31}(r)  \\
1370 < % 2
1371 < &+\frac{1}{4\pi \epsilon_0}
1372 < \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1373 < \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1374 < Q_{{\mathbf a}mn}
1375 < (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1376 < \end{split}
1377 < \end{equation}
1378 < %
1379 < % u qa qb
1380 < %
1381 < \begin{equation}
1382 < \begin{split}
1383 < %1
1384 < U_{Q_{\bf a}Q_{\bf b}}(r)&=
1385 < \frac{1}{4\pi \epsilon_0} \Bigl[
1386 < \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1387 < +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1388 < Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1389 < (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1390 < v_{41}(r) \\
1391 < % 2
1392 < &+ \frac{1}{4\pi \epsilon_0}
1393 < \Bigl[ \text{Tr}Q_{\mathbf{a}}
1394 < \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1395 < Q_{{\mathbf b}lm}
1396 < (\hat{b}_m \cdot \hat{r})
1397 < +\text{Tr}Q_{\mathbf{b}}
1398 < \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1399 < Q_{{\mathbf a}lm}
1400 < (\hat{a}_m \cdot \hat{r}) \\
1401 < % 3
1402 < &+4 \sum_{lmnp}
1403 < (\hat{r} \cdot \hat{a}_l )
1404 < Q_{{\mathbf a}lm}
1405 < (\hat{a}_m \cdot \hat{b}_n)
1406 < Q_{{\mathbf b}np}
1407 < (\hat{b}_p \cdot \hat{r})
1408 < \Bigr] v_{42}(r)  \\
1409 < % 4
1410 < &+ \frac{1}{4\pi \epsilon_0}
1411 < \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1412 < Q_{{\mathbf a}lm}
1413 < (\hat{a}_m \cdot \hat{r})
1414 < \sum_{np}  (\hat{r} \cdot \hat{b}_n)
1415 < Q_{{\mathbf b}np}
1416 < (\hat{b}_p \cdot \hat{r})  v_{43}(r).
1417 < \end{split}
1418 < \end{equation}
1419 < %
1649 > \bibliography{multipole}
1650  
1421
1422 % BODY coordinates force equations --------------------------------------------
1423 %
1424 %
1425 Here are the force equations written in terms of body coordinates.
1426 %
1427 % f ca cb
1428 %
1429 \begin{equation}
1430 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1431 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0}  w_a(r) \hat{r}
1432 \end{equation}
1433 %
1434 % f ca db
1435 %
1436 \begin{equation}
1437 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1438 \frac{C_{\bf a}}{4\pi \epsilon_0}  
1439 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1440 +\frac{C_{\bf a}}{4\pi \epsilon_0}  
1441 \sum_n  D_{\mathbf{b}n} \hat{b}_n w_c(r)
1442 \end{equation}
1443 %
1444 % f ca qb
1445 %
1446 \begin{equation}
1447 \begin{split}
1448 % 1
1449 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1450 \frac{1}{4\pi \epsilon_0}  
1451 C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1452 + 2C_{\bf a } \sum_l  \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1453 % 2
1454 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1455 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1456 \end{split}
1457 \end{equation}
1458 %
1459 % f da cb
1460 %
1461 \begin{equation}
1462 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1463 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1464 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r)  \hat{r}
1465 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1466 \sum_n  D_{\mathbf{a}n} \hat{a}_n w_c(r)
1467 \end{equation}
1468 %
1469 % f da db
1470 %
1471 \begin{equation}
1472 \begin{split}
1473 % 1
1474 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1475 -\frac{1}{4\pi \epsilon_0}
1476 \sum_{mn} D_{\mathbf {a}m}
1477 (\hat{a}_m \cdot   \hat{b}_n)
1478 D_{\mathbf{b}n}  w_d(r) \hat{r}
1479 -\frac{1}{4\pi \epsilon_0}
1480 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1481 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1482 % 2
1483 & \quad + \frac{1}{4\pi \epsilon_0}
1484 \Bigl[ \sum_m D_{\mathbf {a}m}
1485 \hat{a}_m \sum_n D_{\mathbf{b}n}
1486 (\hat{b}_n \cdot \hat{r})
1487 + \sum_m D_{\mathbf {b}m}
1488 \hat{b}_m \sum_n D_{\mathbf{a}n}
1489 (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r)  \\
1490 \end{split}
1491 \end{equation}
1492 %
1493 % f da qb
1494 %
1495 \begin{equation}
1496 \begin{split}
1497 % 1
1498 &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1499 - \frac{1}{4\pi \epsilon_0} \Bigl[
1500 \text{Tr}Q_{\mathbf{b}}
1501 \sum_l  D_{\mathbf{a}l} \hat{a}_l
1502 +2\sum_{lmn} D_{\mathbf{a}l}
1503 (\hat{a}_l \cdot \hat{b}_m)
1504 Q_{\mathbf{b}mn} \hat{b}_n  \Bigr] w_g(r) \\
1505 % 3
1506 &  - \frac{1}{4\pi \epsilon_0} \Bigl[
1507 \text{Tr}Q_{\mathbf{b}}
1508 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1509 +2\sum_{lmn}D_{\mathbf{a}l}
1510 (\hat{a}_l \cdot \hat{b}_m)
1511 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1512 % 4
1513 &+ \frac{1}{4\pi \epsilon_0}
1514 \Bigl[\sum_l  D_{\mathbf{a}l} \hat{a}_l
1515 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1516 Q_{{\mathbf b}mn}
1517 (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1518 D_{\mathbf{a}l}
1519 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1520 Q_{{\mathbf b}mn} \hat{b}_n \Bigr]   w_i(r)\\
1521 % 6
1522 &  -\frac{1}{4\pi \epsilon_0}
1523 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1524 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1525 Q_{{\mathbf b}mn}
1526 (\hat{b}_n \cdot \hat{r})  w_j(r)  \hat{r}
1527 \end{split}
1528 \end{equation}
1529 %
1530 % force qa cb
1531 %
1532 \begin{equation}
1533 \begin{split}
1534 % 1
1535 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1536 \frac{1}{4\pi \epsilon_0}  
1537 C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1538 + \frac{2C_{\bf b }}{4\pi \epsilon_0}  \sum_l  \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1539 % 2
1540 &  +\frac{C_{\bf b}}{4\pi \epsilon_0}
1541 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1542 \end{split}
1543 \end{equation}
1544 %
1545 % f qa db
1546 %
1547 \begin{equation}
1548 \begin{split}
1549 % 1
1550 &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1551 \frac{1}{4\pi \epsilon_0} \Bigl[
1552 \text{Tr}Q_{\mathbf{a}}
1553 \sum_l  D_{\mathbf{b}l} \hat{b}_l
1554 +2\sum_{lmn} D_{\mathbf{b}l}
1555 (\hat{b}_l \cdot \hat{a}_m)
1556 Q_{\mathbf{a}mn} \hat{a}_n  \Bigr]
1557 w_g(r)\\
1558 % 3
1559 &  + \frac{1}{4\pi \epsilon_0} \Bigl[
1560 \text{Tr}Q_{\mathbf{a}}
1561 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1562 +2\sum_{lmn}D_{\mathbf{b}l}
1563 (\hat{b}_l \cdot \hat{a}_m)
1564 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1565 % 4
1566 &  + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l  D_{\mathbf{b}l} \hat{b}_l
1567 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1568 Q_{{\mathbf a}mn}
1569 (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1570 D_{\mathbf{b}l}
1571 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1572 Q_{{\mathbf a}mn} \hat{a}_n \Bigr]   w_i(r) \\
1573 % 6
1574 &  +\frac{1}{4\pi \epsilon_0}
1575 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1576 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1577 Q_{{\mathbf a}mn}
1578 (\hat{a}_n \cdot \hat{r})  w_j(r)  \hat{r}
1579 \end{split}
1580 \end{equation}
1581 %
1582 % f qa qb
1583 %
1584 \begin{equation}
1585 \begin{split}
1586 &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1587 \frac{1}{4\pi \epsilon_0} \Bigl[
1588 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1589 + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1590 Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1591 (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1592 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1593 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm}  \hat{a}_m  
1594 + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm}  \hat{b}_m \\
1595 &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})  
1596 + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1597 \Bigr] w_n(r) \\
1598 &+ \frac{1}{4\pi \epsilon_0}
1599 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1600 \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1601 + \text{Tr}Q_{\mathbf{b}}
1602 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm}  (\hat{a}_m \cdot \hat{r}) \\
1603 &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1604 Q_{\mathbf{b}np}  (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1605 %
1606 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1607 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1608 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1609 &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1610 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1611 &  + \frac{1}{4\pi \epsilon_0}
1612 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1613 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1614 \end{split}
1615 \end{equation}
1616 %
1617 Here we list the form of the non-zero damped shifted multipole torques showing
1618 explicitly dependences on body axes:
1619 %
1620 %  t ca db
1621 %
1622 \begin{equation}
1623 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1624 \frac{C_{\bf a}}{4\pi \epsilon_0}  
1625 \sum_n  (\hat{r} \times \hat{b}_n)  D_{\mathbf{b}n} \,  v_{11}(r)
1626 \end{equation}
1627 %
1628 % t ca qb
1629 %
1630 \begin{equation}
1631 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1632 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1633 \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1634 \end{equation}
1635 %
1636 %  t da cb
1637 %
1638 \begin{equation}
1639 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1640 -\frac{C_{\bf b}}{4\pi \epsilon_0}  
1641 \sum_n  (\hat{r} \times \hat{a}_n)  D_{\mathbf{a}n} \,  v_{11}(r)
1642 \end{equation}%
1643 %
1644 %
1645 %  ta da db
1646 %
1647 \begin{equation}
1648 \begin{split}
1649 % 1
1650 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1651 \frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
1652 (\hat{a}_m \times  \hat{b}_n)
1653 D_{\mathbf{b}n} v_{21}(r) \\
1654 % 2
1655 &-\frac{1}{4\pi \epsilon_0}
1656 \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1657 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1658 \end{split}
1659 \end{equation}
1660 %
1661 %  tb da db
1662 %
1663 \begin{equation}
1664 \begin{split}
1665 % 1
1666 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1667 -\frac{1}{4\pi \epsilon_0}  \sum_{mn} D_{\mathbf {a}m}
1668 (\hat{a}_m \times  \hat{b}_n)
1669 D_{\mathbf{b}n} v_{21}(r) \\
1670 % 2
1671 &+\frac{1}{4\pi \epsilon_0}
1672 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1673 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1674 \end{split}
1675 \end{equation}
1676 %
1677 % ta da qb
1678 %
1679 \begin{equation}
1680 \begin{split}
1681 % 1
1682 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1683 \frac{1}{4\pi \epsilon_0} \left(
1684 -\text{Tr}Q_{\mathbf{b}}
1685 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1686 +2\sum_{lmn}D_{\mathbf{a}l}
1687 (\hat{a}_l \times \hat{b}_m)
1688 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1689 \right) v_{31}(r)\\
1690 % 2
1691 &-\frac{1}{4\pi \epsilon_0}
1692 \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
1693 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1694 Q_{{\mathbf b}mn}
1695 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1696 \end{split}
1697 \end{equation}
1698 %
1699 % tb da qb
1700 %
1701 \begin{equation}
1702 \begin{split}
1703 % 1
1704 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
1705 \frac{1}{4\pi \epsilon_0} \left(
1706 -2\sum_{lmn}D_{\mathbf{a}l}
1707 (\hat{a}_l \cdot \hat{b}_m)
1708 Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
1709 -2\sum_{lmn}D_{\mathbf{a}l}
1710 (\hat{a}_l \times \hat{b}_m)
1711 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1712 \right) v_{31}(r) \\
1713 % 2
1714 &-\frac{2}{4\pi \epsilon_0}
1715 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1716 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1717 Q_{{\mathbf b}mn}
1718 (\hat{r}\times \hat{b}_n) v_{32}(r)
1719 \end{split}
1720 \end{equation}
1721 %
1722 % ta qa cb
1723 %
1724 \begin{equation}
1725 \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1726 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1727 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
1728 \end{equation}
1729 %
1730 % ta qa db
1731 %
1732 \begin{equation}
1733 \begin{split}
1734 % 1
1735 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
1736 \frac{1}{4\pi \epsilon_0} \left(
1737 2\sum_{lmn}D_{\mathbf{b}l}
1738 (\hat{b}_l \cdot \hat{a}_m)
1739 Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
1740 +2\sum_{lmn}D_{\mathbf{b}l}
1741 (\hat{a}_l \times \hat{b}_m)
1742 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1743 \right) v_{31}(r) \\
1744 % 2
1745 &+\frac{2}{4\pi \epsilon_0}
1746 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1747 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1748 Q_{{\mathbf a}mn}
1749 (\hat{r}\times \hat{a}_n) v_{32}(r)
1750 \end{split}
1751 \end{equation}
1752 %
1753 % tb qa db
1754 %
1755 \begin{equation}
1756 \begin{split}
1757 % 1
1758 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
1759 \frac{1}{4\pi \epsilon_0} \left(
1760 \text{Tr}Q_{\mathbf{a}}
1761 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
1762 +2\sum_{lmn}D_{\mathbf{b}l}
1763 (\hat{a}_l \times \hat{b}_m)
1764 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1765 \right) v_{31}(r)\\
1766 % 2
1767 &\frac{1}{4\pi \epsilon_0}
1768 \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
1769 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1770 Q_{{\mathbf a}mn}
1771 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1772 \end{split}
1773 \end{equation}
1774 %
1775 % ta qa qb
1776 %
1777 \begin{equation}
1778 \begin{split}
1779 % 1
1780 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
1781 -\frac{4}{4\pi \epsilon_0}
1782 \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
1783 Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1784 (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
1785 % 2
1786 &+ \frac{1}{4\pi \epsilon_0}
1787 \Bigl[
1788 2\text{Tr}Q_{\mathbf{b}}
1789 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1790 Q_{{\mathbf a}lm}
1791 (\hat{r} \times \hat{a}_m)
1792 +4 \sum_{lmnp}
1793 (\hat{r} \times \hat{a}_l )
1794 Q_{{\mathbf a}lm}
1795 (\hat{a}_m \cdot \hat{b}_n)
1796 Q_{{\mathbf b}np}
1797 (\hat{b}_p \cdot \hat{r}) \\
1798 % 3
1799 &-4 \sum_{lmnp}
1800 (\hat{r} \cdot \hat{a}_l )
1801 Q_{{\mathbf a}lm}
1802 (\hat{a}_m \times \hat{b}_n)
1803 Q_{{\mathbf b}np}
1804 (\hat{b}_p \cdot \hat{r})
1805 \Bigr] v_{42}(r) \\
1806 % 4
1807 &+ \frac{2}{4\pi \epsilon_0}
1808 \sum_{lm} (\hat{r} \times \hat{a}_l)
1809 Q_{{\mathbf a}lm}
1810 (\hat{a}_m \cdot \hat{r})
1811 \sum_{np}  (\hat{r} \cdot \hat{b}_n)
1812 Q_{{\mathbf b}np}
1813 (\hat{b}_p \cdot \hat{r})  v_{43}(r)\\
1814 \end{split}
1815 \end{equation}
1816 %
1817 % tb qa qb
1818 %
1819 \begin{equation}
1820 \begin{split}
1821 % 1
1822 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
1823 \frac{4}{4\pi \epsilon_0}
1824 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1825 Q_{\mathbf{a}lm}  Q_{\mathbf{b}np}
1826 (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
1827 % 2
1828 &+ \frac{1}{4\pi \epsilon_0}
1829 \Bigl[
1830 2\text{Tr}Q_{\mathbf{a}}
1831 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1832 Q_{{\mathbf b}lm}
1833 (\hat{r} \times \hat{b}_m)
1834 +4 \sum_{lmnp}
1835 (\hat{r} \cdot \hat{a}_l )
1836 Q_{{\mathbf a}lm}
1837 (\hat{a}_m \cdot \hat{b}_n)
1838 Q_{{\mathbf b}np}
1839 (\hat{r} \times \hat{b}_p) \\
1840 % 3
1841 &+4 \sum_{lmnp}
1842 (\hat{r} \cdot \hat{a}_l )
1843 Q_{{\mathbf a}lm}
1844 (\hat{a}_m \times \hat{b}_n)
1845 Q_{{\mathbf b}np}
1846 (\hat{b}_p \cdot \hat{r})
1847 \Bigr] v_{42}(r)  \\
1848 % 4
1849 &+ \frac{2}{4\pi \epsilon_0}
1850 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1851 Q_{{\mathbf a}lm}
1852 (\hat{a}_m \cdot \hat{r})
1853 \sum_{np}  (\hat{r} \times \hat{b}_n)
1854 Q_{{\mathbf b}np}
1855 (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
1856 \end{split}
1857 \end{equation}
1858 %
1859 \begin{table*}
1860 \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
1861 \begin{ruledtabular}
1862 \begin{tabular}{ccc}
1863 Generic&Method 1&Method 2
1864 \\ \hline
1865 %
1866 %
1867 %
1868 $w_a(r)$&
1869 $g_0(r)$&
1870 $g(r)-g(r_c)$ \\
1871 %
1872 %
1873 $w_b(r)$ &
1874 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
1875 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
1876 %
1877 $w_c(r)$ &
1878 $\frac{g_1(r)}{r} $ &
1879 $\frac{v_{11}(r)}{r}$ \\
1880 %
1881 %
1882 $w_d(r)$&
1883 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
1884 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
1885 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
1886 %
1887 $w_e(r)$ &
1888 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
1889 $\frac{v_{22}(r)}{r}$ \\
1890 %
1891 %
1892 $w_f(r)$&
1893 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
1894 $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
1895 &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
1896 %
1897 $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
1898 $\frac{v_{31}(r)}{r}$\\
1899 %
1900 $w_h(r)$ &
1901 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
1902 $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
1903 &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1904 &&$-\frac{v_{31}(r)}{r}$\\
1905 % 2
1906 $w_i(r)$ &
1907 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
1908 $\frac{v_{32}(r)}{r}$ \\
1909 %
1910 $w_j(r)$ &
1911 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right)  $ &
1912 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $  \\
1913 &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
1914 %
1915 $w_k(r)$ &
1916 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
1917 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}  \right)$  \\
1918 &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2}  \right)$ \\
1919 %
1920 $w_l(r)$ &
1921 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1922 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
1923 &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
1924 -\frac{2v_{42}(r)}{r}$ \\
1925 %
1926 $w_m(r)$ &
1927 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
1928 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
1929 &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
1930 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
1931 &&$-\frac{4v_{43}(r)}{r}$ \\
1932 %
1933 $w_n(r)$ &
1934 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
1935 $\frac{v_{42}(r)}{r}$ \\
1936 %
1937 $w_o(r)$ &
1938 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1939 $\frac{v_{43}(r)}{r}$ \\
1940 %
1941 \end{tabular}
1942 \end{ruledtabular}
1943 \end{table*}
1651   \end{document}
1652   %
1653   % ****** End of file multipole.tex ******

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines