ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
(Generate patch)

Comparing trunk/multipole/multipole1.tex (file contents):
Revision 4177 by gezelter, Mon Jun 9 14:23:48 2014 UTC vs.
Revision 4179 by gezelter, Wed Jun 11 19:46:13 2014 UTC

# Line 65 | Line 65 | of Notre Dame, Notre Dame, IN 46556}
65  
66   \begin{abstract}
67    We have extended the original damped-shifted force (DSF)
68 <  electrostatic kernel and have been able to derive two new
68 >  electrostatic kernel and have been able to derive three new
69    electrostatic potentials for higher-order multipoles that are based
70 <  on truncated Taylor expansions around the cutoff radius.  For
71 <  multipole-multipole interactions, we find that each of the distinct
72 <  orientational contributions has a separate radial function to ensure
73 <  that the overall forces and torques vanish at the cutoff radius. In
74 <  this paper, we present energy, force, and torque expressions for the
75 <  new models, and compare these real-space interaction models to exact
76 <  results for ordered arrays of multipoles.
70 >  on truncated Taylor expansions around the cutoff radius.  These
71 >  include a shifted potential (SP) that generalizes the Wolf method
72 >  for point multipoles, and Taylor-shifted force (TSF) and
73 >  gradient-shifted force (GSF) potentials that are both
74 >  generalizations of DSF electrostatics for multipoles. We find that
75 >  each of the distinct orientational contributions requires a separate
76 >  radial function to ensure that pairwise energies, forces and torques
77 >  all vanish at the cutoff radius. In this paper, we present energy,
78 >  force, and torque expressions for the new models, and compare these
79 >  real-space interaction models to exact results for ordered arrays of
80 >  multipoles.  We find that the GSF and SP methods converge rapidly to
81 >  the correct lattice energies for ordered dipolar and quadrupolar
82 >  arrays, while the Taylor-Shifted Force (TSF) is too severe an
83 >  approximation to provide accurate convergence to lattice energies.
84 >  Because real-space methods can be made to scale linearly with system
85 >  size, the SP and GSF are attractive options for large Monte Carlo
86 >  and molecular dynamics simulations.
87   \end{abstract}
88  
89   %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
# Line 292 | Line 302 | $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf
302   section \ref{sec:damped}.
303  
304   It is convenient to locate charges $q_j$ relative to the center of mass of  $\bf b$.  Then with $\bf{r}$ pointing from
305 < $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
305 > $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $), the interaction energy is given by
306   \begin{equation}
307   U_{\bf{ab}}(r)
308   = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
# Line 310 | Line 320 | of $\bf a$ interacting with the same multipoles on $\b
320   \end{equation}
321   This form has the benefit of separating out the energies of
322   interaction into contributions from the charge, dipole, and quadrupole
323 < of $\bf a$ interacting with the same multipoles on $\bf b$.
323 > of $\bf a$ interacting with the same multipoles in $\bf b$.
324  
325   \subsection{Damped Coulomb interactions}
326   \label{sec:damped}
# Line 329 | Line 339 | functions $B_l(r)$ are summarized in Appendix A.  (N.B
339   either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
340   bare or damped Coulomb kernels (or any other function) as long as
341   derivatives of these functions are known.  Smith's convenient
342 < functions $B_l(r)$ are summarized in Appendix A.  (N.B. there is one
343 < important distinction between the two kernels, which is the behavior
344 < of $\nabla^2 \frac{1}{r}$ compared with $\nabla^2 B_0(r)$.  The former
345 < is zero everywhere except for a delta function evaluated at the
346 < origin.  The latter also has delta function behavior, but is non-zero
347 < for $r \neq 0$.  Thus the standard justification for using a traceless
342 > functions $B_l(r)$, which are used for derivatives of the damped
343 > kernel, are summarized in Appendix A.  (N.B. there is one important
344 > distinction between the two kernels, which is the behavior of
345 > $\nabla^2 \frac{1}{r}$ compared with $\nabla^2 B_0(r)$.  The former is
346 > zero everywhere except for a delta function evaluated at the origin.
347 > The latter also has delta function behavior, but is non-zero for $r
348 > \neq 0$.  Thus the standard justification for using a traceless
349   quadrupole tensor fails for the damped case.)
350  
351   The main goal of this work is to smoothly cut off the interaction
# Line 493 | Line 504 | the radial factors differ between the two methods.
504   approaches below -- for each separate orientational contribution, only
505   the radial factors differ between the two methods.
506  
507 + \subsection{Generalization of the Wolf shifted potential (SP)}
508 + It is also possible to formulate an extension of the Wolf approach for
509 + multipoles by simply projecting the image multipole onto the surface
510 + of the cutoff sphere, and including the interactions with the central
511 + multipole and the image.  This effectively shifts the pair potential
512 + to zero at the cutoff radius,
513 + \begin{equation}
514 + U^{\text{SP}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
515 + U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) \right]
516 + \label{eq:SP}
517 + \end{equation}
518 + independent of the orientations of the two multipoles.  The sum again
519 + describes separate potential shifting that is applied to each
520 + orientational contribution to the energy.
521 +
522 + The shifted potential (SP) method is a simple truncation of the GSF
523 + method for each orientational contribution, leaving out the $(r-r_c)$
524 + terms that multiply the gradient. Functional forms for the
525 + shifted-potential (SP) method can also be summarized using the form of
526 + Eq.~(\ref{eq:generic}).  The energy, force, and torque expressions are
527 + tabulated below for all three methods. As in the GSF and TSF methods,
528 + for each separate orientational contribution, only the radial factors
529 + differ between the SP, GSF, and TSF methods.
530 +
531 +
532   \subsection{\label{sec:level2}Body and space axes}
533   Although objects $\bf a$ and $\bf b$ rotate during a molecular
534   dynamics (MD) simulation, their multipole tensors remain fixed in
# Line 501 | Line 537 | In a typical simulation , the initial axes are obtaine
537   in intermediate forms involving the vectors of the rotation matrices.
538   We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
539   $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
540 < In a typical simulation , the initial axes are obtained by
540 > In a typical simulation, the initial axes are obtained by
541   diagonalizing the moment of inertia tensors for the objects.  (N.B.,
542   the body axes are generally {\it not} the same as those for which the
543   quadrupole moment is diagonal.)  The rotation matrices are then
# Line 573 | Line 609 | Note that our definition of $\mathbf{r}=\mathbf{r}_b -
609   (\hat{a}_m \times \hat{b}_n) .
610   \end{eqnarray}
611  
612 < Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
612 > Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $
613   is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
614   We also made use of the identities,
615   %
# Line 583 | Line 619 | We also made use of the identities,
619   \right) \\
620   \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
621   =& \frac{1}{r} \left(  \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
622 < \right) .
622 > \right).
623   \end{align}
624  
625   Many of the multipole contractions required can be written in one of
# Line 595 | Line 631 | dipole-dipole contraction:
631   \begin{equation}
632   \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
633   = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
634 < \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
634 > \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}.
635   \end{equation}
636   %
637   The first two forms are written using space coordinates.  The first
# Line 626 | Line 662 | U_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C
662   the cutoff sphere.  For a system of undamped charges, the total
663   self-term is
664   \begin{equation}
665 < U_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
665 > U_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}.
666   \label{eq:selfTerm}
667   \end{equation}
668  
# Line 659 | Line 695 | obtained by Smith and Aguado and Madden for the applic
695   cutoff sphere, and averaging over the surface of the cutoff sphere.
696   Because the self term is carried out as a single sum over sites, the
697   reciprocal-space portion is identical to half of the self-term
698 < obtained by Smith and Aguado and Madden for the application of the
699 < Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
700 < site which posesses a charge, dipole, and quadrupole, both types of
701 < contribution are given in table \ref{tab:tableSelf}.
698 > obtained by Smith, and also by Aguado and Madden for the application
699 > of the Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a
700 > given site which posesses a charge, dipole, and quadrupole, both types
701 > of contribution are given in table \ref{tab:tableSelf}.
702  
703   \begin{table*}
704    \caption{\label{tab:tableSelf} Self-interaction contributions for
# Line 837 | Line 873 | along with the sign of the intersite vector, $\hat{r}$
873   \begin{sidewaystable}
874    \caption{\label{tab:tableenergy}Radial functions used in the energy
875      and torque equations.  The $f, g, h, s, t, \mathrm{and} u$
876 <    functions used in this table are defined in Appendices B and C.}
876 >    functions used in this table are defined in Appendices B and C.
877 >    Gradient shifted (GSF) functions are constructed using the shifted
878 >    potential (SP) functions.}
879   \begin{tabular}{|c|c|l|l|l|} \hline
880   Generic&Bare Coulomb&Taylor-Shifted (TSF)&Shifted Potential (SP)&Gradient-Shifted (GSF)
881   \\ \hline
# Line 868 | Line 906 | SP $-(r-r_c)
906   $-\frac{1}{r^3}  $ &
907   $\frac{g_2(r)}{r} $ &
908   $\frac{g(r)}{r}-\frac{g(r_c)}{r_c}$ &
909 < SP $-(r-r_c)
910 < \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
909 > SP $-(r-r_c) \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
910 > %
911 > %
912 > %
913   $v_{22}(r)$ &
914   $\frac{3}{r^3}  $ &
915   $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
916 < $\left(-\frac{g(r)}{r}+h(r) \right)$ & SP \\
917 < &&& $~~~-\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$  & $~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
916 > $\left(-\frac{g(r)}{r}+h(r) \right) -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$
917 > & SP $-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
918   %
919   %
920   %
# Line 882 | Line 922 | $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)$ & SP
922   $v_{31}(r)$ &
923   $\frac{3}{r^4}  $ &
924   $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
925 < $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)$ & SP \\
926 < &&& $-\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $ & $~~~-(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$  \\
925 > $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r}\right)-\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right)$
926 > & SP $-(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$  \\
927   %
928 + %
929 + %
930   $v_{32}(r)$ &
931   $-\frac{15}{r^4}  $ &
932   $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
933 < $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)$ &  SP \\
934 < &&& $~~~- \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c)
935 < \right)$ & $~~~-(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$ \\
933 > $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)$&
934 > SP $-(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}\right.$ \\
935 > &&& $~~~-\left(\frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c)\right)$ &
936 > $\phantom{SP-(r-r_c)}\left.-\frac{3s(r_c)}{r_c}+t(r_c) \right)$\\
937   %
938   %
939   %
# Line 898 | Line 941 | $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)$
941   $v_{41}(r)$ &
942   $\frac{3}{r^5} $ &
943   $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $  &
944 < $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)$ & SP \\
945 < &&& $~~~- \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$& $~~~-(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
944 > $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)- \left(-\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ &
945 > SP $-(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
946   \\
947   % 2
948   $v_{42}(r)$ &
949   $- \frac{15}{r^5}   $ &
950   $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
951 < $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r}
952 < \right)$ & SP \\
953 < &&& $~~~-\left( \frac{3g(r_c)}{r_c^3} -
954 <  \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ &  $~~~-(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
912 < -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$ \\
951 > $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)$ &
952 > SP$-(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}\right.$  \\
953 > &&& $~~~-\left( \frac{3g(r_c)}{r_c^3} -  \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ &
954 > $\phantom{SP-(r-r_c)}\left. -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$\\
955   % 3
956 + %
957 + %
958   $v_{43}(r)$ &
959   $ \frac{105}{r^5}  $ &
960   $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
961 < $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} +
962 <  t(r)\right)$ & SP $-(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}\right.$\\
963 < &&&
964 < $~~~-\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c}
921 <  + t(r_c)\right)$ & $~~~~~~~\left.+\frac{21s(r_c)}{r_c^2}
922 < -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
961 > $ \left(-\frac{15g(r)}{r^3} +\frac{15h(r)}{r^2}-\frac{6s(r)}{r}+t(r)\right) $ &
962 > SP $-(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}\right.$\\
963 > &&& $~~~-\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c}+ t(r_c)\right)$ &
964 > $\phantom{SP-(r-r_c)}\left.+\frac{21s(r_c)}{r_c^2}-\frac{6t(r_c)}{r_c}+u(r_c) \right)$\\
965   \hline
966   \end{tabular}
967   \end{sidewaystable}
# Line 929 | Line 971 | -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
971   %
972  
973   \begin{sidewaystable}
974 < \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
975 < \begin{tabular}{|c|c|l|l|} \hline
976 < Function&Definition&Taylor-Shifted&Gradient-Shifted
974 > \caption{\label{tab:tableFORCE}Radial functions used in the force
975 >  equations. Gradient shifted (GSF) functions are constructed using the shifted
976 >    potential (SP) functions.  Some of these functions are simple
977 >    modifications of the functions found in table \ref{tab:tableenergy}}
978 > \begin{tabular}{|c|c|l|l|l|} \hline
979 > Function&Definition&Taylor-Shifted (TSF)& Shifted Potential (SP)
980 > &Gradient-Shifted (GSF)
981   \\ \hline
982   %
983   %
# Line 939 | Line 985 | $g(r)-g(r_c)$ \\
985   $w_a(r)$&
986   $\frac{d v_{01}}{dr}$&
987   $g_0(r)$&
988 < $g(r)-g(r_c)$ \\
988 > $g(r)$&
989 > SP $-g(r_c)$ \\
990   %
991   %
992   $w_b(r)$ &
993   $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
994   $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
995 < $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
995 > $h(r) - \frac{v_{11}(r)}{r} $ &
996 > SP $- h(r_c)$ \\
997   %
998   $w_c(r)$ &
999   $\frac{v_{11}(r)}{r}$ &
1000   $\frac{g_1(r)}{r} $ &
1001 + $\frac{v_{11}(r)}{r}$&
1002   $\frac{v_{11}(r)}{r}$\\
1003   %
1004   %
1005   $w_d(r)$&
1006   $\frac{d v_{21}}{dr}$&
1007   $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
1008 < $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
1009 < -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
1008 > $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)$ &
1009 > SP $-\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
1010   %
1011   $w_e(r)$ &
1012   $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
1013   $\frac{v_{22}(r)}{r}$ &
1014 + $\frac{v_{22}(r)}{r}$ &
1015   $\frac{v_{22}(r)}{r}$ \\
1016   %
1017   %
1018   $w_f(r)$&
1019   $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
1020   $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
1021 <  $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $  \\
1022 <  &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
973 <     \right)-\frac{2v_{22}(r)}{r}$\\
1021 >  $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) -\frac{2v_{22}(r)}{r}$&
1022 > SP $- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
1023   %
1024   $w_g(r)$&
1025   $\frac{v_{31}(r)}{r}$&
1026   $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
1027 + $\frac{v_{31}(r)}{r}$&
1028   $\frac{v_{31}(r)}{r}$\\
1029   %
1030   $w_h(r)$ &
1031   $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
1032   $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
1033 < $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1034 < &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
1033 > $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) -\frac{v_{31}(r)}{r}$ &
1034 > SP $ - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1035   % 2
1036   $w_i(r)$ &
1037   $\frac{v_{32}(r)}{r}$ &
1038   $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $  &
1039 + $\frac{v_{32}(r)}{r}$&
1040   $\frac{v_{32}(r)}{r}$\\
1041   %
1042   $w_j(r)$ &
1043   $\frac{d v_{32}}{dr}  - \frac{3v_{32}}{r}$&
1044   $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right)  $ &
1045 < $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
1046 < &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
1047 <  -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
1045 > $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) -\frac{3v_{32}}{r}$ &
1046 > SP $-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
1047 >  -\frac{3s(r_c)}{r_c} +t(r_c) \right)$ \\
1048   %
1049   $w_k(r)$ &
1050   $\frac{d v_{41}}{dr} $ &
1051   $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
1052 < $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}  \right)
1053 < -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2}  \right)$ \\
1052 > $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}
1053 > \right)$ &
1054 > SP $-\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2}  \right)$ \\
1055   %
1056   $w_l(r)$ &
1057   $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
1058   $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1059 < $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
1060 < &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
1061 < -\frac{2v_{42}(r)}{r}$\\
1059 > $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2}
1060 >  +\frac{t(r)}{r} \right) -\frac{2v_{42}(r)}{r}$&
1061 > SP$-\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)$\\
1062   %
1063   $w_m(r)$ &
1064   $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
1065 < $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
1066 < $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
1067 < &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
1068 < +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
1069 < &&& $~~~-\frac{4v_{43}(r)}{r}$  \\
1065 > $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} \right.$ &
1066 > $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2}\right.$ &
1067 > SP $- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}\right.$ \\
1068 > && $~~~\left.+ \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$
1069 > & $~~~\left. -\frac{6t(r)}{r} +u(r) \right) -\frac{4v_{43}(r)}{r}$ &
1070 > $\phantom{SP-} \left.+\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
1071   %
1072   $w_n(r)$ &
1073   $\frac{v_{42}(r)}{r}$ &
1074   $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2}  \right)$ &
1075 + $\frac{v_{42}(r)}{r}$&
1076   $\frac{v_{42}(r)}{r}$\\
1077   %
1078   $w_o(r)$ &
1079   $\frac{v_{43}(r)}{r}$&
1080   $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1081 + $\frac{v_{43}(r)}{r}$&
1082   $\frac{v_{43}(r)}{r}$  \\ \hline
1083   %
1084  
# Line 1344 | Line 1399 | as in Ref. \onlinecite{Smith98}:
1399   \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1400    -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1401   \right]
1402 + \label{eq:matrixCross}
1403   \end{equation}
1404   where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1405   permuations of the matrix indices.
# Line 1355 | Line 1411 | above.
1411   $\mathbf{a}$ interacting with those of lower order on site
1412   $\mathbf{b}$ can be obtained by swapping indices in the expressions
1413   above.
1358
1359 \section{Related real-space methods}
1360 One can also formulate an extension of the Wolf approach for point
1361 multipoles by simply projecting the image multipole onto the surface
1362 of the cutoff sphere, and including the interactions with the central
1363 multipole and the image.  This effectively shifts the total potential
1364 to zero at the cutoff radius,
1365 \begin{equation}
1366 U^{\text{SP}} = \sum \left[ U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
1367 U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) \right]
1368 \label{eq:SP}
1369 \end{equation}
1370 where the sum describes separate potential shifting that is applied to
1371 each orientational contribution to the energy.
1372
1373 The energies and torques for the shifted potential (SP) can be easily
1374 obtained by zeroing out the $(r-r_c)$ terms in the final column of
1375 table \ref{tab:tableenergy}.  Forces for the SP method retain
1376 discontinuities at the cutoff sphere, and can be obtained by
1377 eliminating all functions that depend on $r_c$ in the last column of
1378 table \ref{tab:tableFORCE}.  The self-energy contributions for the SP
1379 potential are identical to both the GSF and TSF methods.
1414  
1415   \section{Comparison to known multipolar energies}
1416  
# Line 1409 | Line 1443 | Tisza.  The total electrostatic energy for any of the
1443   dipoles are contained in a plane perpendicular to the dipole direction
1444   that passes through the dipole.  We have also studied the minimum
1445   energy structure for the BCC lattice that was found by Luttinger \&
1446 < Tisza.  The total electrostatic energy for any of the arrays is given
1447 < by:
1446 > Tisza.  The total electrostatic energy density for any of the arrays
1447 > is given by:
1448   \begin{equation}
1449    E = C N^2 \mu^2
1450   \end{equation}
# Line 1456 | Line 1490 | error function damping kernel is used.  The shifted po
1490  
1491   The hard cutoff exhibits oscillations around the analytic energy
1492   constants, and converges to incorrect energies when the complementary
1493 < error function damping kernel is used.  The shifted potential (SP) and
1494 < gradient-shifted force (GSF) approximations converge to the correct
1495 < energy smoothly by $r_c = 6 a$ even for the undamped case.  This
1496 < indicates that the correction provided by the self term is required
1497 < for obtaining accurate energies.  The Taylor-shifted force (TSF)
1498 < approximation appears to perturb the potential too much inside the
1499 < cutoff region to provide accurate measures of the energy constants.
1493 > error function damping kernel is used.  The shifted potential (SP)
1494 > converges to the correct energy smoothly by $r_c = 4.5 a$ even for the
1495 > undamped case.  This indicates that the shifting and the correction
1496 > provided by the self term are  required for obtaining accurate energies.
1497 > The Taylor-shifted force (TSF) approximation appears to perturb the
1498 > potential too much inside the cutoff region to provide accurate
1499 > measures of the energy constants.  GSF is a compromise, converging to
1500 > the correct energies within $r_c = 6 a$.
1501  
1502   {\it Quadrupolar} analogues to the Madelung constants were first
1503   worked out by Nagai and Nakamura who computed the energies of selected
# Line 1487 | Line 1522 | energy constants for the lowest energy configurations
1522   constructed very large, $N=$ 8,000~(sc), 16,000~(bcc), and
1523   32,000~(fcc) arrays of linear quadrupoles in the orientations
1524   described in Ref. \onlinecite{Nagai01081960}.  We have compared the
1525 < energy constants for the lowest energy configurations for these linear
1526 < quadrupoles. Convergence to these constants are shown as a function
1527 < of both the cutoff radius, $r_c$, and the damping parameter, $\alpha$
1528 < in Figs.~\ref{fig:Quadrupoles_rCut} and \ref{fig:Quadrupoles_alpha}.
1525 > energy constants for these low-energy configurations for linear
1526 > quadrupoles. Convergence to these constants are shown as a function of
1527 > both the cutoff radius, $r_c$, and the damping parameter, $\alpha$ in
1528 > Figs.~\ref{fig:Quadrupoles_rCut} and \ref{fig:Quadrupoles_alpha}.
1529  
1530   \begin{figure}
1531   \includegraphics[width=\linewidth]{Quadrupoles_rcutConvergence.pdf}
# Line 1517 | Line 1552 | analytic energy constants.  The shifted potential (SP)
1552   \end{figure}
1553  
1554   Again, we find that the hard cutoff exhibits oscillations around the
1555 < analytic energy constants.  The shifted potential (SP) and
1556 < gradient-shifted force (GSF) approximations converge to the correct
1557 < energy smoothly by $r_c = 4 a$ even for the undamped case.  The
1558 < Taylor-shifted force (TSF) approximation again appears to perturb the
1559 < potential too much inside the cutoff region to provide accurate
1560 < measures of the energy constants.
1555 > analytic energy constants.  The shifted potential (SP) approximation
1556 > converges to the correct energy smoothly by $r_c = 3 a$ even for the
1557 > undamped case.  The Taylor-shifted force (TSF) approximation again
1558 > appears to perturb the potential too much inside the cutoff region to
1559 > provide accurate measures of the energy constants.  GSF again provides
1560 > a compromise between the two methods -- energies are converged by $r_c
1561 > = 4.5 a$, and the approximation is not as perturbative at short range
1562 > as TSF.
1563  
1564 + It is also useful to understand the convergence to the lattice energy
1565 + constants as a function of the reduced damping parameter ($\alpha^* =
1566 + \alpha a$) for the different real-space methods.
1567 + Figures. \ref{fig:Dipoles_alpha} and \ref{fig:Quadrupoles_alpha} show
1568 + this comparison for the dipolar and quadrupolar lattices,
1569 + respectively.  All of the methods (except for TSF) have excellent
1570 + behavior for the undamped or weakly-damped cases.  All of the methods
1571 + can be forced to converge by increasing the value of $\alpha$, which
1572 + effectively shortens the overall range of the potential, but which
1573 + equalizing the truncation effects on the different orientational
1574 + contributions.  In the second paper in the series, we discuss how
1575 + large values of $\alpha$ can perturb the force and torque vectors, but
1576 + both weakly-damped or over-damped electrostatics appear to generate
1577 + reasonable values for the total electrostatic energies under both the
1578 + SP and GSF approximations.
1579  
1580   \section{Conclusion}
1581   We have presented three efficient real-space methods for computing the
# Line 1546 | Line 1598 | In large systems, these new methods can be made to sca
1598   crystals with net-zero moments, so this is not expected to be an issue
1599   in most simulations.
1600  
1601 + The techniques used here to derive the force, torque and energy
1602 + expressions can be extended to higher order multipoles, although some
1603 + of the objects (e.g. the matrix cross product in
1604 + Eq. \ref{eq:matrixCross}) will need to be generalized for higher-rank
1605 + tensors.  We also note that the definitions of the multipoles used
1606 + here are in a primitive form, and these need some care when comparing
1607 + with experiment or other computational techniques.
1608 +
1609   In large systems, these new methods can be made to scale approximately
1610   linearly with system size, and detailed comparisons with the Ewald sum
1611   for a wide range of chemical environments follows in the second paper.
# Line 1709 | Line 1769 | For damped charges , this still brings into the algebr
1769  
1770   In Gradient-shifted force electrostatics, the kernel is not expanded,
1771   rather the individual terms in the multipole interaction energies.
1772 < For damped charges , this still brings into the algebra multiple
1772 > For damped charges, this still brings into the algebra multiple
1773   derivatives of the Smith's $B_0(r)$ function.  To denote these terms,
1774   we generalize the notation of the previous appendix.  For either
1775   $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1776   %
1777   \begin{align}
1778 < g(r)=& \frac{df}{d r}\\
1779 < h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1780 < s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1781 < t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1782 < u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1778 > g(r) &= \frac{df}{d r} &&                      &&=-\frac{1}{r^2}
1779 > &&\mathrm{or~~~} -rB_1(r) \\
1780 > h(r) &= \frac{dg}{d r} &&= \frac{d^2f}{d r^2} &&= \frac{2}{r^3} &&\mathrm{or~~~}-B_1(r) + r^2 B_2(r) \\
1781 > s(r) &= \frac{dh}{d r} &&= \frac{d^3f}{d r^3} &&=-\frac{6}{r^4}&&\mathrm{or~~~}3rB_2(r) - r^3 B_3(r)\\
1782 > t(r) &= \frac{ds}{d r} &&= \frac{d^4f}{d r^4} &&= \frac{24}{r^5} &&\mathrm{or~~~} 3
1783 > B_2(r) - 6r^2 B_3(r) + r^4 B_4(r) \\
1784 > u(r) &= \frac{dt}{d r} &&= \frac{d^5f}{d r^5} &&=-\frac{120}{r^6} &&\mathrm{or~~~} -15
1785 > r B_3(r) + 10 r^3B_4(r) -r^5B_5(r).
1786   \end{align}
1787   %
1788 < For undamped charges Table I lists these derivatives under the column
1789 < ``Bare Coulomb.''  Equations \ref{eq:b9} to \ref{eq:b13} are still
1788 > For undamped charges, Table I lists these derivatives under the Bare
1789 > Coulomb column. Equations \ref{eq:b9} to \ref{eq:b13} are still
1790   correct for GSF electrostatics if the subscript $n$ is eliminated.
1791  
1792   \newpage

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines