ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3906
Committed: Tue Jul 9 21:45:05 2013 UTC (10 years, 11 months ago) by gezelter
Content type: application/x-tex
Original Path: trunk/multipole/multipole3.tex
File size: 63023 byte(s)
Log Message:
first import

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,
24 jmp,
25 amsmath,amssymb,
26 preprint,%
27 % reprint,%
28 %author-year,%
29 %author-numerical,%
30 ]{revtex4-1}
31
32 \usepackage{graphicx}% Include figure files
33 \usepackage{dcolumn}% Align table columns on decimal point
34 \usepackage{bm}% bold math
35 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
36 %\linenumbers\relax % Commence numbering lines
37
38 \begin{document}
39
40 \preprint{AIP/123-QED}
41
42 \title[Generalization of the Shifted-Force Potential to Higher-Order Potentials]
43 {Generalization of the Shifted-Force Potential to Higher-Order Potentials}
44
45 \author{Madan Lamichhane}
46 \affiliation{Department of Physics, University
47 of Notre Dame, Notre Dame, IN 46556}
48
49 \author{J. Daniel Gezelter}
50 \email{gezelter@nd.edu.}
51 \affiliation{Department of Chemistry and Biochemistry, University
52 of Notre Dame, Notre Dame, IN 46556}
53
54 \author{Kathie E. Newman}
55 \affiliation{Department of Physics, University
56 of Notre Dame, Notre Dame, IN 46556}
57
58
59 \date{\today}% It is always \today, today,
60 % but any date may be explicitly specified
61
62 \begin{abstract}
63 Over the past several years, there has been increasing interest
64 in real space methods for calculating electrostatic interactions
65 in computer simulations of condensed molecular systems. We
66 have extended our original damped-shifted force (DSF)
67 electrostatic kernel and have been able to derive a set of
68 interaction models for higher-order multipoles based on
69 truncated Taylor expansions around the cutoff. For multipolemultipole
70 interactions, we find that each of the distinct
71 orientational contributions has a separate radial function to
72 ensure that the overall forces and torques vanish at the cutoff
73 radius.
74 \end{abstract}
75
76 \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
77 % Classification Scheme.
78 \keywords{Suggested keywords}%Use showkeys class option if keyword
79 %display desired
80 \maketitle
81
82 \section{Introduction}
83
84 The Coulomb electrostatic interaction is of importance in a number of physical chemistry problems
85 [background needed, do we mention gases, liquids, solids?].
86
87 [...]
88
89 The methods that we develop in this paper are meant specifically for problems involving interacting rigid molecules which will be described
90 in terms of classical mechanics and electrodynamics. From mechanics, the molecule's mass distribution
91 determines its total mass and moment of inertia tensor.
92 From electrostatics, its charge distribution is conveniently described using multipoles.
93 Our goal is to advance methods for handling inter-molecular interactions in molecular dynamics simulations.
94 To do this, we must develop consistent approximate equations for
95 interaction energies, forces, and torques.
96
97 [...]
98
99 This paper extends the shifted-force potential method
100 of Fennel and Gezelter to higher-order multipole interactions. [describe?]
101 Extending an idea from Wolf, multipole images are placed on the surface of a
102 ``cutoff'' sphere of radius $r_c$. These images are used to make all interaction energies, forces, and torques
103 be zero for $r < r_c$.
104 Two such methods have been developed, both based on Taylor-series expansions.
105 The first is applied to the Coulomb kernel of the multipole expansion. The second is
106 applied to individual terms for interaction energies in the multipole expansion.
107 Because of differences in the initial assumptions, the two methods yield different results.
108
109 Also explored here is the effect of replacing the bare Coulomb kernel with that of a smeared
110 charge distribution. Thus four methods are compared in this paper:
111 (1) Shifted force, Coulomb, method 1;
112 (2) Sihfted force, Coulomb, method 2;
113 (3) Shifted force, smeared charge, method 1; and
114 (4) Shifted force, smeared charge, method 2.
115 The last of these methods is our preferred method and is called the Extended Shifted Force Method.
116 Subsequent papers will apply this method to various problems of physical and chemical interest.
117
118 [...]
119
120
121 \section{Development of the Methods}
122
123 \subsection{Multipole Expansion}
124
125 Consider two discrete rigid collections of atoms and ions, denoted as objects $\bf a$ and $\bf b$.
126 In the following, we assume
127 that the two objects only interact via electrostatics and describe those interactions in terms of
128 a multipole expansion. Putting the origin of the coordinate system at the center of mass of $\bf a$, we use
129 vectors $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf a$.
130 Then the electrostatic potential of object $\bf a$ at $\mathbf{r}$ is given by
131 \begin{equation}
132 V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
133 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
134 \end{equation}
135 We write the Taylor series expansion in $r$ using an implied summation notation,
136 Greek indices are used to indicate space coordinates $x$, $y$, $z$ and the subscripts
137 $k$ and $j$ are reserved for labelling specific charges in $\bf a$ and $\bf b$ respectively, and find:
138 \begin{equation}
139 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
140 \left( 1
141 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
142 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
143 \right)
144 \frac{1}{r} .
145 \end{equation}
146 We then follow Smith in defining an operator for the expansion:
147 \begin{equation}
148 V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
149 \end{equation}
150 where
151 \begin{equation}
152 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
153 + Q_{{\bf a}\alpha\beta}
154 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
155 \end{equation}
156 and the charge $C_{\bf a}$, dipole $D_{{\bf a}\alpha}$,
157 and quadrupole $Q_{{\bf a}\alpha\beta}$ are defined by
158 \begin{equation}
159 C_{\bf a}=\sum_{k \, \text{in \bf a}} q_k ,
160 \end{equation}
161 \begin{equation}
162 D_{{\bf a}\alpha} = \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,
163 \end{equation}
164 \begin{equation}
165 Q_{{\bf a}\alpha\beta} = \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
166 \end{equation}
167
168 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
169 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
170 \begin{eqnarray}
171 U_{\bf{ab}}(r) =&& \frac{1}{4\pi \epsilon_0}
172 \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
173 \frac{q_k q_j}{\vert \bf{r}_k - (\bf{r}+\bf{r}_j) \vert} \nonumber\\
174 =&& \frac{1}{4\pi \epsilon_0}
175 \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
176 \frac{q_k q_j}{\vert \bf{r}+ (\bf{r}_j-\bf{r}_k) \vert} \nonumber\\
177 =&&\frac{1}{4\pi \epsilon_0} \sum_{j \, \text{in \bf b}} q_j V_a(\bf{r}+\bf{r}_j) \nonumber\\
178 =&&\frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
179 \end{eqnarray}
180 The last expression can also be expanded as a Taylor series in $r$. Using a notation similar to before, we define
181 \begin{equation}
182 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
183 + Q_{{\bf b}\alpha\beta}
184 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
185 \end{equation}
186 and
187 \begin{equation}
188 U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
189 \end{equation}
190 Note the ease of separting out the respective energies of interaction of the charge, dipole, and quadrupole of $\bf a$ from those of $\bf b$.
191
192 \subsection{Bare Coulomb versus smeared charge}
193
194 With the four types of methods being considered here, it is desirable to list the approximations in as transparent a form
195 as possible. First, one may use the bare Coulomb potential, with radial dependence $1/r$,
196 as shown in Eq.~(\ref{kernel}). Alternatively, one may use
197 a smeared charge distribution, then the``kernel'' $1/r$ of the expansion is replaced with a function:
198 \begin{equation}
199 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
200 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
201 \end{equation}
202 We develop equations using a function $f(r)$ to represent either $1/r$ or $B_0(r)$, dependent on the the type of approach being considered.
203 Smith's convenient functions $B_l(r)$ are summarized in Appendix A.
204
205 \subsection{Shifting the force, method 1}
206
207 As discussed in the introduction, it is desirable to cutoff the electrostatic energy at a radius
208 $r_c$. For consistency in approximation, we want the interaction energy as well as the force and
209 torque to go to zero at $r=r_c$.
210 To describe how this goal may be met using a radial approximation, we use two examples, charge-charge
211 and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain the idea.
212
213 In the shifted-force approximation, the interaction energy $U_{\bf{ab}}(r_c)=0$
214 for two charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is written:
215 \begin{equation}
216 U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
217 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
218 \right) .
219 \end{equation}
220 Two shifting terms appear in this equations because we want the force to
221 also be shifted due to an image charge located at a distance $r_c$.
222 Since one derivative of the interaction energy is needed for the force, we want a term
223 linear in $(r-r_c)$ in the interaction energy, that is:
224 \begin{equation}
225 \frac{d\,}{dr}
226 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
227 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
228 \right) .
229 \end{equation}
230 This demonstrates the need of the third term in the brackets of the energy expression, but leads to the question, how does this idea generalize for higher-order multipole energies?
231
232 In method 1, the procedure that we follow is based on the number of derivatives need for each energy, force, or torque. That is,
233 a quadrupole-quadrupole interaction energy will have four derivatives,
234 $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$,
235 and the force or torque will bring in yet another derivative.
236 We thus want shifted energy expressions to include terms so that all energies, forces, and torques
237 are zero at $r=r_c$. In each case, we will subtract off a function $f_n^{\text{shift}}(r)$ from the
238 kernel $f(r)=1/r$. The index $n$ indicates the number of derivatives to be taken when
239 deriving a given multipole energy.
240 We choose a function with guaranteed smooth derivatives --- a truncated Taylor series of the function
241 $f(r)$, e.g.,
242 %
243 \begin{equation}
244 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert _{r_c} .
245 \end{equation}
246 %
247 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
248 Thus, for $f(r)=1/r$, we find
249 %
250 \begin{equation}
251 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
252 \end{equation}
253 %
254 Continuing with the example of a charge $\bf a$ interacting with a dipole $\bf b$, we write
255 %
256 \begin{equation}
257 U_{C_{\bf a}D_{\bf b}}(r)=
258 \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
259 =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
260 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
261 \end{equation}
262 %
263 The force that dipole $\bf b$ puts on charge $\bf a$ is
264 %
265 \begin{equation}
266 F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
267 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
268 \frac{r_\alpha r_\beta}{r^2}
269 \left( -\frac{1}{r} \frac {\partial} {\partial r}
270 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
271 \end{equation}
272 %
273 For $f(r)=1/r$, we find
274 %
275 \begin{equation}
276 F_{C_{\bf a}D_{\bf b}\beta} =
277 \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
278 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
279 +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
280 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
281 \end{equation}
282 %
283 This expansion shows the expected $1/r^3$ dependence of the force.
284
285 In general, we write
286 %
287 \begin{equation}
288 U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
289 \label{generic}
290 \end{equation}
291 %
292 where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
293 and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
294 An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
295 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
296 $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
297 implied summation combining the space indices.
298
299 To apply this method to the smeared-charge approach,
300 we write $f(r)=\text{erfc}(\alpha r)/r$. By using one function $f(r)$ for both
301 approaches, we simplify the tabulation of equations used. Because
302 of the many derivatives that are taken, the algebra is tedious and are summarized
303 in Appendices A and B.
304
305 \subsection{Shifting the force, method 2}
306
307 Note the method used in the previous subsection to shift a force is basically that of using
308 a truncated Taylor Series in the radius $r$. An alternate method exists, best explained by
309 writing one shifted formula for all interaction energies $U(r)$:
310 \begin{equation}
311 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
312 \end{equation}
313 Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
314 $(r-r_c)^n$ appear. The primary difference between methods 1 and 2 originates
315 with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
316 kernel. In method 2, it is applied to individual interaction energies of the multipole expansion.
317 Terms from this method thus have the general form:
318 \begin{equation}
319 U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
320 \label{generic2}
321 \end{equation}
322
323 Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
324 and are listed in Table I below.
325
326 \subsection{\label{sec:level2}Body and space axes}
327
328 Up to this point, all energies and forces have been written in terms of fixed space
329 coordinates $x$, $y$, $z$. Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
330 combine prefactors with radial functions. But because objects
331 $\bf a$ and $\bf b$ both translate and rotate as part of a MD simulation,
332 it is desirable to contract all $r$-dependent terms with dipole and quadrupole
333 moments expressed in terms of their body axes.
334 Since the interaction energy expressions will be used to derive both forces and torques,
335 we follow here the development of Allen and Germano, which was itself based on an
336 earlier paper by Price \em et al.\em
337
338 Denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
339 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
340 set of inertial body axes. (Note, these body axes are generally not the same as those for which the
341 quadrupole moment is diagonal.) Then,
342 %
343 \begin{eqnarray}
344 \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
345 \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
346 \end{eqnarray}
347 Allen and Germano define matrices $\hat{\mathbf {a}}$
348 and $\hat{\mathbf {b}}$ using these unit vectors:
349 \begin{eqnarray}
350 \hat{\mathbf {a}} =
351 \begin{pmatrix}
352 \hat{a}_1 \\
353 \hat{a}_2 \\
354 \hat{a}_3
355 \end{pmatrix}
356 =
357 \begin{pmatrix}
358 a_{1x} \quad a_{1y} \quad a_{1z} \\
359 a_{2x} \quad a_{2y} \quad a_{2z} \\
360 a_{3x} \quad a_{3y} \quad a_{3z}
361 \end{pmatrix}\\
362 \hat{\mathbf {b}} =
363 \begin{pmatrix}
364 \hat{b}_1 \\
365 \hat{b}_2 \\
366 \hat{b}_3
367 \end{pmatrix}
368 =
369 \begin{pmatrix}
370 b_{1x}\quad b_{1y} \quad b_{1z} \\
371 b_{2x} \quad b_{2y} \quad b_{2z} \\
372 b_{3x} \quad b_{3y} \quad b_{3z}
373 \end{pmatrix} .
374 \end{eqnarray}
375 %
376 These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
377 All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
378 It proves to be equally convenient to just write any contraction in terms of unit vectors
379 $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
380 We have found it useful to write angular-dependent terms in three different fashions,
381 illustrated by the following
382 three examples from the interaction-energy expressions:
383 %
384 \begin{eqnarray}
385 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
386 =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
387 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
388 r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
389 r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
390 \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
391 r ( \mathbf{D}_{\mathbf{a}} \cdot
392 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
393 D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
394 =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
395 (\hat{b}_n \cdot \hat{r}) .
396 \end{eqnarray}
397 %
398 [Dan, perhaps there are better examples to show here.]
399
400 In each line, the first two terms are written using space coordinates. The first form is standard
401 in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
402 form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
403 We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
404 in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
405 be discussed below.
406
407 \section{Energies, forces, and torques}
408 \subsection{Interaction energies}
409
410 We now list multipole interaction energies for the four types of approximation.
411 A ``generic'' set of radial functions is introduced so to be able to present the results in Table I. This set of
412 equations is written in terms of space coordinates:
413
414 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
415 %
416 %
417 % u ca cb
418 %
419 \begin{equation}
420 U_{C_{\bf a}C_{\bf b}}(r)=
421 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
422 \end{equation}
423 %
424 % u ca db
425 %
426 \begin{equation}
427 U_{C_{\bf a}D_{\bf b}}(r)=
428 \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
429 \label{uchdip}
430 \end{equation}
431 %
432 % u ca qb
433 %
434 \begin{equation}
435 U_{C_{\bf a}Q_{\bf b}}(r)=
436 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
437 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
438 \label{uchquad}
439 \end{equation}
440 %
441 % u da cb
442 %
443 \begin{equation}
444 U_{D_{\bf a}C_{\bf b}}(r)=
445 -\frac{C_{\bf b}}{4\pi \epsilon_0}
446 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
447 \end{equation}
448 %
449 % u da db
450 %
451 \begin{equation}
452 U_{D_{\bf a}D_{\bf b}}(r)=
453 -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
454 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
455 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
456 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
457 v_{22}(r) \Bigr]
458 \label{udipdip}
459 \end{equation}
460 %
461 % u da qb
462 %
463 \begin{equation}
464 \begin{split}
465 % 1
466 U_{D_{\bf a}Q_{\bf b}}(r)&=
467 -\frac{1}{4\pi \epsilon_0} \Bigl[
468 \text{Tr}\mathbf{Q}_{\mathbf{b}}
469 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
470 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
471 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
472 % 2
473 &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
474 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
475 \label{udipquad}
476 \end{split}
477 \end{equation}
478 %
479 % u qa cb
480 %
481 \begin{equation}
482 U_{Q_{\bf a}C_{\bf b}}(r)=
483 \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
484 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
485 \label{uquadch}
486 \end{equation}
487 %
488 % u qa db
489 %
490 \begin{equation}
491 \begin{split}
492 %1
493 U_{Q_{\bf a}D_{\bf b}}(r)&=
494 \frac{1}{4\pi \epsilon_0} \Bigl[
495 \text{Tr}\mathbf{Q}_{\mathbf{a}}
496 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
497 +2 ( \mathbf{D}_{\mathbf{b}} \cdot
498 \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
499 % 2
500 +\frac{1}{4\pi \epsilon_0}
501 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
502 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
503 \label{uquaddip}
504 \end{split}
505 \end{equation}
506 %
507 % u qa qb
508 %
509 \begin{equation}
510 \begin{split}
511 %1
512 U_{Q_{\bf a}Q_{\bf b}}(r)&=
513 \frac{1}{4\pi \epsilon_0} \Bigl[
514 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
515 +2 \text{Tr} \left(
516 \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
517 \\
518 % 2
519 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
520 \left( \hat{r} \cdot
521 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
522 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
523 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
524 \cdot \hat{r} \right) +4 (\hat{r} \cdot
525 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
526 \Bigr] v_{42}(r)
527 \\
528 % 4
529 &+ \frac{1}{4\pi \epsilon_0}
530 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
531 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
532 \label{uquadquad}
533 \end{split}
534 \end{equation}
535
536
537 %
538 %
539 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
540 %
541
542 \begin{table*}
543 \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
544 used in this table are defined in Appendices B and C.}
545 \begin{ruledtabular}
546 \begin{tabular}{cccc}
547 Generic&Coulomb&Method 1&Method 2
548 \\ \hline
549 %
550 %
551 %
552 %Ch-Ch&
553 $v_{01}(r)$ &
554 $\frac{1}{r}$ &
555 $f_0(r)$ &
556 $f(r)-f(r_c)-(r-r_c)g(r_c)$
557 \\
558 %
559 %
560 %
561 %Ch-Di&
562 $v_{11}(r)$ &
563 $-\frac{1}{r^2}$ &
564 $g_1(r)$ &
565 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
566 %
567 %
568 %
569 %Ch-Qu/Di-Di&
570 $v_{21}(r)$ &
571 $-\frac{1}{r^3} $ &
572 $\frac{g_2(r)}{r} $ &
573 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
574 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
575 $v_{22}(r)$ &
576 $\frac{3}{r^3} $ &
577 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
578 $\left(-\frac{g(r)}{r}+h(r) \right)
579 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
580 &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
581 \\
582 %
583 %
584 %
585 %Di-Qu &
586 $v_{31}(r)$ &
587 $\frac{3}{r^4} $ &
588 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
589 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
590 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
591 &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
592 \\
593 %
594 $v_{32}(r)$ &
595 $-\frac{15}{r^4} $ &
596 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
597 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
598 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
599 &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
600 \\
601 %
602 %
603 %
604 %Qu-Qu&
605 $v_{41}(r)$ &
606 $\frac{3}{r^5} $ &
607 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
608 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
609 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
610 &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
611 \\
612 % 2
613 $v_{42}(r)$ &
614 $- \frac{15}{r^5} $ &
615 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
616 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
617 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
618 &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
619 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
620 \\
621 % 3
622 $v_{43}(r)$ &
623 $ \frac{105}{r^5} $ &
624 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
625 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
626 &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
627 &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
628 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
629 \end{tabular}
630 \end{ruledtabular}
631 \end{table*}
632 %
633 %
634 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
635 %
636
637 \begin{table}
638 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
639 \begin{ruledtabular}
640 \begin{tabular}{cc}
641 Generic&Method 1 or Method 2
642 \\ \hline
643 %
644 %
645 %
646 $w_a(r)$&
647 $\frac{d v_{01}}{dr}$ \\
648 %
649 %
650 $w_b(r)$ &
651 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
652 %
653 $w_c(r)$ &
654 $\frac{v_{11}(r)}{r}$ \\
655 %
656 %
657 $w_d(r)$&
658 $\frac{d v_{21}}{dr}$ \\
659 %
660 $w_e(r)$ &
661 $\frac{v_{22}(r)}{r}$ \\
662 %
663 %
664 $w_f(r)$&
665 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
666 %
667 $w_g(r)$&
668 $\frac{v_{31}(r)}{r}$\\
669 %
670 $w_h(r)$ &
671 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
672 % 2
673 $w_i(r)$ &
674 $\frac{v_{32}(r)}{r}$ \\
675 %
676 $w_j(r)$ &
677 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
678 %
679 $w_k(r)$ &
680 $\frac{d v_{41}}{dr} $ \\
681 %
682 $w_l(r)$ &
683 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
684 %
685 $w_m(r)$ &
686 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
687 %
688 $w_n(r)$ &
689 $\frac{v_{42}(r)}{r}$ \\
690 %
691 $w_o(r)$ &
692 $\frac{v_{43}(r)}{r}$ \\
693 %
694
695 \end{tabular}
696 \end{ruledtabular}
697 \end{table}
698 %
699 %
700 %
701
702 \subsection{Forces}
703
704 The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
705 the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
706 interaction, these forces will point along the $\pm \hat{r}$ directions, where
707 $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
708 %
709 \begin{equation}
710 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
711 \quad \text{and} \quad F_{\bf b \alpha}
712 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
713 \end{equation}
714 %
715 The concept of obtaining a force from an energy by taking a gradient is the same for
716 higher-order multipole interactions, the trick is to make sure that all
717 $r$-dependent derivatives are considered.
718 As is pointed out by Allen and Germano, this is straightforward if the
719 interaction energies are written recognizing explicit
720 $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
721 %
722 \begin{equation}
723 U(r,\{\hat{a}_m \cdot \hat{r} \},
724 \{\hat{b}_n\cdot \hat{r} \}
725 \{\hat{a}_m \cdot \hat{b}_n \}) .
726 \label{ugeneral}
727 \end{equation}
728 %
729 Then,
730 %
731 \begin{equation}
732 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
733 = \frac{\partial U}{\partial r} \hat{r}
734 + \sum_m \left[
735 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
736 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
737 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
738 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
739 \right] \label{forceequation}.
740 \end{equation}
741 %
742 Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
743 that of Allen and Germano. In simplifying the algebra, we also use:
744 %
745 \begin{eqnarray}
746 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
747 = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
748 \right) \\
749 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
750 = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
751 \right) .
752 \end{eqnarray}
753 %
754 We list below the force equations written in terms of space coordinates. The
755 radial functions used in the two methods are listed in Table II.
756 %
757 %SPACE COORDINATES FORCE EQUTIONS
758 %
759 % **************************************************************************
760 % f ca cb
761 %
762 \begin{equation}
763 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
764 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
765 \end{equation}
766 %
767 %
768 %
769 \begin{equation}
770 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
771 \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
772 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
773 w_b(r) \hat{r}
774 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
775 \end{equation}
776 %
777 %
778 %
779 \begin{equation}
780 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
781 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
782 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
783 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
784 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
785 \end{equation}
786 %
787 %
788 %
789 \begin{equation}
790 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
791 -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
792 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
793 + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
794 \end{equation}
795 %
796 %
797 %
798 \begin{equation}
799 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
800 \frac{1}{4\pi \epsilon_0} \Bigl[
801 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
802 + \left( \mathbf{D}_{\mathbf {a}}
803 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
804 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
805 % 2
806 - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
807 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
808 \end{equation}
809 %
810 %
811 %
812 \begin{equation}
813 \begin{split}
814 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
815 & - \frac{1}{4\pi \epsilon_0} \Bigl[
816 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
817 +2 \mathbf{D}_{\mathbf{a}} \cdot
818 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
819 - \frac{1}{4\pi \epsilon_0} \Bigl[
820 \text{Tr}\mathbf{Q}_{\mathbf{b}}
821 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
822 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
823 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
824 % 3
825 & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
826 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
827 w_i(r)
828 % 4
829 -\frac{1}{4\pi \epsilon_0}
830 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
831 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
832 \end{split}
833 \end{equation}
834 %
835 %
836 \begin{equation}
837 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
838 \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
839 \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
840 + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
841 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
842 \end{equation}
843 %
844 \begin{equation}
845 \begin{split}
846 \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
847 &\frac{1}{4\pi \epsilon_0} \Bigl[
848 \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
849 +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
850 % 2
851 + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
852 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
853 +2 (\mathbf{D}_{\mathbf{b}} \cdot
854 \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
855 % 3
856 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
857 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
858 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
859 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
860 % 4
861 +\frac{1}{4\pi \epsilon_0}
862 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
863 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
864 \end{split}
865 \end{equation}
866 %
867 %
868 %
869 \begin{equation}
870 \begin{split}
871 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
872 +\frac{1}{4\pi \epsilon_0} \Bigl[
873 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
874 + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
875 % 2
876 +\frac{1}{4\pi \epsilon_0} \Bigl[
877 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
878 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
879 % 3
880 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
881 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
882 % 4
883 + \frac{1}{4\pi \epsilon_0} \Bigl[
884 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
885 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
886 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
887 % 5
888 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
889 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
890 %
891 + \frac{1}{4\pi \epsilon_0} \Bigl[
892 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
893 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
894 %6
895 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
896 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
897 % 7
898 + \frac{1}{4\pi \epsilon_0}
899 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
900 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
901 \end{split}
902 \end{equation}
903 %
904 %
905 % TORQUES SECTION -----------------------------------------------------------------------------------------
906 %
907 \subsection{Torques}
908
909 Following again Allen and Germano, when energies are written in the form
910 of Eq.~({\ref{ugeneral}), then torques can be expressed as:
911 %
912 \begin{eqnarray}
913 \mathbf{\tau}_{\bf a} =
914 \sum_m
915 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
916 ( \hat{r} \times \hat{a}_m )
917 -\sum_{mn}
918 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
919 (\hat{a}_m \times \hat{b}_n) \\
920 %
921 \mathbf{\tau}_{\bf b} =
922 \sum_m
923 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
924 ( \hat{r} \times \hat{b}_m)
925 +\sum_{mn}
926 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
927 (\hat{a}_m \times \hat{b}_n) .
928 \end{eqnarray}
929 %
930 %
931 Here we list the torque equations written in terms of space coordinates.
932 %
933 %
934 %
935 \begin{equation}
936 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
937 \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
938 \end{equation}
939 %
940 %
941 %
942 \begin{equation}
943 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
944 \frac{2C_{\bf a}}{4\pi \epsilon_0}
945 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
946 \end{equation}
947 %
948 %
949 %
950 \begin{equation}
951 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
952 -\frac{C_{\bf b}}{4\pi \epsilon_0}
953 (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
954 \end{equation}
955 %
956 %
957 %
958 \begin{equation}
959 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
960 \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
961 % 2
962 -\frac{1}{4\pi \epsilon_0}
963 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
964 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
965 \end{equation}
966 %
967 %
968 %
969 \begin{equation}
970 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
971 -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
972 % 2
973 +\frac{1}{4\pi \epsilon_0}
974 (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
975 (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
976 \end{equation}
977 %
978 %
979 %
980 \begin{equation}
981 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
982 \frac{1}{4\pi \epsilon_0} \Bigl[
983 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
984 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
985 +2 \mathbf{D}_{\mathbf{a}} \times
986 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
987 \Bigr] v_{31}(r)
988 % 3
989 -\frac{1}{4\pi \epsilon_0}
990 \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
991 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
992 \end{equation}
993 %
994 %
995 %
996 \begin{equation}
997 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
998 \frac{1}{4\pi \epsilon_0} \Bigl[
999 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1000 \hat{r}
1001 -2 \mathbf{D}_{\mathbf{a}} \times
1002 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1003 \Bigr] v_{31}(r)
1004 % 2
1005 +\frac{2}{4\pi \epsilon_0}
1006 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1007 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1008 \end{equation}
1009 %
1010 %
1011 %
1012 \begin{equation}
1013 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1014 \frac{1}{4\pi \epsilon_0} \Bigl[
1015 -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1016 +2 \mathbf{D}_{\mathbf{b}} \times
1017 (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1018 \Bigr] v_{31}(r)
1019 % 3
1020 - \frac{2}{4\pi \epsilon_0}
1021 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1022 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1023 \end{equation}
1024 %
1025 %
1026 %
1027 \begin{equation}
1028 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1029 \frac{1}{4\pi \epsilon_0} \Bigl[
1030 \text{Tr}\mathbf{Q}_{\mathbf{a}}
1031 (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1032 +2 \mathbf{D}_{\mathbf{b}} \times
1033 ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1034 % 2
1035 +\frac{1}{4\pi \epsilon_0}
1036 (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1037 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1038 \end{equation}
1039 %
1040 %
1041 %
1042 \begin{equation}
1043 \begin{split}
1044 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1045 &-\frac{4}{4\pi \epsilon_0}
1046 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1047 v_{41}(r) \\
1048 % 2
1049 &+ \frac{1}{4\pi \epsilon_0}
1050 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1051 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1052 +4 \hat{r} \times
1053 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1054 % 3
1055 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1056 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1057 % 4
1058 &+ \frac{2}{4\pi \epsilon_0}
1059 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1060 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1061 \end{split}
1062 \end{equation}
1063 %
1064 %
1065 %
1066 \begin{equation}
1067 \begin{split}
1068 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1069 &\frac{4}{4\pi \epsilon_0}
1070 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1071 % 2
1072 &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1073 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1074 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1075 \mathbf{Q}_{{\mathbf b}} ) \times
1076 \hat{r}
1077 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1078 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1079 \Bigr] v_{42}(r) \\
1080 % 4
1081 &+ \frac{2}{4\pi \epsilon_0}
1082 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1083 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1084 \end{split}
1085 \end{equation}
1086 %
1087 %
1088 %
1089 \begin{acknowledgments}
1090 We wish to acknowledge the support of the author community in using
1091 REV\TeX{}, offering suggestions and encouragement, testing new versions,
1092 \dots.
1093 \end{acknowledgments}
1094
1095 \appendix
1096
1097 \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1098
1099 The following summarizes Smith's $B_l(r)$ functions and
1100 includes formulas given in his appendix.
1101
1102 The first function $B_0(r)$ is defined by
1103 %
1104 \begin{equation}
1105 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1106 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1107 \end{equation}
1108 %
1109 The first derivative of this function is
1110 %
1111 \begin{equation}
1112 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1113 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1114 \end{equation}
1115 %
1116 and can be rewritten in terms of a function $B_1(r)$:
1117 %
1118 \begin{equation}
1119 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1120 \end{equation}
1121 %
1122 In general,
1123 \begin{equation}
1124 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1125 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1126 \text{e}^{-{\alpha}^2r^2}
1127 \right] .
1128 \end{equation}
1129 %
1130 Using these formulas, we find
1131 %
1132 \begin{eqnarray}
1133 \frac{dB_0}{dr}=-rB_1(r) \\
1134 \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1135 \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1136 \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1137 \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1138 \end{eqnarray}
1139 %
1140 As noted by Smith,
1141 %
1142 \begin{equation}
1143 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1144 +\text{O}(r) .
1145 \end{equation}
1146
1147 \section{Method 1, the $r$-dependent factors}
1148
1149 Using the shifted damped functions $f_n(r)$ defined by:
1150 %
1151 \begin{equation}
1152 f_n(r)= B_0 \Big \lvert _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert _{r_c} ,
1153 \end{equation}
1154 %
1155 we first provide formulas for successive derivatives of this function. (If there is
1156 no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.) First, we find:
1157 %
1158 \begin{equation}
1159 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1160 \end{equation}
1161 %
1162 This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1163 define higher-order derivatives as follows:
1164 %
1165 \begin{eqnarray}
1166 g_n(r)= \frac{d f_n}{d r} =
1167 B_0^{(1)} \Big \lvert _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert _{r_c} \\
1168 h_n(r)= \frac{d^2f_n}{d r^2} =
1169 B_0^{(2)} \Big \lvert _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert _{r_c} \\
1170 s_n(r)= \frac{d^3f_n}{d r^3} =
1171 B_0^{(3)} \Big \lvert _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert _{r_c} \\
1172 t_n(r)= \frac{d^4f_n}{d r^4} =
1173 B_0^{(4)} \Big \lvert _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert _{r_c} \\
1174 u_n(r)= \frac{d^5f_n}{d r^5} =
1175 B_0^{(5)} \Big \lvert _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert _{r_c} .
1176 \end{eqnarray}
1177 %
1178 We note that the last function needed (for quadrupole-quadrupole) is
1179 %
1180 \begin{equation}
1181 u_4(r)=B_0^{(5)} \Big \lvert _r - B_0^{(5)} \Big \lvert _{r_c} .
1182 \end{equation}
1183
1184 The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1185 from $0$ to $r_c$. The functions needed are listed schematically below:
1186 %
1187 \begin{eqnarray}
1188 f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1189 g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1190 h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1191 s_2 \quad s_3 \quad &s_4 \nonumber \\
1192 t_3 \quad &t_4 \nonumber \\
1193 &u_4 \nonumber .
1194 \end{eqnarray}
1195
1196 Using these functions, we find
1197 %
1198 \begin{equation}
1199 \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1200 \end{equation}
1201 %
1202 \begin{equation}
1203 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1204 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1205 \end{equation}
1206 %
1207 \begin{equation}
1208 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1209 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1210 \delta_{ \beta \gamma} r_\alpha \right)
1211 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1212 + r_\alpha r_\beta r_\gamma
1213 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1214 \end{equation}
1215 %
1216 \begin{eqnarray}
1217 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1218 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1219 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1220 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1221 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1222 + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1223 + \text{5 perm}
1224 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1225 \right) \nonumber \\
1226 + r_\alpha r_\beta r_\gamma r_\delta
1227 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1228 + \frac{t_n}{r^4} \right)
1229 \end{eqnarray}
1230 %
1231 \begin{eqnarray}
1232 \frac{\partial^5 f_n}
1233 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1234 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1235 + \text{14 perm} \right)
1236 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1237 + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1238 + \text{9 perm}
1239 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1240 \right) \nonumber \\
1241 + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1242 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1243 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1244 \end{eqnarray}
1245 %
1246 %
1247 %
1248 \section{Method 2, the $r$-dependent factors}
1249
1250 In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1251 see Eq. (20?). For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1252 of the kernel $B_0(r)$. To denote these terms, we generalize the notation of the previous appendix.
1253 For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1254 %
1255 \begin{eqnarray}
1256 g(r)= \frac{df}{d r}\\
1257 h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1258 s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1259 t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1260 u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1261 \end{eqnarray}
1262 %
1263 For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.'' Checks of algebra can be made by using limiting forms
1264 of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$. Equations (B9) to B(13)
1265 are correct for method 2 if one just eliminates the subscript $n$.
1266
1267 \section{Extra Material}
1268 %
1269 %
1270 %Energy in body coordinate form ---------------------------------------------------------------
1271 %
1272 Here are the interaction energies written in terms of the body coordinates:
1273
1274 %
1275 % u ca cb
1276 %
1277 \begin{equation}
1278 U_{C_{\bf a}C_{\bf b}}(r)=
1279 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1280 \end{equation}
1281 %
1282 % u ca db
1283 %
1284 \begin{equation}
1285 U_{C_{\bf a}D_{\bf b}}(r)=
1286 \frac{C_{\bf a}}{4\pi \epsilon_0}
1287 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1288 \end{equation}
1289 %
1290 % u ca qb
1291 %
1292 \begin{equation}
1293 U_{C_{\bf a}Q_{\bf b}}(r)=
1294 \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1295 v_{21}(r) \nonumber \\
1296 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1297 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1298 v_{22}(r)
1299 \end{equation}
1300 %
1301 % u da cb
1302 %
1303 \begin{equation}
1304 U_{D_{\bf a}C_{\bf b}}(r)=
1305 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1306 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1307 \end{equation}
1308 %
1309 % u da db
1310 %
1311 \begin{equation}
1312 \begin{split}
1313 % 1
1314 U_{D_{\bf a}D_{\bf b}}(r)&=
1315 -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1316 (\hat{a}_m \cdot \hat{b}_n)
1317 D_{\mathbf{b}n} v_{21}(r) \\
1318 % 2
1319 &-\frac{1}{4\pi \epsilon_0}
1320 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1321 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1322 v_{22}(r)
1323 \end{split}
1324 \end{equation}
1325 %
1326 % u da qb
1327 %
1328 \begin{equation}
1329 \begin{split}
1330 % 1
1331 U_{D_{\bf a}Q_{\bf b}}(r)&=
1332 -\frac{1}{4\pi \epsilon_0} \left(
1333 \text{Tr}Q_{\mathbf{b}}
1334 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1335 +2\sum_{lmn}D_{\mathbf{a}l}
1336 (\hat{a}_l \cdot \hat{b}_m)
1337 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1338 \right) v_{31}(r) \\
1339 % 2
1340 &-\frac{1}{4\pi \epsilon_0}
1341 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1342 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1343 Q_{{\mathbf b}mn}
1344 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1345 \end{split}
1346 \end{equation}
1347 %
1348 % u qa cb
1349 %
1350 \begin{equation}
1351 U_{Q_{\bf a}C_{\bf b}}(r)=
1352 \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1353 +\frac{C_{\bf b}}{4\pi \epsilon_0}
1354 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1355 \end{equation}
1356 %
1357 % u qa db
1358 %
1359 \begin{equation}
1360 \begin{split}
1361 %1
1362 U_{Q_{\bf a}D_{\bf b}}(r)&=
1363 \frac{1}{4\pi \epsilon_0} \left(
1364 \text{Tr}Q_{\mathbf{a}}
1365 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1366 +2\sum_{lmn}D_{\mathbf{b}l}
1367 (\hat{b}_l \cdot \hat{a}_m)
1368 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1369 \right) v_{31}(r) \\
1370 % 2
1371 &+\frac{1}{4\pi \epsilon_0}
1372 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1373 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1374 Q_{{\mathbf a}mn}
1375 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1376 \end{split}
1377 \end{equation}
1378 %
1379 % u qa qb
1380 %
1381 \begin{equation}
1382 \begin{split}
1383 %1
1384 U_{Q_{\bf a}Q_{\bf b}}(r)&=
1385 \frac{1}{4\pi \epsilon_0} \Bigl[
1386 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1387 +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1388 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1389 (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1390 v_{41}(r) \\
1391 % 2
1392 &+ \frac{1}{4\pi \epsilon_0}
1393 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1394 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1395 Q_{{\mathbf b}lm}
1396 (\hat{b}_m \cdot \hat{r})
1397 +\text{Tr}Q_{\mathbf{b}}
1398 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1399 Q_{{\mathbf a}lm}
1400 (\hat{a}_m \cdot \hat{r}) \\
1401 % 3
1402 &+4 \sum_{lmnp}
1403 (\hat{r} \cdot \hat{a}_l )
1404 Q_{{\mathbf a}lm}
1405 (\hat{a}_m \cdot \hat{b}_n)
1406 Q_{{\mathbf b}np}
1407 (\hat{b}_p \cdot \hat{r})
1408 \Bigr] v_{42}(r) \\
1409 % 4
1410 &+ \frac{1}{4\pi \epsilon_0}
1411 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1412 Q_{{\mathbf a}lm}
1413 (\hat{a}_m \cdot \hat{r})
1414 \sum_{np} (\hat{r} \cdot \hat{b}_n)
1415 Q_{{\mathbf b}np}
1416 (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1417 \end{split}
1418 \end{equation}
1419 %
1420
1421
1422 % BODY coordinates force equations --------------------------------------------
1423 %
1424 %
1425 Here are the force equations written in terms of body coordinates.
1426 %
1427 % f ca cb
1428 %
1429 \begin{equation}
1430 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1431 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1432 \end{equation}
1433 %
1434 % f ca db
1435 %
1436 \begin{equation}
1437 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1438 \frac{C_{\bf a}}{4\pi \epsilon_0}
1439 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1440 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1441 \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1442 \end{equation}
1443 %
1444 % f ca qb
1445 %
1446 \begin{equation}
1447 \begin{split}
1448 % 1
1449 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1450 \frac{1}{4\pi \epsilon_0}
1451 C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1452 + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1453 % 2
1454 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1455 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1456 \end{split}
1457 \end{equation}
1458 %
1459 % f da cb
1460 %
1461 \begin{equation}
1462 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1463 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1464 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1465 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1466 \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1467 \end{equation}
1468 %
1469 % f da db
1470 %
1471 \begin{equation}
1472 \begin{split}
1473 % 1
1474 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1475 -\frac{1}{4\pi \epsilon_0}
1476 \sum_{mn} D_{\mathbf {a}m}
1477 (\hat{a}_m \cdot \hat{b}_n)
1478 D_{\mathbf{b}n} w_d(r) \hat{r}
1479 -\frac{1}{4\pi \epsilon_0}
1480 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1481 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1482 % 2
1483 & \quad + \frac{1}{4\pi \epsilon_0}
1484 \Bigl[ \sum_m D_{\mathbf {a}m}
1485 \hat{a}_m \sum_n D_{\mathbf{b}n}
1486 (\hat{b}_n \cdot \hat{r})
1487 + \sum_m D_{\mathbf {b}m}
1488 \hat{b}_m \sum_n D_{\mathbf{a}n}
1489 (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1490 \end{split}
1491 \end{equation}
1492 %
1493 % f da qb
1494 %
1495 \begin{equation}
1496 \begin{split}
1497 % 1
1498 &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1499 - \frac{1}{4\pi \epsilon_0} \Bigl[
1500 \text{Tr}Q_{\mathbf{b}}
1501 \sum_l D_{\mathbf{a}l} \hat{a}_l
1502 +2\sum_{lmn} D_{\mathbf{a}l}
1503 (\hat{a}_l \cdot \hat{b}_m)
1504 Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1505 % 3
1506 & - \frac{1}{4\pi \epsilon_0} \Bigl[
1507 \text{Tr}Q_{\mathbf{b}}
1508 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1509 +2\sum_{lmn}D_{\mathbf{a}l}
1510 (\hat{a}_l \cdot \hat{b}_m)
1511 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1512 % 4
1513 &+ \frac{1}{4\pi \epsilon_0}
1514 \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1515 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1516 Q_{{\mathbf b}mn}
1517 (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1518 D_{\mathbf{a}l}
1519 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1520 Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1521 % 6
1522 & -\frac{1}{4\pi \epsilon_0}
1523 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1524 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1525 Q_{{\mathbf b}mn}
1526 (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1527 \end{split}
1528 \end{equation}
1529 %
1530 % force qa cb
1531 %
1532 \begin{equation}
1533 \begin{split}
1534 % 1
1535 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1536 \frac{1}{4\pi \epsilon_0}
1537 C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1538 + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1539 % 2
1540 & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1541 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1542 \end{split}
1543 \end{equation}
1544 %
1545 % f qa db
1546 %
1547 \begin{equation}
1548 \begin{split}
1549 % 1
1550 &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1551 \frac{1}{4\pi \epsilon_0} \Bigl[
1552 \text{Tr}Q_{\mathbf{a}}
1553 \sum_l D_{\mathbf{b}l} \hat{b}_l
1554 +2\sum_{lmn} D_{\mathbf{b}l}
1555 (\hat{b}_l \cdot \hat{a}_m)
1556 Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1557 w_g(r)\\
1558 % 3
1559 & + \frac{1}{4\pi \epsilon_0} \Bigl[
1560 \text{Tr}Q_{\mathbf{a}}
1561 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1562 +2\sum_{lmn}D_{\mathbf{b}l}
1563 (\hat{b}_l \cdot \hat{a}_m)
1564 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1565 % 4
1566 & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1567 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1568 Q_{{\mathbf a}mn}
1569 (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1570 D_{\mathbf{b}l}
1571 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1572 Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1573 % 6
1574 & +\frac{1}{4\pi \epsilon_0}
1575 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1576 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1577 Q_{{\mathbf a}mn}
1578 (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1579 \end{split}
1580 \end{equation}
1581 %
1582 % f qa qb
1583 %
1584 \begin{equation}
1585 \begin{split}
1586 &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1587 \frac{1}{4\pi \epsilon_0} \Bigl[
1588 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1589 + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1590 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1591 (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1592 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1593 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1594 + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1595 &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1596 + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1597 \Bigr] w_n(r) \\
1598 &+ \frac{1}{4\pi \epsilon_0}
1599 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1600 \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1601 + \text{Tr}Q_{\mathbf{b}}
1602 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1603 &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1604 Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1605 %
1606 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1607 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1608 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1609 &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1610 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1611 & + \frac{1}{4\pi \epsilon_0}
1612 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1613 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1614 \end{split}
1615 \end{equation}
1616 %
1617 Here we list the form of the non-zero damped shifted multipole torques showing
1618 explicitly dependences on body axes:
1619 %
1620 % t ca db
1621 %
1622 \begin{equation}
1623 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1624 \frac{C_{\bf a}}{4\pi \epsilon_0}
1625 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1626 \end{equation}
1627 %
1628 % t ca qb
1629 %
1630 \begin{equation}
1631 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1632 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1633 \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1634 \end{equation}
1635 %
1636 % t da cb
1637 %
1638 \begin{equation}
1639 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1640 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1641 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1642 \end{equation}%
1643 %
1644 %
1645 % ta da db
1646 %
1647 \begin{equation}
1648 \begin{split}
1649 % 1
1650 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1651 \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1652 (\hat{a}_m \times \hat{b}_n)
1653 D_{\mathbf{b}n} v_{21}(r) \\
1654 % 2
1655 &-\frac{1}{4\pi \epsilon_0}
1656 \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1657 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1658 \end{split}
1659 \end{equation}
1660 %
1661 % tb da db
1662 %
1663 \begin{equation}
1664 \begin{split}
1665 % 1
1666 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1667 -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1668 (\hat{a}_m \times \hat{b}_n)
1669 D_{\mathbf{b}n} v_{21}(r) \\
1670 % 2
1671 &+\frac{1}{4\pi \epsilon_0}
1672 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1673 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1674 \end{split}
1675 \end{equation}
1676 %
1677 % ta da qb
1678 %
1679 \begin{equation}
1680 \begin{split}
1681 % 1
1682 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1683 \frac{1}{4\pi \epsilon_0} \left(
1684 -\text{Tr}Q_{\mathbf{b}}
1685 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1686 +2\sum_{lmn}D_{\mathbf{a}l}
1687 (\hat{a}_l \times \hat{b}_m)
1688 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1689 \right) v_{31}(r)\\
1690 % 2
1691 &-\frac{1}{4\pi \epsilon_0}
1692 \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
1693 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1694 Q_{{\mathbf b}mn}
1695 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1696 \end{split}
1697 \end{equation}
1698 %
1699 % tb da qb
1700 %
1701 \begin{equation}
1702 \begin{split}
1703 % 1
1704 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
1705 \frac{1}{4\pi \epsilon_0} \left(
1706 -2\sum_{lmn}D_{\mathbf{a}l}
1707 (\hat{a}_l \cdot \hat{b}_m)
1708 Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
1709 -2\sum_{lmn}D_{\mathbf{a}l}
1710 (\hat{a}_l \times \hat{b}_m)
1711 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1712 \right) v_{31}(r) \\
1713 % 2
1714 &-\frac{2}{4\pi \epsilon_0}
1715 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1716 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1717 Q_{{\mathbf b}mn}
1718 (\hat{r}\times \hat{b}_n) v_{32}(r)
1719 \end{split}
1720 \end{equation}
1721 %
1722 % ta qa cb
1723 %
1724 \begin{equation}
1725 \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1726 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1727 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
1728 \end{equation}
1729 %
1730 % ta qa db
1731 %
1732 \begin{equation}
1733 \begin{split}
1734 % 1
1735 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
1736 \frac{1}{4\pi \epsilon_0} \left(
1737 2\sum_{lmn}D_{\mathbf{b}l}
1738 (\hat{b}_l \cdot \hat{a}_m)
1739 Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
1740 +2\sum_{lmn}D_{\mathbf{b}l}
1741 (\hat{a}_l \times \hat{b}_m)
1742 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1743 \right) v_{31}(r) \\
1744 % 2
1745 &+\frac{2}{4\pi \epsilon_0}
1746 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1747 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1748 Q_{{\mathbf a}mn}
1749 (\hat{r}\times \hat{a}_n) v_{32}(r)
1750 \end{split}
1751 \end{equation}
1752 %
1753 % tb qa db
1754 %
1755 \begin{equation}
1756 \begin{split}
1757 % 1
1758 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
1759 \frac{1}{4\pi \epsilon_0} \left(
1760 \text{Tr}Q_{\mathbf{a}}
1761 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
1762 +2\sum_{lmn}D_{\mathbf{b}l}
1763 (\hat{a}_l \times \hat{b}_m)
1764 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1765 \right) v_{31}(r)\\
1766 % 2
1767 &\frac{1}{4\pi \epsilon_0}
1768 \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
1769 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1770 Q_{{\mathbf a}mn}
1771 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1772 \end{split}
1773 \end{equation}
1774 %
1775 % ta qa qb
1776 %
1777 \begin{equation}
1778 \begin{split}
1779 % 1
1780 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
1781 -\frac{4}{4\pi \epsilon_0}
1782 \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
1783 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1784 (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
1785 % 2
1786 &+ \frac{1}{4\pi \epsilon_0}
1787 \Bigl[
1788 2\text{Tr}Q_{\mathbf{b}}
1789 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1790 Q_{{\mathbf a}lm}
1791 (\hat{r} \times \hat{a}_m)
1792 +4 \sum_{lmnp}
1793 (\hat{r} \times \hat{a}_l )
1794 Q_{{\mathbf a}lm}
1795 (\hat{a}_m \cdot \hat{b}_n)
1796 Q_{{\mathbf b}np}
1797 (\hat{b}_p \cdot \hat{r}) \\
1798 % 3
1799 &-4 \sum_{lmnp}
1800 (\hat{r} \cdot \hat{a}_l )
1801 Q_{{\mathbf a}lm}
1802 (\hat{a}_m \times \hat{b}_n)
1803 Q_{{\mathbf b}np}
1804 (\hat{b}_p \cdot \hat{r})
1805 \Bigr] v_{42}(r) \\
1806 % 4
1807 &+ \frac{2}{4\pi \epsilon_0}
1808 \sum_{lm} (\hat{r} \times \hat{a}_l)
1809 Q_{{\mathbf a}lm}
1810 (\hat{a}_m \cdot \hat{r})
1811 \sum_{np} (\hat{r} \cdot \hat{b}_n)
1812 Q_{{\mathbf b}np}
1813 (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
1814 \end{split}
1815 \end{equation}
1816 %
1817 % tb qa qb
1818 %
1819 \begin{equation}
1820 \begin{split}
1821 % 1
1822 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
1823 \frac{4}{4\pi \epsilon_0}
1824 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1825 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1826 (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
1827 % 2
1828 &+ \frac{1}{4\pi \epsilon_0}
1829 \Bigl[
1830 2\text{Tr}Q_{\mathbf{a}}
1831 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1832 Q_{{\mathbf b}lm}
1833 (\hat{r} \times \hat{b}_m)
1834 +4 \sum_{lmnp}
1835 (\hat{r} \cdot \hat{a}_l )
1836 Q_{{\mathbf a}lm}
1837 (\hat{a}_m \cdot \hat{b}_n)
1838 Q_{{\mathbf b}np}
1839 (\hat{r} \times \hat{b}_p) \\
1840 % 3
1841 &+4 \sum_{lmnp}
1842 (\hat{r} \cdot \hat{a}_l )
1843 Q_{{\mathbf a}lm}
1844 (\hat{a}_m \times \hat{b}_n)
1845 Q_{{\mathbf b}np}
1846 (\hat{b}_p \cdot \hat{r})
1847 \Bigr] v_{42}(r) \\
1848 % 4
1849 &+ \frac{2}{4\pi \epsilon_0}
1850 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1851 Q_{{\mathbf a}lm}
1852 (\hat{a}_m \cdot \hat{r})
1853 \sum_{np} (\hat{r} \times \hat{b}_n)
1854 Q_{{\mathbf b}np}
1855 (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
1856 \end{split}
1857 \end{equation}
1858 %
1859 \begin{table*}
1860 \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
1861 \begin{ruledtabular}
1862 \begin{tabular}{ccc}
1863 Generic&Method 1&Method 2
1864 \\ \hline
1865 %
1866 %
1867 %
1868 $w_a(r)$&
1869 $g_0(r)$&
1870 $g(r)-g(r_c)$ \\
1871 %
1872 %
1873 $w_b(r)$ &
1874 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
1875 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
1876 %
1877 $w_c(r)$ &
1878 $\frac{g_1(r)}{r} $ &
1879 $\frac{v_{11}(r)}{r}$ \\
1880 %
1881 %
1882 $w_d(r)$&
1883 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
1884 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
1885 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
1886 %
1887 $w_e(r)$ &
1888 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
1889 $\frac{v_{22}(r)}{r}$ \\
1890 %
1891 %
1892 $w_f(r)$&
1893 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
1894 $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
1895 &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
1896 %
1897 $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
1898 $\frac{v_{31}(r)}{r}$\\
1899 %
1900 $w_h(r)$ &
1901 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1902 $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
1903 &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1904 &&$-\frac{v_{31}(r)}{r}$\\
1905 % 2
1906 $w_i(r)$ &
1907 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1908 $\frac{v_{32}(r)}{r}$ \\
1909 %
1910 $w_j(r)$ &
1911 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
1912 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
1913 &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
1914 %
1915 $w_k(r)$ &
1916 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1917 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
1918 &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
1919 %
1920 $w_l(r)$ &
1921 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1922 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
1923 &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
1924 -\frac{2v_{42}(r)}{r}$ \\
1925 %
1926 $w_m(r)$ &
1927 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
1928 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
1929 &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
1930 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
1931 &&$-\frac{4v_{43}(r)}{r}$ \\
1932 %
1933 $w_n(r)$ &
1934 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1935 $\frac{v_{42}(r)}{r}$ \\
1936 %
1937 $w_o(r)$ &
1938 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1939 $\frac{v_{43}(r)}{r}$ \\
1940 %
1941 \end{tabular}
1942 \end{ruledtabular}
1943 \end{table*}
1944 \end{document}
1945 %
1946 % ****** End of file multipole.tex ******