ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3980
Committed: Fri Dec 6 18:50:14 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 76525 byte(s)
Log Message:
Latest edits

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 ]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
35 \usepackage{url}
36
37 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
38 %\linenumbers\relax % Commence numbering lines
39
40 \begin{document}
41
42 \preprint{AIP/123-QED}
43
44 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
45 {Real space alternatives to the Ewald
46 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
47
48 \author{Madan Lamichhane}
49 \affiliation{Department of Physics, University
50 of Notre Dame, Notre Dame, IN 46556}
51
52 \author{J. Daniel Gezelter}
53 \email{gezelter@nd.edu.}
54 \affiliation{Department of Chemistry and Biochemistry, University
55 of Notre Dame, Notre Dame, IN 46556}
56
57 \author{Kathie E. Newman}
58 \affiliation{Department of Physics, University
59 of Notre Dame, Notre Dame, IN 46556}
60
61
62 \date{\today}% It is always \today, today,
63 % but any date may be explicitly specified
64
65 \begin{abstract}
66 We have extended the original damped-shifted force (DSF)
67 electrostatic kernel and have been able to derive two new
68 electrostatic potentials for higher-order multipoles that are based
69 on truncated Taylor expansions around the cutoff radius. For
70 multipole-multipole interactions, we find that each of the distinct
71 orientational contributions has a separate radial function to ensure
72 that the overall forces and torques vanish at the cutoff radius. In
73 this paper, we present energy, force, and torque expressions for the
74 new models, and compare these real-space interaction models to exact
75 results for ordered arrays of multipoles.
76 \end{abstract}
77
78 \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
79 % Classification Scheme.
80 \keywords{Suggested keywords}%Use showkeys class option if keyword
81 %display desired
82 \maketitle
83
84 \section{Introduction}
85
86 There is increasing interest in real-space methods for calculating
87 electrostatic interactions in computer simulations of condensed
88 molecular
89 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90 The simplest of these techniques was developed by Wolf {\it et al.}
91 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 Fennell and Gezelter showed that a simple damped shifted force (DSF)
93 modification to Wolf's method could give nearly quantitative agreement
94 with smooth particle mesh Ewald (SPME)\cite{Essmann95} for quantities
95 of interest in Monte Carlo (i.e., configurational energy differences)
96 and Molecular Dynamics (i.e., atomic force and molecular torque
97 vectors).\cite{Fennell:2006zl}
98
99 The computational efficiency and the accuracy of the DSF method are
100 surprisingly good, particularly for systems with uniform charge
101 density. Additionally, dielectric constants obtained using DSF and
102 similar methods where the force vanishes at $R_\textrm{c}$ are
103 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
104 related methods have now been widely investigated,\cite{Hansen:2012uq}
105 and DSF is now used routinely in simulations of ionic
106 liquids,\cite{doi:10.1021/la400226g,McCann:2013fk} flow in carbon
107 nanotubes,\cite{kannam:094701} gas sorption in metal-organic framework
108 materials,\cite{Forrest:2012ly} thermal conductivity of methane
109 hydrates,\cite{English:2008kx} condensation coefficients of
110 water,\cite{Louden:2013ve} and in tribology at solid-liquid-solid
111 interfaces.\cite{Tokumasu:2013zr} DSF electrostatics provides a
112 compromise between the computational speed of real-space cutoffs and
113 the accuracy of fully-periodic Ewald treatments.
114
115 One common feature of many coarse-graining approaches, which treat
116 entire molecular subsystems as a single rigid body, is simplification
117 of the electrostatic interactions between these bodies so that fewer
118 site-site interactions are required to compute configurational
119 energies. Notably, the force matching approaches of Voth and coworkers
120 are an exciting development in their ability to represent realistic
121 (and {\it reactive}) chemical systems for very large length scales and
122 long times. This approach utilized a coarse-graining in interaction
123 space (CGIS) which fits an effective force for the coarse grained
124 system using a variational force-matching method to a fine-grained
125 simulation.\cite{Izvekov:2008wo}
126
127 The coarse-graining approaches of Ren \& coworkers,\cite{Golubkov06}
128 and Essex \&
129 coworkers,\cite{ISI:000276097500009,ISI:000298664400012}
130 both utilize Gay-Berne
131 ellipsoids~\cite{Berne72,Gay81,Luckhurst90,Cleaver96,Berardi98,Ravichandran:1999fk,Berardi99,Pasterny00}
132 to model dispersive interactions and point multipoles to model
133 electrostatics for entire molecules or functional groups.
134
135 Ichiye and coworkers have recently introduced a number of very fast
136 water models based on a ``sticky'' multipole model which are
137 qualitatively better at reproducing the behavior of real water than
138 the more common point-charge models (SPC/E, TIPnP). The point charge
139 models are also substantially more computationally demanding than the
140 sticky multipole
141 approach.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The
142 SSDQO model requires the use of an approximate multipole expansion
143 (AME) as the exact multipole expansion is quite expensive
144 (particularly when handled via the Ewald sum).\cite{Ichiye:2006qy}
145 Another particularly important use of point multipoles (and multipole
146 polarizability) is in the very high-quality AMOEBA water model and
147 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
148
149 Higher-order multipoles present a peculiar issue for molecular
150 dynamics. Multipolar interactions are inherently short-ranged, and
151 should not need the relatively expensive Ewald treatment. However,
152 real-space cutoff methods are normally applied in an orientation-blind
153 fashion so multipoles which leave and then re-enter a cutoff sphere in
154 a different orientation can cause energy discontinuities.
155
156 This paper outlines an extension of the original DSF electrostatic
157 kernel to point multipoles. We present in this paper two distinct
158 real-space interaction models for higher-order multipoles based on two
159 truncated Taylor expansions that are carried out at the cutoff radius.
160 We are calling these models {\bf Taylor-shifted} and {\bf
161 Gradient-shifted} electrostatics. Because of differences in the
162 initial assumptions, the two methods yield related, but different
163 expressions for energies, forces, and torques.
164
165 \section{Methodology}
166
167 \subsection{Self-neutralization, damping, and force-shifting}
168
169 The DSF and Wolf methods operate by neutralizing the total charge
170 contained within the cutoff sphere surrounding each particle. This is
171 accomplished by shifting the potential functions to generate image
172 charges on the surface of the cutoff sphere for each pair interaction
173 computed within $R_\textrm{c}$. An Ewald-like complementary error
174 function damping is applied to the potential to accelerate
175 convergence. The potential for the DSF method, where $\alpha$ is the
176 adjustable damping parameter, is given by
177 \begin{equation*}
178 V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
179 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
180 - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
181 + \frac{2\alpha}{\pi^{1/2}}
182 \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
183 \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
184 \label{eq:DSFPot}
185 \end{equation*}
186
187 To insure net charge neutrality within each cutoff sphere, an
188 additional ``self'' term is added to the potential. This term is
189 constant (as long as the charges and cutoff radius do not change), and
190 exists outside the normal pair-loop for molecular simulations. It can
191 be thought of as a contribution from a charge opposite in sign, but
192 equal in magnitude, to the central charge, which has been spread out
193 over the surface of the cutoff sphere. A portion of the self term is
194 identical to the self term in the Ewald summation, and comes from the
195 utilization of the complimentary error function for electrostatic
196 damping.\cite{deLeeuw80,Wolf99}
197
198 \begin{figure}
199 \includegraphics[width=\linewidth]{SM}
200 \caption{Reversed multipoles are projected onto the surface of the
201 cutoff sphere. The forces, torques, and potential are then smoothly
202 shifted to zero as the sites leave the cutoff region.}
203 \label{fig:shiftedMultipoles}
204 \end{figure}
205
206 \subsection{Multipole Expansion}
207
208 Consider two discrete rigid collections of point charges, denoted as
209 objects $\bf a$ and $\bf b$. In the following, we assume that the two
210 objects only interact via electrostatics and describe those
211 interactions in terms of a multipole expansion. Putting the origin of
212 the coordinate system at the center of mass of $\bf a$, we use vectors
213 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
214 a$. Then the electrostatic potential of object $\bf a$ at
215 $\mathbf{r}$ is given by
216 \begin{equation}
217 V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
218 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
219 \end{equation}
220 We write the Taylor series expansion in $r$ using an implied summation
221 notation, Greek indices are used to indicate space coordinates ($x$,
222 $y$, $z$) and the subscripts $k$ and $j$ are reserved for labelling
223 specific charges in $\bf a$ and $\bf b$ respectively, and find:
224 \begin{equation}
225 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
226 \left( 1
227 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
228 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
229 \right)
230 \frac{1}{r} .
231 \end{equation}
232 The electrostatic potential on $\bf a$ can then be expressed in terms
233 of multipole operators,
234 \begin{equation}
235 V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
236 \end{equation}
237 where
238 \begin{equation}
239 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
240 + Q_{{\bf a}\alpha\beta}
241 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
242 \end{equation}
243 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
244 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
245 a}\alpha\beta}$, respectively. These can be tied to distribution
246 of charges
247 \begin{equation}
248 C_{\bf a}=\sum_{k \, \text{in \bf a}} q_k ,
249 \end{equation}
250 \begin{equation}
251 D_{{\bf a}\alpha} = \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,
252 \end{equation}
253 \begin{equation}
254 Q_{{\bf a}\alpha\beta} = \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
255 \end{equation}
256
257 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
258 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
259 \begin{eqnarray}
260 U_{\bf{ab}}(r) =&& \frac{1}{4\pi \epsilon_0}
261 \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
262 \frac{q_k q_j}{\vert \bf{r}_k - (\bf{r}+\bf{r}_j) \vert} \nonumber\\
263 =&& \frac{1}{4\pi \epsilon_0}
264 \sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}}
265 \frac{q_k q_j}{\vert \bf{r}+ (\bf{r}_j-\bf{r}_k) \vert} \nonumber\\
266 =&&\frac{1}{4\pi \epsilon_0} \sum_{j \, \text{in \bf b}} q_j V_a(\bf{r}+\bf{r}_j) \nonumber\\
267 =&&\frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
268 \end{eqnarray}
269 The last expression can also be expanded as a Taylor series in $r$. Using a notation similar to before, we define
270 \begin{equation}
271 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
272 + Q_{{\bf b}\alpha\beta}
273 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
274 \end{equation}
275 and
276 \begin{equation}
277 U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
278 \end{equation}
279 Note the ease of separting out the respective energies of interaction of the charge, dipole, and quadrupole of $\bf a$ from those of $\bf b$.
280
281 \subsection{Bare Coulomb versus smeared charge}
282
283 With the four types of methods being considered here, it is desirable to list the approximations in as transparent a form
284 as possible. First, one may use the bare Coulomb potential, with radial dependence $1/r$,
285 as shown in Eq.~(\ref{kernel}). Alternatively, one may use
286 a smeared charge distribution, then the``kernel'' $1/r$ of the expansion is replaced with a function:
287 \begin{equation}
288 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
289 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
290 \end{equation}
291 We develop equations using a function $f(r)$ to represent either $1/r$ or $B_0(r)$, dependent on the the type of approach being considered.
292 Smith's convenient functions $B_l(r)$ are summarized in Appendix A.
293
294 \subsection{Shifting the force, method 1}
295
296 As discussed in the introduction, it is desirable to cutoff the electrostatic energy at a radius
297 $r_c$. For consistency in approximation, we want the interaction energy as well as the force and
298 torque to go to zero at $r=r_c$.
299 To describe how this goal may be met using a radial approximation, we use two examples, charge-charge
300 and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain the idea.
301
302 In the shifted-force approximation, the interaction energy $U_{\bf{ab}}(r_c)=0$
303 for two charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is written:
304 \begin{equation}
305 U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
306 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
307 \right) .
308 \end{equation}
309 Two shifting terms appear in this equations because we want the force to
310 also be shifted due to an image charge located at a distance $r_c$.
311 Since one derivative of the interaction energy is needed for the force, we want a term
312 linear in $(r-r_c)$ in the interaction energy, that is:
313 \begin{equation}
314 \frac{d\,}{dr}
315 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
316 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
317 \right) .
318 \end{equation}
319 This demonstrates the need of the third term in the brackets of the energy expression, but leads to the question, how does this idea generalize for higher-order multipole energies?
320
321 In method 1, the procedure that we follow is based on the number of derivatives need for each energy, force, or torque. That is,
322 a quadrupole-quadrupole interaction energy will have four derivatives,
323 $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$,
324 and the force or torque will bring in yet another derivative.
325 We thus want shifted energy expressions to include terms so that all energies, forces, and torques
326 are zero at $r=r_c$. In each case, we will subtract off a function $f_n^{\text{shift}}(r)$ from the
327 kernel $f(r)=1/r$. The index $n$ indicates the number of derivatives to be taken when
328 deriving a given multipole energy.
329 We choose a function with guaranteed smooth derivatives --- a truncated Taylor series of the function
330 $f(r)$, e.g.,
331 %
332 \begin{equation}
333 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert _{r_c} .
334 \end{equation}
335 %
336 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
337 Thus, for $f(r)=1/r$, we find
338 %
339 \begin{equation}
340 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
341 \end{equation}
342 %
343 Continuing with the example of a charge $\bf a$ interacting with a dipole $\bf b$, we write
344 %
345 \begin{equation}
346 U_{C_{\bf a}D_{\bf b}}(r)=
347 \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
348 =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
349 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
350 \end{equation}
351 %
352 The force that dipole $\bf b$ puts on charge $\bf a$ is
353 %
354 \begin{equation}
355 F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
356 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
357 \frac{r_\alpha r_\beta}{r^2}
358 \left( -\frac{1}{r} \frac {\partial} {\partial r}
359 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
360 \end{equation}
361 %
362 For $f(r)=1/r$, we find
363 %
364 \begin{equation}
365 F_{C_{\bf a}D_{\bf b}\beta} =
366 \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
367 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
368 +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
369 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
370 \end{equation}
371 %
372 This expansion shows the expected $1/r^3$ dependence of the force.
373
374 In general, we write
375 %
376 \begin{equation}
377 U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
378 \label{generic}
379 \end{equation}
380 %
381 where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
382 and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
383 An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
384 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
385 $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
386 implied summation combining the space indices.
387
388 To apply this method to the smeared-charge approach,
389 we write $f(r)=\text{erfc}(\alpha r)/r$. By using one function $f(r)$ for both
390 approaches, we simplify the tabulation of equations used. Because
391 of the many derivatives that are taken, the algebra is tedious and are summarized
392 in Appendices A and B.
393
394 \subsection{Shifting the force, method 2}
395
396 Note the method used in the previous subsection to shift a force is basically that of using
397 a truncated Taylor Series in the radius $r$. An alternate method exists, best explained by
398 writing one shifted formula for all interaction energies $U(r)$:
399 \begin{equation}
400 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
401 \end{equation}
402 Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
403 $(r-r_c)^n$ appear. The primary difference between methods 1 and 2 originates
404 with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
405 kernel. In method 2, it is applied to individual interaction energies of the multipole expansion.
406 Terms from this method thus have the general form:
407 \begin{equation}
408 U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
409 \label{generic2}
410 \end{equation}
411
412 Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
413 and are listed in Table I below.
414
415 \subsection{\label{sec:level2}Body and space axes}
416
417 Up to this point, all energies and forces have been written in terms of fixed space
418 coordinates $x$, $y$, $z$. Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
419 combine prefactors with radial functions. But because objects
420 $\bf a$ and $\bf b$ both translate and rotate as part of a MD simulation,
421 it is desirable to contract all $r$-dependent terms with dipole and quadrupole
422 moments expressed in terms of their body axes.
423 Since the interaction energy expressions will be used to derive both forces and torques,
424 we follow here the development of Allen and Germano, which was itself based on an
425 earlier paper by Price \em et al.\em
426
427 Denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
428 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
429 set of inertial body axes. (Note, these body axes are generally not the same as those for which the
430 quadrupole moment is diagonal.) Then,
431 %
432 \begin{eqnarray}
433 \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
434 \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
435 \end{eqnarray}
436 Allen and Germano define matrices $\hat{\mathbf {a}}$
437 and $\hat{\mathbf {b}}$ using these unit vectors:
438 \begin{eqnarray}
439 \hat{\mathbf {a}} =
440 \begin{pmatrix}
441 \hat{a}_1 \\
442 \hat{a}_2 \\
443 \hat{a}_3
444 \end{pmatrix}
445 =
446 \begin{pmatrix}
447 a_{1x} \quad a_{1y} \quad a_{1z} \\
448 a_{2x} \quad a_{2y} \quad a_{2z} \\
449 a_{3x} \quad a_{3y} \quad a_{3z}
450 \end{pmatrix}\\
451 \hat{\mathbf {b}} =
452 \begin{pmatrix}
453 \hat{b}_1 \\
454 \hat{b}_2 \\
455 \hat{b}_3
456 \end{pmatrix}
457 =
458 \begin{pmatrix}
459 b_{1x}\quad b_{1y} \quad b_{1z} \\
460 b_{2x} \quad b_{2y} \quad b_{2z} \\
461 b_{3x} \quad b_{3y} \quad b_{3z}
462 \end{pmatrix} .
463 \end{eqnarray}
464 %
465 These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
466 All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
467 It proves to be equally convenient to just write any contraction in terms of unit vectors
468 $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
469 We have found it useful to write angular-dependent terms in three different fashions,
470 illustrated by the following
471 three examples from the interaction-energy expressions:
472 %
473 \begin{eqnarray}
474 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
475 =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
476 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
477 r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
478 r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
479 \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
480 r ( \mathbf{D}_{\mathbf{a}} \cdot
481 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
482 D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
483 =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
484 (\hat{b}_n \cdot \hat{r}) .
485 \end{eqnarray}
486 %
487 [Dan, perhaps there are better examples to show here.]
488
489 In each line, the first two terms are written using space coordinates. The first form is standard
490 in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
491 form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
492 We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
493 in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
494 be discussed below.
495
496
497 \section{The Self-Interaction}
498 The Wolf summation~\cite{Wolf99} and the later damped shifted force
499 (DSF) extension~\cite{Fennell06} included self-interactions that are
500 handled separately from the pairwise interactions between sites. The
501 self-term is normally calculated via a single loop over all sites in
502 the system, and is relatively cheap to evaluate. The self-interaction
503 has contributions from two sources:
504 \begin{itemize}
505 \item The neutralization procedure within the cutoff radius requires a
506 contribution from a charge opposite in sign, but equal in magnitude,
507 to the central charge, which has been spread out over the surface of
508 the cutoff sphere. For a system of undamped charges, the total
509 self-term is
510 \begin{equation}
511 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
512 \label{eq:selfTerm}
513 \end{equation}
514 Note that in this potential and in all electrostatic quantities that
515 follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
516 clarity.
517 \item Charge damping with the complementary error function is a
518 partial analogy to the Ewald procedure which splits the interaction
519 into real and reciprocal space sums. The real space sum is retained
520 in the Wolf and DSF methods. The reciprocal space sum is first
521 minimized by folding the largest contribution (the self-interaction)
522 into the self-interaction from charge neutralization of the damped
523 potential. The remainder of the reciprocal space portion is then
524 discarded (as this contributes the largest computational cost and
525 complexity to the Ewald sum). For a system containing only damped
526 charges, the complete self-interaction can be written as
527 \begin{equation}
528 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
529 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
530 C_{\bf a}^{2}.
531 \label{eq:dampSelfTerm}
532 \end{equation}
533 \end{itemize}
534
535 The extension of DSF electrostatics to point multipoles requires
536 treatment of {\it both} the self-neutralization and reciprocal
537 contributions to the self-interaction for higher order multipoles. In
538 this section we give formulae for these interactions up to quadrupolar
539 order.
540
541 The self-neutralization term is computed by taking the {\it
542 non-shifted} kernel for each interaction, placing a multipole of
543 equal magnitude (but opposite in polarization) on the surface of the
544 cutoff sphere, and averaging over the surface of the cutoff sphere.
545 Because the self term is carried out as a single sum over sites, the
546 reciprocal-space portion is identical to half of the self-term
547 obtained by Smith and Aguado and Madden for the application of the
548 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
549 site which posesses a charge, dipole, and multipole, both types of
550 contribution are given in table \ref{tab:tableSelf}.
551
552 \begin{table*}
553 \caption{\label{tab:tableSelf} Self-interaction contributions for
554 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
555 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
556 \begin{ruledtabular}
557 \begin{tabular}{lccc}
558 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
559 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
560 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
561 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
562 Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
563 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
564 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
565 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
566 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
567 \end{tabular}
568 \end{ruledtabular}
569 \end{table*}
570
571 For sites which simultaneously contain charges and quadrupoles, the
572 self-interaction includes a cross-interaction between these two
573 multipole orders. Symmetry prevents the charge-dipole and
574 dipole-quadrupole interactions from contributing to the
575 self-interaction. The functions that go into the self-neutralization
576 terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
577 derivatives of the electrostatic kernel (either the undamped $1/r$ or
578 the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that are
579 evaluated at the cutoff distance. For undamped interactions, $f(r_c)
580 = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For damped interactions,
581 $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so on. Appendix XX
582 contains recursion relations that allow rapid evaluation of these
583 derivatives.
584
585 \section{Energies, forces, and torques}
586 \subsection{Interaction energies}
587
588 We now list multipole interaction energies for the four types of approximation.
589 A ``generic'' set of radial functions is introduced so to be able to present the results in Table I. This set of
590 equations is written in terms of space coordinates:
591
592 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
593 %
594 %
595 % u ca cb
596 %
597 \begin{equation}
598 U_{C_{\bf a}C_{\bf b}}(r)=
599 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
600 \end{equation}
601 %
602 % u ca db
603 %
604 \begin{equation}
605 U_{C_{\bf a}D_{\bf b}}(r)=
606 \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
607 \label{uchdip}
608 \end{equation}
609 %
610 % u ca qb
611 %
612 \begin{equation}
613 U_{C_{\bf a}Q_{\bf b}}(r)=
614 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
615 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
616 \label{uchquad}
617 \end{equation}
618 %
619 % u da cb
620 %
621 \begin{equation}
622 U_{D_{\bf a}C_{\bf b}}(r)=
623 -\frac{C_{\bf b}}{4\pi \epsilon_0}
624 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
625 \end{equation}
626 %
627 % u da db
628 %
629 \begin{equation}
630 U_{D_{\bf a}D_{\bf b}}(r)=
631 -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
632 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
633 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
634 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
635 v_{22}(r) \Bigr]
636 \label{udipdip}
637 \end{equation}
638 %
639 % u da qb
640 %
641 \begin{equation}
642 \begin{split}
643 % 1
644 U_{D_{\bf a}Q_{\bf b}}(r)&=
645 -\frac{1}{4\pi \epsilon_0} \Bigl[
646 \text{Tr}\mathbf{Q}_{\mathbf{b}}
647 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
648 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
649 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
650 % 2
651 &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
652 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
653 \label{udipquad}
654 \end{split}
655 \end{equation}
656 %
657 % u qa cb
658 %
659 \begin{equation}
660 U_{Q_{\bf a}C_{\bf b}}(r)=
661 \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
662 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
663 \label{uquadch}
664 \end{equation}
665 %
666 % u qa db
667 %
668 \begin{equation}
669 \begin{split}
670 %1
671 U_{Q_{\bf a}D_{\bf b}}(r)&=
672 \frac{1}{4\pi \epsilon_0} \Bigl[
673 \text{Tr}\mathbf{Q}_{\mathbf{a}}
674 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
675 +2 ( \mathbf{D}_{\mathbf{b}} \cdot
676 \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
677 % 2
678 +\frac{1}{4\pi \epsilon_0}
679 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
680 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
681 \label{uquaddip}
682 \end{split}
683 \end{equation}
684 %
685 % u qa qb
686 %
687 \begin{equation}
688 \begin{split}
689 %1
690 U_{Q_{\bf a}Q_{\bf b}}(r)&=
691 \frac{1}{4\pi \epsilon_0} \Bigl[
692 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
693 +2 \text{Tr} \left(
694 \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
695 \\
696 % 2
697 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
698 \left( \hat{r} \cdot
699 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
700 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
701 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
702 \cdot \hat{r} \right) +4 (\hat{r} \cdot
703 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
704 \Bigr] v_{42}(r)
705 \\
706 % 4
707 &+ \frac{1}{4\pi \epsilon_0}
708 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
709 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
710 \label{uquadquad}
711 \end{split}
712 \end{equation}
713
714
715 %
716 %
717 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
718 %
719
720 \begin{table*}
721 \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
722 used in this table are defined in Appendices B and C.}
723 \begin{ruledtabular}
724 \begin{tabular}{cccc}
725 Generic&Coulomb&Method 1&Method 2
726 \\ \hline
727 %
728 %
729 %
730 %Ch-Ch&
731 $v_{01}(r)$ &
732 $\frac{1}{r}$ &
733 $f_0(r)$ &
734 $f(r)-f(r_c)-(r-r_c)g(r_c)$
735 \\
736 %
737 %
738 %
739 %Ch-Di&
740 $v_{11}(r)$ &
741 $-\frac{1}{r^2}$ &
742 $g_1(r)$ &
743 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
744 %
745 %
746 %
747 %Ch-Qu/Di-Di&
748 $v_{21}(r)$ &
749 $-\frac{1}{r^3} $ &
750 $\frac{g_2(r)}{r} $ &
751 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
752 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
753 $v_{22}(r)$ &
754 $\frac{3}{r^3} $ &
755 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
756 $\left(-\frac{g(r)}{r}+h(r) \right)
757 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
758 &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
759 \\
760 %
761 %
762 %
763 %Di-Qu &
764 $v_{31}(r)$ &
765 $\frac{3}{r^4} $ &
766 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
767 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
768 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
769 &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
770 \\
771 %
772 $v_{32}(r)$ &
773 $-\frac{15}{r^4} $ &
774 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
775 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
776 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
777 &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
778 \\
779 %
780 %
781 %
782 %Qu-Qu&
783 $v_{41}(r)$ &
784 $\frac{3}{r^5} $ &
785 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
786 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
787 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
788 &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
789 \\
790 % 2
791 $v_{42}(r)$ &
792 $- \frac{15}{r^5} $ &
793 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
794 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
795 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
796 &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
797 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
798 \\
799 % 3
800 $v_{43}(r)$ &
801 $ \frac{105}{r^5} $ &
802 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
803 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
804 &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
805 &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
806 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
807 \end{tabular}
808 \end{ruledtabular}
809 \end{table*}
810 %
811 %
812 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
813 %
814
815 \begin{table}
816 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
817 \begin{ruledtabular}
818 \begin{tabular}{cc}
819 Generic&Method 1 or Method 2
820 \\ \hline
821 %
822 %
823 %
824 $w_a(r)$&
825 $\frac{d v_{01}}{dr}$ \\
826 %
827 %
828 $w_b(r)$ &
829 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
830 %
831 $w_c(r)$ &
832 $\frac{v_{11}(r)}{r}$ \\
833 %
834 %
835 $w_d(r)$&
836 $\frac{d v_{21}}{dr}$ \\
837 %
838 $w_e(r)$ &
839 $\frac{v_{22}(r)}{r}$ \\
840 %
841 %
842 $w_f(r)$&
843 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
844 %
845 $w_g(r)$&
846 $\frac{v_{31}(r)}{r}$\\
847 %
848 $w_h(r)$ &
849 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
850 % 2
851 $w_i(r)$ &
852 $\frac{v_{32}(r)}{r}$ \\
853 %
854 $w_j(r)$ &
855 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
856 %
857 $w_k(r)$ &
858 $\frac{d v_{41}}{dr} $ \\
859 %
860 $w_l(r)$ &
861 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
862 %
863 $w_m(r)$ &
864 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
865 %
866 $w_n(r)$ &
867 $\frac{v_{42}(r)}{r}$ \\
868 %
869 $w_o(r)$ &
870 $\frac{v_{43}(r)}{r}$ \\
871 %
872
873 \end{tabular}
874 \end{ruledtabular}
875 \end{table}
876 %
877 %
878 %
879
880 \subsection{Forces}
881
882 The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
883 the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
884 interaction, these forces will point along the $\pm \hat{r}$ directions, where
885 $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
886 %
887 \begin{equation}
888 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
889 \quad \text{and} \quad F_{\bf b \alpha}
890 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
891 \end{equation}
892 %
893 The concept of obtaining a force from an energy by taking a gradient is the same for
894 higher-order multipole interactions, the trick is to make sure that all
895 $r$-dependent derivatives are considered.
896 As is pointed out by Allen and Germano, this is straightforward if the
897 interaction energies are written recognizing explicit
898 $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
899 %
900 \begin{equation}
901 U(r,\{\hat{a}_m \cdot \hat{r} \},
902 \{\hat{b}_n\cdot \hat{r} \}
903 \{\hat{a}_m \cdot \hat{b}_n \}) .
904 \label{ugeneral}
905 \end{equation}
906 %
907 Then,
908 %
909 \begin{equation}
910 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
911 = \frac{\partial U}{\partial r} \hat{r}
912 + \sum_m \left[
913 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
914 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
915 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
916 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
917 \right] \label{forceequation}.
918 \end{equation}
919 %
920 Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
921 that of Allen and Germano. In simplifying the algebra, we also use:
922 %
923 \begin{eqnarray}
924 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
925 = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
926 \right) \\
927 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
928 = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
929 \right) .
930 \end{eqnarray}
931 %
932 We list below the force equations written in terms of space coordinates. The
933 radial functions used in the two methods are listed in Table II.
934 %
935 %SPACE COORDINATES FORCE EQUTIONS
936 %
937 % **************************************************************************
938 % f ca cb
939 %
940 \begin{equation}
941 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
942 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
943 \end{equation}
944 %
945 %
946 %
947 \begin{equation}
948 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
949 \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
950 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
951 w_b(r) \hat{r}
952 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
953 \end{equation}
954 %
955 %
956 %
957 \begin{equation}
958 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
959 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
960 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
961 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
962 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
963 \end{equation}
964 %
965 %
966 %
967 \begin{equation}
968 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
969 -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
970 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
971 + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
972 \end{equation}
973 %
974 %
975 %
976 \begin{equation}
977 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
978 \frac{1}{4\pi \epsilon_0} \Bigl[
979 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
980 + \left( \mathbf{D}_{\mathbf {a}}
981 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
982 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
983 % 2
984 - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
985 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
986 \end{equation}
987 %
988 %
989 %
990 \begin{equation}
991 \begin{split}
992 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
993 & - \frac{1}{4\pi \epsilon_0} \Bigl[
994 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
995 +2 \mathbf{D}_{\mathbf{a}} \cdot
996 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
997 - \frac{1}{4\pi \epsilon_0} \Bigl[
998 \text{Tr}\mathbf{Q}_{\mathbf{b}}
999 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1000 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1001 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1002 % 3
1003 & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1004 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1005 w_i(r)
1006 % 4
1007 -\frac{1}{4\pi \epsilon_0}
1008 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1009 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
1010 \end{split}
1011 \end{equation}
1012 %
1013 %
1014 \begin{equation}
1015 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1016 \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1017 \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1018 + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1019 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1020 \end{equation}
1021 %
1022 \begin{equation}
1023 \begin{split}
1024 \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1025 &\frac{1}{4\pi \epsilon_0} \Bigl[
1026 \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1027 +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1028 % 2
1029 + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1030 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1031 +2 (\mathbf{D}_{\mathbf{b}} \cdot
1032 \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1033 % 3
1034 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1035 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1036 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1037 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1038 % 4
1039 +\frac{1}{4\pi \epsilon_0}
1040 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1041 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1042 \end{split}
1043 \end{equation}
1044 %
1045 %
1046 %
1047 \begin{equation}
1048 \begin{split}
1049 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1050 +\frac{1}{4\pi \epsilon_0} \Bigl[
1051 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1052 + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1053 % 2
1054 +\frac{1}{4\pi \epsilon_0} \Bigl[
1055 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1056 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1057 % 3
1058 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1059 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1060 % 4
1061 + \frac{1}{4\pi \epsilon_0} \Bigl[
1062 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1063 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1064 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1065 % 5
1066 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1067 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1068 %
1069 + \frac{1}{4\pi \epsilon_0} \Bigl[
1070 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1071 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1072 %6
1073 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1074 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1075 % 7
1076 + \frac{1}{4\pi \epsilon_0}
1077 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1078 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1079 \end{split}
1080 \end{equation}
1081 %
1082 %
1083 % TORQUES SECTION -----------------------------------------------------------------------------------------
1084 %
1085 \subsection{Torques}
1086
1087 Following again Allen and Germano, when energies are written in the form
1088 of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1089 %
1090 \begin{eqnarray}
1091 \mathbf{\tau}_{\bf a} =
1092 \sum_m
1093 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1094 ( \hat{r} \times \hat{a}_m )
1095 -\sum_{mn}
1096 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1097 (\hat{a}_m \times \hat{b}_n) \\
1098 %
1099 \mathbf{\tau}_{\bf b} =
1100 \sum_m
1101 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1102 ( \hat{r} \times \hat{b}_m)
1103 +\sum_{mn}
1104 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1105 (\hat{a}_m \times \hat{b}_n) .
1106 \end{eqnarray}
1107 %
1108 %
1109 Here we list the torque equations written in terms of space coordinates.
1110 %
1111 %
1112 %
1113 \begin{equation}
1114 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1115 \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
1116 \end{equation}
1117 %
1118 %
1119 %
1120 \begin{equation}
1121 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1122 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1123 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
1124 \end{equation}
1125 %
1126 %
1127 %
1128 \begin{equation}
1129 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1130 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1131 (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1132 \end{equation}
1133 %
1134 %
1135 %
1136 \begin{equation}
1137 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
1138 \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1139 % 2
1140 -\frac{1}{4\pi \epsilon_0}
1141 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1142 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1143 \end{equation}
1144 %
1145 %
1146 %
1147 \begin{equation}
1148 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1149 -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1150 % 2
1151 +\frac{1}{4\pi \epsilon_0}
1152 (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1153 (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1154 \end{equation}
1155 %
1156 %
1157 %
1158 \begin{equation}
1159 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1160 \frac{1}{4\pi \epsilon_0} \Bigl[
1161 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1162 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1163 +2 \mathbf{D}_{\mathbf{a}} \times
1164 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1165 \Bigr] v_{31}(r)
1166 % 3
1167 -\frac{1}{4\pi \epsilon_0}
1168 \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1169 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
1170 \end{equation}
1171 %
1172 %
1173 %
1174 \begin{equation}
1175 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
1176 \frac{1}{4\pi \epsilon_0} \Bigl[
1177 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1178 \hat{r}
1179 -2 \mathbf{D}_{\mathbf{a}} \times
1180 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1181 \Bigr] v_{31}(r)
1182 % 2
1183 +\frac{2}{4\pi \epsilon_0}
1184 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1185 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1186 \end{equation}
1187 %
1188 %
1189 %
1190 \begin{equation}
1191 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1192 \frac{1}{4\pi \epsilon_0} \Bigl[
1193 -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1194 +2 \mathbf{D}_{\mathbf{b}} \times
1195 (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1196 \Bigr] v_{31}(r)
1197 % 3
1198 - \frac{2}{4\pi \epsilon_0}
1199 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1200 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1201 \end{equation}
1202 %
1203 %
1204 %
1205 \begin{equation}
1206 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1207 \frac{1}{4\pi \epsilon_0} \Bigl[
1208 \text{Tr}\mathbf{Q}_{\mathbf{a}}
1209 (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1210 +2 \mathbf{D}_{\mathbf{b}} \times
1211 ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1212 % 2
1213 +\frac{1}{4\pi \epsilon_0}
1214 (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1215 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1216 \end{equation}
1217 %
1218 %
1219 %
1220 \begin{equation}
1221 \begin{split}
1222 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1223 &-\frac{4}{4\pi \epsilon_0}
1224 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1225 v_{41}(r) \\
1226 % 2
1227 &+ \frac{1}{4\pi \epsilon_0}
1228 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1229 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1230 +4 \hat{r} \times
1231 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1232 % 3
1233 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1234 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1235 % 4
1236 &+ \frac{2}{4\pi \epsilon_0}
1237 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1238 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1239 \end{split}
1240 \end{equation}
1241 %
1242 %
1243 %
1244 \begin{equation}
1245 \begin{split}
1246 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1247 &\frac{4}{4\pi \epsilon_0}
1248 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1249 % 2
1250 &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1251 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1252 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1253 \mathbf{Q}_{{\mathbf b}} ) \times
1254 \hat{r}
1255 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1256 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1257 \Bigr] v_{42}(r) \\
1258 % 4
1259 &+ \frac{2}{4\pi \epsilon_0}
1260 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1261 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1262 \end{split}
1263 \end{equation}
1264 %
1265
1266 \section{Comparison to known multipolar energies}
1267
1268 To understand how these new real-space multipole methods behave in
1269 computer simulations, it is vital to test against established methods
1270 for computing electrostatic interactions in periodic systems, and to
1271 evaluate the size and sources of any errors that arise from the
1272 real-space cutoffs. In this paper we test Taylor-shifted and
1273 Gradient-shifted electrostatics against analytical methods for
1274 computing the energies of ordered multipolar arrays. In the following
1275 paper, we test the new methods against the multipolar Ewald sum for
1276 computing the energies, forces and torques for a wide range of typical
1277 condensed-phase (disordered) systems.
1278
1279 Because long-range electrostatic effects can be significant in
1280 crystalline materials, ordered multipolar arrays present one of the
1281 biggest challenges for real-space cutoff methods. The dipolar
1282 analogues to the Madelung constants were first worked out by Sauer,
1283 who computed the energies of ordered dipole arrays of zero
1284 magnetization and obtained a number of these constants.\cite{Sauer}
1285 This theory was developed more completely by Luttinger and
1286 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1287 other periodic structures. We have repeated the Luttinger \& Tisza
1288 series summations to much higher order and obtained the following
1289 energy constants (converged to one part in $10^9$):
1290 \begin{table*}
1291 \centering{
1292 \caption{Luttinger \& Tisza arrays and their associated
1293 energy constants. Type "A" arrays have nearest neighbor strings of
1294 antiparallel dipoles. Type "B" arrays have nearest neighbor
1295 strings of antiparallel dipoles if the dipoles are contained in a
1296 plane perpendicular to the dipole direction that passes through
1297 the dipole.}
1298 }
1299 \label{tab:LT}
1300 \begin{ruledtabular}
1301 \begin{tabular}{cccc}
1302 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1303 A & SC & 001 & -2.676788684 \\
1304 A & BCC & 001 & 0 \\
1305 A & BCC & 111 & -1.770078733 \\
1306 A & FCC & 001 & 2.166932835 \\
1307 A & FCC & 011 & -1.083466417 \\
1308
1309 * & BCC & minimum & -1.985920929 \\
1310
1311 B & SC & 001 & -2.676788684 \\
1312 B & BCC & 001 & -1.338394342 \\
1313 B & BCC & 111 & -1.770078733 \\
1314 B & FCC & 001 & -1.083466417 \\
1315 B & FCC & 011 & -1.807573634
1316 \end{tabular}
1317 \end{ruledtabular}
1318 \end{table*}
1319
1320 In addition to the A and B arrays, there is an additional minimum
1321 energy structure for the BCC lattice that was found by Luttinger \&
1322 Tisza. The total electrostatic energy for an array is given by:
1323 \begin{equation}
1324 E = C N^2 \mu^2
1325 \end{equation}
1326 where $C$ is the energy constant given above, $N$ is the number of
1327 dipoles per unit volume, and $\mu$ is the strength of the dipole.
1328
1329 {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1330 computed the energies of selected quadrupole arrays based on
1331 extensions to the Luttinger and Tisza
1332 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1333 energy constants for the lowest energy configurations for linear
1334 quadrupoles shown in table \ref{tab:NNQ}
1335
1336 \begin{table*}
1337 \centering{
1338 \caption{Nagai and Nakamura Quadurpolar arrays}}
1339 \label{tab:NNQ}
1340 \begin{ruledtabular}
1341 \begin{tabular}{ccc}
1342 Lattice & Quadrupole Direction & Energy constants \\ \hline
1343 SC & 111 & -8.3 \\
1344 BCC & 011 & -21.7 \\
1345 FCC & 111 & -80.5
1346 \end{tabular}
1347 \end{ruledtabular}
1348 \end{table*}
1349
1350 In analogy to the dipolar arrays, the total electrostatic energy for
1351 the quadrupolar arrays is:
1352 \begin{equation}
1353 E = C \frac{3}{4} N^2 Q^2
1354 \end{equation}
1355 where $Q$ is the quadrupole moment.
1356
1357
1358
1359
1360
1361
1362
1363
1364 \begin{acknowledgments}
1365 Support for this project was provided by the National Science
1366 Foundation under grant CHE-0848243. Computational time was provided by
1367 the Center for Research Computing (CRC) at the University of Notre
1368 Dame.
1369 \end{acknowledgments}
1370
1371 \appendix
1372
1373 \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1374
1375 The following summarizes Smith's $B_l(r)$ functions and
1376 includes formulas given in his appendix.
1377
1378 The first function $B_0(r)$ is defined by
1379 %
1380 \begin{equation}
1381 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1382 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1383 \end{equation}
1384 %
1385 The first derivative of this function is
1386 %
1387 \begin{equation}
1388 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1389 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1390 \end{equation}
1391 %
1392 and can be rewritten in terms of a function $B_1(r)$:
1393 %
1394 \begin{equation}
1395 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1396 \end{equation}
1397 %
1398 In general,
1399 \begin{equation}
1400 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1401 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1402 \text{e}^{-{\alpha}^2r^2}
1403 \right] .
1404 \end{equation}
1405 %
1406 Using these formulas, we find
1407 %
1408 \begin{eqnarray}
1409 \frac{dB_0}{dr}=-rB_1(r) \\
1410 \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1411 \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1412 \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1413 \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1414 \end{eqnarray}
1415 %
1416 As noted by Smith,
1417 %
1418 \begin{equation}
1419 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1420 +\text{O}(r) .
1421 \end{equation}
1422
1423 \section{Method 1, the $r$-dependent factors}
1424
1425 Using the shifted damped functions $f_n(r)$ defined by:
1426 %
1427 \begin{equation}
1428 f_n(r)= B_0 \Big \lvert _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert _{r_c} ,
1429 \end{equation}
1430 %
1431 we first provide formulas for successive derivatives of this function. (If there is
1432 no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.) First, we find:
1433 %
1434 \begin{equation}
1435 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1436 \end{equation}
1437 %
1438 This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1439 define higher-order derivatives as follows:
1440 %
1441 \begin{eqnarray}
1442 g_n(r)= \frac{d f_n}{d r} =
1443 B_0^{(1)} \Big \lvert _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert _{r_c} \\
1444 h_n(r)= \frac{d^2f_n}{d r^2} =
1445 B_0^{(2)} \Big \lvert _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert _{r_c} \\
1446 s_n(r)= \frac{d^3f_n}{d r^3} =
1447 B_0^{(3)} \Big \lvert _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert _{r_c} \\
1448 t_n(r)= \frac{d^4f_n}{d r^4} =
1449 B_0^{(4)} \Big \lvert _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert _{r_c} \\
1450 u_n(r)= \frac{d^5f_n}{d r^5} =
1451 B_0^{(5)} \Big \lvert _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert _{r_c} .
1452 \end{eqnarray}
1453 %
1454 We note that the last function needed (for quadrupole-quadrupole) is
1455 %
1456 \begin{equation}
1457 u_4(r)=B_0^{(5)} \Big \lvert _r - B_0^{(5)} \Big \lvert _{r_c} .
1458 \end{equation}
1459
1460 The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1461 from $0$ to $r_c$. The functions needed are listed schematically below:
1462 %
1463 \begin{eqnarray}
1464 f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1465 g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1466 h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1467 s_2 \quad s_3 \quad &s_4 \nonumber \\
1468 t_3 \quad &t_4 \nonumber \\
1469 &u_4 \nonumber .
1470 \end{eqnarray}
1471
1472 Using these functions, we find
1473 %
1474 \begin{equation}
1475 \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1476 \end{equation}
1477 %
1478 \begin{equation}
1479 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1480 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1481 \end{equation}
1482 %
1483 \begin{equation}
1484 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1485 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1486 \delta_{ \beta \gamma} r_\alpha \right)
1487 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1488 + r_\alpha r_\beta r_\gamma
1489 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1490 \end{equation}
1491 %
1492 \begin{eqnarray}
1493 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1494 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1495 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1496 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1497 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1498 + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1499 + \text{5 perm}
1500 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1501 \right) \nonumber \\
1502 + r_\alpha r_\beta r_\gamma r_\delta
1503 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1504 + \frac{t_n}{r^4} \right)
1505 \end{eqnarray}
1506 %
1507 \begin{eqnarray}
1508 \frac{\partial^5 f_n}
1509 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1510 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1511 + \text{14 perm} \right)
1512 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1513 + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1514 + \text{9 perm}
1515 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1516 \right) \nonumber \\
1517 + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1518 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1519 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1520 \end{eqnarray}
1521 %
1522 %
1523 %
1524 \section{Method 2, the $r$-dependent factors}
1525
1526 In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1527 see Eq. (20?). For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1528 of the kernel $B_0(r)$. To denote these terms, we generalize the notation of the previous appendix.
1529 For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1530 %
1531 \begin{eqnarray}
1532 g(r)= \frac{df}{d r}\\
1533 h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1534 s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1535 t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1536 u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1537 \end{eqnarray}
1538 %
1539 For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.'' Checks of algebra can be made by using limiting forms
1540 of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$. Equations (B9) to B(13)
1541 are correct for method 2 if one just eliminates the subscript $n$.
1542
1543 \section{Extra Material}
1544 %
1545 %
1546 %Energy in body coordinate form ---------------------------------------------------------------
1547 %
1548 Here are the interaction energies written in terms of the body coordinates:
1549
1550 %
1551 % u ca cb
1552 %
1553 \begin{equation}
1554 U_{C_{\bf a}C_{\bf b}}(r)=
1555 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1556 \end{equation}
1557 %
1558 % u ca db
1559 %
1560 \begin{equation}
1561 U_{C_{\bf a}D_{\bf b}}(r)=
1562 \frac{C_{\bf a}}{4\pi \epsilon_0}
1563 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1564 \end{equation}
1565 %
1566 % u ca qb
1567 %
1568 \begin{equation}
1569 U_{C_{\bf a}Q_{\bf b}}(r)=
1570 \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1571 v_{21}(r) \nonumber \\
1572 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1573 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1574 v_{22}(r)
1575 \end{equation}
1576 %
1577 % u da cb
1578 %
1579 \begin{equation}
1580 U_{D_{\bf a}C_{\bf b}}(r)=
1581 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1582 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1583 \end{equation}
1584 %
1585 % u da db
1586 %
1587 \begin{equation}
1588 \begin{split}
1589 % 1
1590 U_{D_{\bf a}D_{\bf b}}(r)&=
1591 -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1592 (\hat{a}_m \cdot \hat{b}_n)
1593 D_{\mathbf{b}n} v_{21}(r) \\
1594 % 2
1595 &-\frac{1}{4\pi \epsilon_0}
1596 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1597 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1598 v_{22}(r)
1599 \end{split}
1600 \end{equation}
1601 %
1602 % u da qb
1603 %
1604 \begin{equation}
1605 \begin{split}
1606 % 1
1607 U_{D_{\bf a}Q_{\bf b}}(r)&=
1608 -\frac{1}{4\pi \epsilon_0} \left(
1609 \text{Tr}Q_{\mathbf{b}}
1610 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1611 +2\sum_{lmn}D_{\mathbf{a}l}
1612 (\hat{a}_l \cdot \hat{b}_m)
1613 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1614 \right) v_{31}(r) \\
1615 % 2
1616 &-\frac{1}{4\pi \epsilon_0}
1617 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1618 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1619 Q_{{\mathbf b}mn}
1620 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1621 \end{split}
1622 \end{equation}
1623 %
1624 % u qa cb
1625 %
1626 \begin{equation}
1627 U_{Q_{\bf a}C_{\bf b}}(r)=
1628 \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1629 +\frac{C_{\bf b}}{4\pi \epsilon_0}
1630 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1631 \end{equation}
1632 %
1633 % u qa db
1634 %
1635 \begin{equation}
1636 \begin{split}
1637 %1
1638 U_{Q_{\bf a}D_{\bf b}}(r)&=
1639 \frac{1}{4\pi \epsilon_0} \left(
1640 \text{Tr}Q_{\mathbf{a}}
1641 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1642 +2\sum_{lmn}D_{\mathbf{b}l}
1643 (\hat{b}_l \cdot \hat{a}_m)
1644 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1645 \right) v_{31}(r) \\
1646 % 2
1647 &+\frac{1}{4\pi \epsilon_0}
1648 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1649 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1650 Q_{{\mathbf a}mn}
1651 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1652 \end{split}
1653 \end{equation}
1654 %
1655 % u qa qb
1656 %
1657 \begin{equation}
1658 \begin{split}
1659 %1
1660 U_{Q_{\bf a}Q_{\bf b}}(r)&=
1661 \frac{1}{4\pi \epsilon_0} \Bigl[
1662 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1663 +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1664 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1665 (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1666 v_{41}(r) \\
1667 % 2
1668 &+ \frac{1}{4\pi \epsilon_0}
1669 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1670 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1671 Q_{{\mathbf b}lm}
1672 (\hat{b}_m \cdot \hat{r})
1673 +\text{Tr}Q_{\mathbf{b}}
1674 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1675 Q_{{\mathbf a}lm}
1676 (\hat{a}_m \cdot \hat{r}) \\
1677 % 3
1678 &+4 \sum_{lmnp}
1679 (\hat{r} \cdot \hat{a}_l )
1680 Q_{{\mathbf a}lm}
1681 (\hat{a}_m \cdot \hat{b}_n)
1682 Q_{{\mathbf b}np}
1683 (\hat{b}_p \cdot \hat{r})
1684 \Bigr] v_{42}(r) \\
1685 % 4
1686 &+ \frac{1}{4\pi \epsilon_0}
1687 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1688 Q_{{\mathbf a}lm}
1689 (\hat{a}_m \cdot \hat{r})
1690 \sum_{np} (\hat{r} \cdot \hat{b}_n)
1691 Q_{{\mathbf b}np}
1692 (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1693 \end{split}
1694 \end{equation}
1695 %
1696
1697
1698 % BODY coordinates force equations --------------------------------------------
1699 %
1700 %
1701 Here are the force equations written in terms of body coordinates.
1702 %
1703 % f ca cb
1704 %
1705 \begin{equation}
1706 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1707 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1708 \end{equation}
1709 %
1710 % f ca db
1711 %
1712 \begin{equation}
1713 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1714 \frac{C_{\bf a}}{4\pi \epsilon_0}
1715 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1716 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1717 \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1718 \end{equation}
1719 %
1720 % f ca qb
1721 %
1722 \begin{equation}
1723 \begin{split}
1724 % 1
1725 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1726 \frac{1}{4\pi \epsilon_0}
1727 C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1728 + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1729 % 2
1730 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1731 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1732 \end{split}
1733 \end{equation}
1734 %
1735 % f da cb
1736 %
1737 \begin{equation}
1738 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1739 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1740 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1741 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1742 \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1743 \end{equation}
1744 %
1745 % f da db
1746 %
1747 \begin{equation}
1748 \begin{split}
1749 % 1
1750 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1751 -\frac{1}{4\pi \epsilon_0}
1752 \sum_{mn} D_{\mathbf {a}m}
1753 (\hat{a}_m \cdot \hat{b}_n)
1754 D_{\mathbf{b}n} w_d(r) \hat{r}
1755 -\frac{1}{4\pi \epsilon_0}
1756 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1757 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1758 % 2
1759 & \quad + \frac{1}{4\pi \epsilon_0}
1760 \Bigl[ \sum_m D_{\mathbf {a}m}
1761 \hat{a}_m \sum_n D_{\mathbf{b}n}
1762 (\hat{b}_n \cdot \hat{r})
1763 + \sum_m D_{\mathbf {b}m}
1764 \hat{b}_m \sum_n D_{\mathbf{a}n}
1765 (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1766 \end{split}
1767 \end{equation}
1768 %
1769 % f da qb
1770 %
1771 \begin{equation}
1772 \begin{split}
1773 % 1
1774 &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1775 - \frac{1}{4\pi \epsilon_0} \Bigl[
1776 \text{Tr}Q_{\mathbf{b}}
1777 \sum_l D_{\mathbf{a}l} \hat{a}_l
1778 +2\sum_{lmn} D_{\mathbf{a}l}
1779 (\hat{a}_l \cdot \hat{b}_m)
1780 Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1781 % 3
1782 & - \frac{1}{4\pi \epsilon_0} \Bigl[
1783 \text{Tr}Q_{\mathbf{b}}
1784 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1785 +2\sum_{lmn}D_{\mathbf{a}l}
1786 (\hat{a}_l \cdot \hat{b}_m)
1787 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1788 % 4
1789 &+ \frac{1}{4\pi \epsilon_0}
1790 \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1791 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1792 Q_{{\mathbf b}mn}
1793 (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1794 D_{\mathbf{a}l}
1795 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1796 Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1797 % 6
1798 & -\frac{1}{4\pi \epsilon_0}
1799 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1800 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1801 Q_{{\mathbf b}mn}
1802 (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1803 \end{split}
1804 \end{equation}
1805 %
1806 % force qa cb
1807 %
1808 \begin{equation}
1809 \begin{split}
1810 % 1
1811 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1812 \frac{1}{4\pi \epsilon_0}
1813 C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1814 + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1815 % 2
1816 & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1817 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1818 \end{split}
1819 \end{equation}
1820 %
1821 % f qa db
1822 %
1823 \begin{equation}
1824 \begin{split}
1825 % 1
1826 &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1827 \frac{1}{4\pi \epsilon_0} \Bigl[
1828 \text{Tr}Q_{\mathbf{a}}
1829 \sum_l D_{\mathbf{b}l} \hat{b}_l
1830 +2\sum_{lmn} D_{\mathbf{b}l}
1831 (\hat{b}_l \cdot \hat{a}_m)
1832 Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1833 w_g(r)\\
1834 % 3
1835 & + \frac{1}{4\pi \epsilon_0} \Bigl[
1836 \text{Tr}Q_{\mathbf{a}}
1837 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1838 +2\sum_{lmn}D_{\mathbf{b}l}
1839 (\hat{b}_l \cdot \hat{a}_m)
1840 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1841 % 4
1842 & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1843 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1844 Q_{{\mathbf a}mn}
1845 (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1846 D_{\mathbf{b}l}
1847 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1848 Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1849 % 6
1850 & +\frac{1}{4\pi \epsilon_0}
1851 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1852 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1853 Q_{{\mathbf a}mn}
1854 (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1855 \end{split}
1856 \end{equation}
1857 %
1858 % f qa qb
1859 %
1860 \begin{equation}
1861 \begin{split}
1862 &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1863 \frac{1}{4\pi \epsilon_0} \Bigl[
1864 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1865 + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1866 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1867 (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1868 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1869 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1870 + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1871 &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1872 + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1873 \Bigr] w_n(r) \\
1874 &+ \frac{1}{4\pi \epsilon_0}
1875 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1876 \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1877 + \text{Tr}Q_{\mathbf{b}}
1878 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1879 &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1880 Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1881 %
1882 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1883 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1884 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1885 &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1886 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1887 & + \frac{1}{4\pi \epsilon_0}
1888 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1889 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1890 \end{split}
1891 \end{equation}
1892 %
1893 Here we list the form of the non-zero damped shifted multipole torques showing
1894 explicitly dependences on body axes:
1895 %
1896 % t ca db
1897 %
1898 \begin{equation}
1899 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1900 \frac{C_{\bf a}}{4\pi \epsilon_0}
1901 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1902 \end{equation}
1903 %
1904 % t ca qb
1905 %
1906 \begin{equation}
1907 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1908 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1909 \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1910 \end{equation}
1911 %
1912 % t da cb
1913 %
1914 \begin{equation}
1915 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1916 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1917 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1918 \end{equation}%
1919 %
1920 %
1921 % ta da db
1922 %
1923 \begin{equation}
1924 \begin{split}
1925 % 1
1926 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1927 \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1928 (\hat{a}_m \times \hat{b}_n)
1929 D_{\mathbf{b}n} v_{21}(r) \\
1930 % 2
1931 &-\frac{1}{4\pi \epsilon_0}
1932 \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1933 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1934 \end{split}
1935 \end{equation}
1936 %
1937 % tb da db
1938 %
1939 \begin{equation}
1940 \begin{split}
1941 % 1
1942 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1943 -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1944 (\hat{a}_m \times \hat{b}_n)
1945 D_{\mathbf{b}n} v_{21}(r) \\
1946 % 2
1947 &+\frac{1}{4\pi \epsilon_0}
1948 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1949 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1950 \end{split}
1951 \end{equation}
1952 %
1953 % ta da qb
1954 %
1955 \begin{equation}
1956 \begin{split}
1957 % 1
1958 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1959 \frac{1}{4\pi \epsilon_0} \left(
1960 -\text{Tr}Q_{\mathbf{b}}
1961 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1962 +2\sum_{lmn}D_{\mathbf{a}l}
1963 (\hat{a}_l \times \hat{b}_m)
1964 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1965 \right) v_{31}(r)\\
1966 % 2
1967 &-\frac{1}{4\pi \epsilon_0}
1968 \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
1969 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1970 Q_{{\mathbf b}mn}
1971 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1972 \end{split}
1973 \end{equation}
1974 %
1975 % tb da qb
1976 %
1977 \begin{equation}
1978 \begin{split}
1979 % 1
1980 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
1981 \frac{1}{4\pi \epsilon_0} \left(
1982 -2\sum_{lmn}D_{\mathbf{a}l}
1983 (\hat{a}_l \cdot \hat{b}_m)
1984 Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
1985 -2\sum_{lmn}D_{\mathbf{a}l}
1986 (\hat{a}_l \times \hat{b}_m)
1987 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1988 \right) v_{31}(r) \\
1989 % 2
1990 &-\frac{2}{4\pi \epsilon_0}
1991 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1992 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1993 Q_{{\mathbf b}mn}
1994 (\hat{r}\times \hat{b}_n) v_{32}(r)
1995 \end{split}
1996 \end{equation}
1997 %
1998 % ta qa cb
1999 %
2000 \begin{equation}
2001 \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2002 \frac{2C_{\bf a}}{4\pi \epsilon_0}
2003 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2004 \end{equation}
2005 %
2006 % ta qa db
2007 %
2008 \begin{equation}
2009 \begin{split}
2010 % 1
2011 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2012 \frac{1}{4\pi \epsilon_0} \left(
2013 2\sum_{lmn}D_{\mathbf{b}l}
2014 (\hat{b}_l \cdot \hat{a}_m)
2015 Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2016 +2\sum_{lmn}D_{\mathbf{b}l}
2017 (\hat{a}_l \times \hat{b}_m)
2018 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2019 \right) v_{31}(r) \\
2020 % 2
2021 &+\frac{2}{4\pi \epsilon_0}
2022 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2023 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2024 Q_{{\mathbf a}mn}
2025 (\hat{r}\times \hat{a}_n) v_{32}(r)
2026 \end{split}
2027 \end{equation}
2028 %
2029 % tb qa db
2030 %
2031 \begin{equation}
2032 \begin{split}
2033 % 1
2034 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2035 \frac{1}{4\pi \epsilon_0} \left(
2036 \text{Tr}Q_{\mathbf{a}}
2037 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2038 +2\sum_{lmn}D_{\mathbf{b}l}
2039 (\hat{a}_l \times \hat{b}_m)
2040 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2041 \right) v_{31}(r)\\
2042 % 2
2043 &\frac{1}{4\pi \epsilon_0}
2044 \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2045 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2046 Q_{{\mathbf a}mn}
2047 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2048 \end{split}
2049 \end{equation}
2050 %
2051 % ta qa qb
2052 %
2053 \begin{equation}
2054 \begin{split}
2055 % 1
2056 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2057 -\frac{4}{4\pi \epsilon_0}
2058 \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2059 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2060 (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2061 % 2
2062 &+ \frac{1}{4\pi \epsilon_0}
2063 \Bigl[
2064 2\text{Tr}Q_{\mathbf{b}}
2065 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2066 Q_{{\mathbf a}lm}
2067 (\hat{r} \times \hat{a}_m)
2068 +4 \sum_{lmnp}
2069 (\hat{r} \times \hat{a}_l )
2070 Q_{{\mathbf a}lm}
2071 (\hat{a}_m \cdot \hat{b}_n)
2072 Q_{{\mathbf b}np}
2073 (\hat{b}_p \cdot \hat{r}) \\
2074 % 3
2075 &-4 \sum_{lmnp}
2076 (\hat{r} \cdot \hat{a}_l )
2077 Q_{{\mathbf a}lm}
2078 (\hat{a}_m \times \hat{b}_n)
2079 Q_{{\mathbf b}np}
2080 (\hat{b}_p \cdot \hat{r})
2081 \Bigr] v_{42}(r) \\
2082 % 4
2083 &+ \frac{2}{4\pi \epsilon_0}
2084 \sum_{lm} (\hat{r} \times \hat{a}_l)
2085 Q_{{\mathbf a}lm}
2086 (\hat{a}_m \cdot \hat{r})
2087 \sum_{np} (\hat{r} \cdot \hat{b}_n)
2088 Q_{{\mathbf b}np}
2089 (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2090 \end{split}
2091 \end{equation}
2092 %
2093 % tb qa qb
2094 %
2095 \begin{equation}
2096 \begin{split}
2097 % 1
2098 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2099 \frac{4}{4\pi \epsilon_0}
2100 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2101 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2102 (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2103 % 2
2104 &+ \frac{1}{4\pi \epsilon_0}
2105 \Bigl[
2106 2\text{Tr}Q_{\mathbf{a}}
2107 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2108 Q_{{\mathbf b}lm}
2109 (\hat{r} \times \hat{b}_m)
2110 +4 \sum_{lmnp}
2111 (\hat{r} \cdot \hat{a}_l )
2112 Q_{{\mathbf a}lm}
2113 (\hat{a}_m \cdot \hat{b}_n)
2114 Q_{{\mathbf b}np}
2115 (\hat{r} \times \hat{b}_p) \\
2116 % 3
2117 &+4 \sum_{lmnp}
2118 (\hat{r} \cdot \hat{a}_l )
2119 Q_{{\mathbf a}lm}
2120 (\hat{a}_m \times \hat{b}_n)
2121 Q_{{\mathbf b}np}
2122 (\hat{b}_p \cdot \hat{r})
2123 \Bigr] v_{42}(r) \\
2124 % 4
2125 &+ \frac{2}{4\pi \epsilon_0}
2126 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2127 Q_{{\mathbf a}lm}
2128 (\hat{a}_m \cdot \hat{r})
2129 \sum_{np} (\hat{r} \times \hat{b}_n)
2130 Q_{{\mathbf b}np}
2131 (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2132 \end{split}
2133 \end{equation}
2134 %
2135 \begin{table*}
2136 \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2137 \begin{ruledtabular}
2138 \begin{tabular}{ccc}
2139 Generic&Method 1&Method 2
2140 \\ \hline
2141 %
2142 %
2143 %
2144 $w_a(r)$&
2145 $g_0(r)$&
2146 $g(r)-g(r_c)$ \\
2147 %
2148 %
2149 $w_b(r)$ &
2150 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2151 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2152 %
2153 $w_c(r)$ &
2154 $\frac{g_1(r)}{r} $ &
2155 $\frac{v_{11}(r)}{r}$ \\
2156 %
2157 %
2158 $w_d(r)$&
2159 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2160 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2161 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2162 %
2163 $w_e(r)$ &
2164 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2165 $\frac{v_{22}(r)}{r}$ \\
2166 %
2167 %
2168 $w_f(r)$&
2169 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2170 $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2171 &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2172 %
2173 $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2174 $\frac{v_{31}(r)}{r}$\\
2175 %
2176 $w_h(r)$ &
2177 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2178 $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2179 &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2180 &&$-\frac{v_{31}(r)}{r}$\\
2181 % 2
2182 $w_i(r)$ &
2183 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2184 $\frac{v_{32}(r)}{r}$ \\
2185 %
2186 $w_j(r)$ &
2187 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2188 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2189 &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2190 %
2191 $w_k(r)$ &
2192 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2193 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2194 &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2195 %
2196 $w_l(r)$ &
2197 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2198 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2199 &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2200 -\frac{2v_{42}(r)}{r}$ \\
2201 %
2202 $w_m(r)$ &
2203 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2204 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2205 &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2206 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2207 &&$-\frac{4v_{43}(r)}{r}$ \\
2208 %
2209 $w_n(r)$ &
2210 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2211 $\frac{v_{42}(r)}{r}$ \\
2212 %
2213 $w_o(r)$ &
2214 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2215 $\frac{v_{43}(r)}{r}$ \\
2216 %
2217 \end{tabular}
2218 \end{ruledtabular}
2219 \end{table*}
2220
2221 \newpage
2222
2223 \bibliography{multipole}
2224
2225 \end{document}
2226 %
2227 % ****** End of file multipole.tex ******