ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3983
Committed: Fri Dec 27 18:09:59 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 77703 byte(s)
Log Message:
More edits for brevity

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 ]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37
38 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
39 %\linenumbers\relax % Commence numbering lines
40
41 \begin{document}
42
43 \preprint{AIP/123-QED}
44
45 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
46 {Real space alternatives to the Ewald
47 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48
49 \author{Madan Lamichhane}
50 \affiliation{Department of Physics, University
51 of Notre Dame, Notre Dame, IN 46556}
52
53 \author{J. Daniel Gezelter}
54 \email{gezelter@nd.edu.}
55 \affiliation{Department of Chemistry and Biochemistry, University
56 of Notre Dame, Notre Dame, IN 46556}
57
58 \author{Kathie E. Newman}
59 \affiliation{Department of Physics, University
60 of Notre Dame, Notre Dame, IN 46556}
61
62
63 \date{\today}% It is always \today, today,
64 % but any date may be explicitly specified
65
66 \begin{abstract}
67 We have extended the original damped-shifted force (DSF)
68 electrostatic kernel and have been able to derive two new
69 electrostatic potentials for higher-order multipoles that are based
70 on truncated Taylor expansions around the cutoff radius. For
71 multipole-multipole interactions, we find that each of the distinct
72 orientational contributions has a separate radial function to ensure
73 that the overall forces and torques vanish at the cutoff radius. In
74 this paper, we present energy, force, and torque expressions for the
75 new models, and compare these real-space interaction models to exact
76 results for ordered arrays of multipoles.
77 \end{abstract}
78
79 \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80 % Classification Scheme.
81 \keywords{Suggested keywords}%Use showkeys class option if keyword
82 %display desired
83 \maketitle
84
85 \section{Introduction}
86 There has been increasing interest in real-space methods for
87 calculating electrostatic interactions in computer simulations of
88 condensed molecular
89 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90 The simplest of these techniques was developed by Wolf {\it et al.}
91 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 For systems of point charges, Fennell and Gezelter showed that a
93 simple damped shifted force (DSF) modification to Wolf's method could
94 give nearly quantitative agreement with smooth particle mesh Ewald
95 (SPME)\cite{Essmann95} configurational energy differences as well as
96 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97
98 The computational efficiency and the accuracy of the DSF method are
99 surprisingly good, particularly for systems with uniform charge
100 density. Additionally, dielectric constants obtained using DSF and
101 similar methods where the force vanishes at $R_\textrm{c}$ are
102 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103 related methods have now been widely investigated,\cite{Hansen:2012uq}
104 and DSF is now used routinely in simulations of ionic
105 liquids,\cite{doi:10.1021/la400226g,McCann:2013fk} flow in carbon
106 nanotubes,\cite{kannam:094701} gas sorption in metal-organic framework
107 materials,\cite{Forrest:2012ly} thermal conductivity of methane
108 hydrates,\cite{English:2008kx} condensation coefficients of
109 water,\cite{Louden:2013ve} and in tribology at solid-liquid-solid
110 interfaces.\cite{Tokumasu:2013zr} DSF electrostatics provides a
111 compromise between the computational speed of real-space cutoffs and
112 the accuracy of fully-periodic Ewald treatments.
113
114 \subsection{Coarse Graining using Point Multipoles}
115 One common feature of many coarse-graining approaches, which treat
116 entire molecular subsystems as a single rigid body, is simplification
117 of the electrostatic interactions between these bodies so that fewer
118 site-site interactions are required to compute configurational
119 energies. Notably, the force matching approaches of Voth and coworkers
120 are an exciting development in their ability to represent realistic
121 (and {\it reactive}) chemical systems for very large length scales and
122 long times. This approach utilized a coarse-graining in interaction
123 space (CGIS) which fits an effective force for the coarse grained
124 system using a variational force-matching method to a fine-grained
125 simulation.\cite{Izvekov:2008wo}
126
127 The coarse-graining approaches of Ren \& coworkers,\cite{Golubkov06}
128 and Essex \&
129 coworkers,\cite{ISI:000276097500009,ISI:000298664400012}
130 both utilize Gay-Berne
131 ellipsoids~\cite{Berne72,Gay81,Luckhurst90,Cleaver96,Berardi98,Ravichandran:1999fk,Berardi99,Pasterny00}
132 to model dispersive interactions and point multipoles to model
133 electrostatics for entire molecules or functional groups.
134
135 Ichiye and coworkers have recently introduced a number of very fast
136 water models based on a ``sticky'' multipole model which are
137 qualitatively better at reproducing the behavior of real water than
138 the more common point-charge models (SPC/E, TIPnP). The point charge
139 models are also substantially more computationally demanding than the
140 sticky multipole
141 approach.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The
142 SSDQO model requires the use of an approximate multipole expansion
143 (AME) as the exact multipole expansion is quite expensive
144 (particularly when handled via the Ewald sum).\cite{Ichiye:2006qy}
145 Another particularly important use of point multipoles (and multipole
146 polarizability) is in the very high-quality AMOEBA water model and
147 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
148
149 Higher-order multipoles present a peculiar issue for molecular
150 dynamics. Multipolar interactions are inherently short-ranged, and
151 should not need the relatively expensive Ewald treatment. However,
152 real-space cutoff methods are normally applied in an orientation-blind
153 fashion so multipoles which leave and then re-enter a cutoff sphere in
154 a different orientation can cause energy discontinuities.
155
156 This paper outlines an extension of the original DSF electrostatic
157 kernel to point multipoles. We have developed two distinct real-space
158 interaction models for higher-order multipoles based on two truncated
159 Taylor expansions that are carried out at the cutoff radius. We are
160 calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
161 electrostatics. Because of differences in the initial assumptions,
162 the two methods yield related, but different expressions for energies,
163 forces, and torques.
164
165 In this paper we outline the new methodology and give functional forms
166 for the energies, forces, and torques up to quadrupole-quadrupole
167 order. We also compare the new methods to analytic energy constants
168 for periodic arrays of point multipoles. In the following paper, we
169 provide extensive numerical comparisons to Ewald-based electrostatics
170 in common simulation enviornments.
171
172 \section{Methodology}
173
174 \subsection{Self-neutralization, damping, and force-shifting}
175 The DSF and Wolf methods operate by neutralizing the total charge
176 contained within the cutoff sphere surrounding each particle. This is
177 accomplished by shifting the potential functions to generate image
178 charges on the surface of the cutoff sphere for each pair interaction
179 computed within $R_\textrm{c}$. Damping using a complementary error
180 function is applied to the potential to accelerate convergence. The
181 potential for the DSF method, where $\alpha$ is the adjustable damping
182 parameter, is given by
183 \begin{equation*}
184 V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
185 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
186 - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
187 + \frac{2\alpha}{\pi^{1/2}}
188 \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
189 \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
190 \label{eq:DSFPot}
191 \end{equation*}
192
193 To insure net charge neutrality within each cutoff sphere, an
194 additional ``self'' term is added to the potential. This term is
195 constant (as long as the charges and cutoff radius do not change), and
196 exists outside the normal pair-loop for molecular simulations. It can
197 be thought of as a contribution from a charge opposite in sign, but
198 equal in magnitude, to the central charge, which has been spread out
199 over the surface of the cutoff sphere. A portion of the self term is
200 identical to the self term in the Ewald summation, and comes from the
201 utilization of the complimentary error function for electrostatic
202 damping.\cite{deLeeuw80,Wolf99}
203
204 There have been recent efforts to extend the Wolf self-neutralization
205 method to zero out the dipole and higher order multipoles contained
206 within the cutoff
207 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
208
209 In this work, we will be extending the idea of self-neutralization for
210 the point multipoles in a similar way. In Figure
211 \ref{fig:shiftedMultipoles}, the central dipolar site $\mathbf{D}_i$
212 is interacting with point dipole $\mathbf{D}_j$ and point quadrupole,
213 $\mathbf{Q}_k$. The self-neutralization scheme for point multipoles
214 involves projecting opposing multipoles for sites $j$ and $k$ on the
215 surface of the cutoff sphere.
216
217 \begin{figure}
218 \includegraphics[width=3in]{SM}
219 \caption{Reversed multipoles are projected onto the surface of the
220 cutoff sphere. The forces, torques, and potential are then smoothly
221 shifted to zero as the sites leave the cutoff region.}
222 \label{fig:shiftedMultipoles}
223 \end{figure}
224
225 As in the point-charge approach, there is a contribution from
226 self-neutralization of site $i$. The self term for multipoles is
227 described in section \ref{sec:selfTerm}.
228
229 \subsection{The multipole expansion}
230
231 Consider two discrete rigid collections of point charges, denoted as
232 $\bf a$ and $\bf b$. In the following, we assume that the two objects
233 interact via electrostatics only and describe those interactions in
234 terms of a standard multipole expansion. Putting the origin of the
235 coordinate system at the center of mass of $\bf a$, we use vectors
236 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
237 a$. Then the electrostatic potential of object $\bf a$ at
238 $\mathbf{r}$ is given by
239 \begin{equation}
240 V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
241 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
242 \end{equation}
243 The Taylor expansion in $r$ can be written using an implied summation
244 notation. Here Greek indices are used to indicate space coordinates
245 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
246 labelling specific charges in $\bf a$ and $\bf b$ respectively. The
247 Taylor expansion,
248 \begin{equation}
249 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
250 \left( 1
251 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
252 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
253 \right)
254 \frac{1}{r} ,
255 \end{equation}
256 can then be used to express the electrostatic potential on $\bf a$ in
257 terms of multipole operators,
258 \begin{equation}
259 V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
260 \end{equation}
261 where
262 \begin{equation}
263 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
264 + Q_{{\bf a}\alpha\beta}
265 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
266 \end{equation}
267 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
268 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
269 a}\alpha\beta}$, respectively. These are the primitive multipoles
270 which can be expressed as a distribution of charges,
271 \begin{align}
272 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
273 D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
274 Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
275 \end{align}
276 Note that the definition of the primitive quadrupole here differs from
277 the standard traceless form, and contains an additional Taylor-series
278 based factor of $1/2$.
279
280 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
281 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
282 \begin{equation}
283 U_{\bf{ab}}(r)
284 = \frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
285 \end{equation}
286 This can also be expanded as a Taylor series in $r$. Using a notation
287 similar to before to define the multipoles on object {\bf b},
288 \begin{equation}
289 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
290 + Q_{{\bf b}\alpha\beta}
291 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
292 \end{equation}
293 we arrive at the multipole expression for the total interaction energy.
294 \begin{equation}
295 U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
296 \end{equation}
297 This form has the benefit of separating out the energies of
298 interaction into contributions from the charge, dipole, and quadrupole
299 of $\bf a$ interacting with the same multipoles $\bf b$.
300
301 \subsection{Damped Coulomb interactions}
302 In the standard multipole expansion, one typically uses the bare
303 Coulomb potential, with radial dependence $1/r$, as shown in
304 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
305 interaction, which results from replacing point charges with Gaussian
306 distributions of charge with width $\alpha$. In damped multipole
307 electrostatics, the kernel ($1/r$) of the expansion is replaced with
308 the function:
309 \begin{equation}
310 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
311 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
312 \end{equation}
313 We develop equations below using the function $f(r)$ to represent
314 either $1/r$ or $B_0(r)$, and all of the techniques can be applied
315 either to bare or damped Coulomb kernels as long as derivatives of
316 these functions are known. Smith's convenient functions $B_l(r)$ are
317 summarized in Appendix A.
318
319 \subsection{Taylor-shifted force (TSF) electrostatics}
320
321 The main goal of this work is to smoothly cut off the interaction
322 energy as well as forces and torques as $r\rightarrow r_c$. To
323 describe how this goal may be met, we use two examples, charge-charge
324 and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
325 the idea.
326
327 In the shifted-force approximation, the interaction energy for two
328 charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
329 written:
330 \begin{equation}
331 U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
332 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
333 \right) .
334 \end{equation}
335 Two shifting terms appear in this equations, one from the
336 neutralization procedure ($-1/r_c$), and one that will make the first
337 derivative also vanish at the cutoff radius.
338
339 Since one derivative of the interaction energy is needed for the
340 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
341 interaction energy, that is:
342 \begin{equation}
343 \frac{d\,}{dr}
344 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
345 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
346 \right) .
347 \end{equation}
348 There are a number of ways to generalize this derivative shift for
349 higher-order multipoles.
350
351 In the Taylor-shifted force (TSF) method, the procedure that we follow
352 is based on a Taylor expansion containing the same number of
353 derivatives required for each force term to vanish at the cutoff. For
354 example, the quadrupole-quadrupole interaction energy requires four
355 derivatives of the kernel, and the force requires one additional
356 derivative. We therefore require shifted energy expressions that
357 include enough terms so that all energies, forces, and torques are
358 zero as $r \rightarrow r_c$. In each case, we will subtract off a
359 function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$. The
360 index $n$ indicates the number of derivatives to be taken when
361 deriving a given multipole energy. We choose a function with
362 guaranteed smooth derivatives --- a truncated Taylor series of the
363 function $f(r)$, e.g.,
364 %
365 \begin{equation}
366 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert _{r_c} .
367 \end{equation}
368 %
369 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
370 Thus, for $f(r)=1/r$, we find
371 %
372 \begin{equation}
373 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
374 \end{equation}
375 %
376 Continuing with the example of a charge $\bf a$ interacting with a
377 dipole $\bf b$, we write
378 %
379 \begin{equation}
380 U_{C_{\bf a}D_{\bf b}}(r)=
381 \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
382 =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
383 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
384 \end{equation}
385 %
386 The force that dipole $\bf b$ puts on charge $\bf a$ is
387 %
388 \begin{equation}
389 F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
390 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
391 \frac{r_\alpha r_\beta}{r^2}
392 \left( -\frac{1}{r} \frac {\partial} {\partial r}
393 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
394 \end{equation}
395 %
396 For $f(r)=1/r$, we find
397 %
398 \begin{equation}
399 F_{C_{\bf a}D_{\bf b}\beta} =
400 \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
401 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
402 +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
403 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
404 \end{equation}
405 %
406 This expansion shows the expected $1/r^3$ dependence of the force.
407
408 In general, we write
409 %
410 \begin{equation}
411 U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
412 \label{generic}
413 \end{equation}
414 %
415 where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
416 and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
417 An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
418 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
419 $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
420 implied summation combining the space indices.
421
422 To apply this method to the smeared-charge approach,
423 we write $f(r)=\text{erfc}(\alpha r)/r$. By using one function $f(r)$ for both
424 approaches, we simplify the tabulation of equations used. Because
425 of the many derivatives that are taken, the algebra is tedious and are summarized
426 in Appendices A and B.
427
428 \subsection{Gradient-shifted force (GSF) electrostatics}
429
430 Note the method used in the previous subsection to shift a force is basically that of using
431 a truncated Taylor Series in the radius $r$. An alternate method exists, best explained by
432 writing one shifted formula for all interaction energies $U(r)$:
433 \begin{equation}
434 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
435 \end{equation}
436 Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms
437 $(r-r_c)^n$ appear. The primary difference between methods 1 and 2 originates
438 with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the
439 kernel. In method 2, it is applied to individual interaction energies of the multipole expansion.
440 Terms from this method thus have the general form:
441 \begin{equation}
442 U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
443 \label{generic2}
444 \end{equation}
445
446 Results for both methods can be summarized using the form of Eq.~(\ref{generic2})
447 and are listed in Table I below.
448
449 \subsection{\label{sec:level2}Body and space axes}
450
451 Up to this point, all energies and forces have been written in terms of fixed space
452 coordinates $x$, $y$, $z$. Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which
453 combine prefactors with radial functions. But because objects
454 $\bf a$ and $\bf b$ both translate and rotate as part of a MD simulation,
455 it is desirable to contract all $r$-dependent terms with dipole and quadrupole
456 moments expressed in terms of their body axes.
457 Since the interaction energy expressions will be used to derive both forces and torques,
458 we follow here the development of Allen and Germano, which was itself based on an
459 earlier paper by Price \em et al.\em
460
461 Denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
462 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient
463 set of inertial body axes. (Note, these body axes are generally not the same as those for which the
464 quadrupole moment is diagonal.) Then,
465 %
466 \begin{eqnarray}
467 \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
468 \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
469 \end{eqnarray}
470 Allen and Germano define matrices $\hat{\mathbf {a}}$
471 and $\hat{\mathbf {b}}$ using these unit vectors:
472 \begin{eqnarray}
473 \hat{\mathbf {a}} =
474 \begin{pmatrix}
475 \hat{a}_1 \\
476 \hat{a}_2 \\
477 \hat{a}_3
478 \end{pmatrix}
479 =
480 \begin{pmatrix}
481 a_{1x} \quad a_{1y} \quad a_{1z} \\
482 a_{2x} \quad a_{2y} \quad a_{2z} \\
483 a_{3x} \quad a_{3y} \quad a_{3z}
484 \end{pmatrix}\\
485 \hat{\mathbf {b}} =
486 \begin{pmatrix}
487 \hat{b}_1 \\
488 \hat{b}_2 \\
489 \hat{b}_3
490 \end{pmatrix}
491 =
492 \begin{pmatrix}
493 b_{1x}\quad b_{1y} \quad b_{1z} \\
494 b_{2x} \quad b_{2y} \quad b_{2z} \\
495 b_{3x} \quad b_{3y} \quad b_{3z}
496 \end{pmatrix} .
497 \end{eqnarray}
498 %
499 These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
500 All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
501 It proves to be equally convenient to just write any contraction in terms of unit vectors
502 $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
503 We have found it useful to write angular-dependent terms in three different fashions,
504 illustrated by the following
505 three examples from the interaction-energy expressions:
506 %
507 \begin{eqnarray}
508 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
509 =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
510 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
511 r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
512 r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
513 \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
514 r ( \mathbf{D}_{\mathbf{a}} \cdot
515 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
516 D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
517 =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
518 (\hat{b}_n \cdot \hat{r}) .
519 \end{eqnarray}
520 %
521 [Dan, perhaps there are better examples to show here.]
522
523 In each line, the first two terms are written using space coordinates. The first form is standard
524 in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
525 form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
526 We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
527 in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
528 be discussed below.
529
530
531 \subsection{The Self-Interaction \label{sec:selfTerm}}
532
533 The Wolf summation~\cite{Wolf99} and the later damped shifted force
534 (DSF) extension~\cite{Fennell06} included self-interactions that are
535 handled separately from the pairwise interactions between sites. The
536 self-term is normally calculated via a single loop over all sites in
537 the system, and is relatively cheap to evaluate. The self-interaction
538 has contributions from two sources:
539 \begin{itemize}
540 \item The neutralization procedure within the cutoff radius requires a
541 contribution from a charge opposite in sign, but equal in magnitude,
542 to the central charge, which has been spread out over the surface of
543 the cutoff sphere. For a system of undamped charges, the total
544 self-term is
545 \begin{equation}
546 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
547 \label{eq:selfTerm}
548 \end{equation}
549 Note that in this potential and in all electrostatic quantities that
550 follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
551 clarity.
552 \item Charge damping with the complementary error function is a
553 partial analogy to the Ewald procedure which splits the interaction
554 into real and reciprocal space sums. The real space sum is retained
555 in the Wolf and DSF methods. The reciprocal space sum is first
556 minimized by folding the largest contribution (the self-interaction)
557 into the self-interaction from charge neutralization of the damped
558 potential. The remainder of the reciprocal space portion is then
559 discarded (as this contributes the largest computational cost and
560 complexity to the Ewald sum). For a system containing only damped
561 charges, the complete self-interaction can be written as
562 \begin{equation}
563 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
564 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
565 C_{\bf a}^{2}.
566 \label{eq:dampSelfTerm}
567 \end{equation}
568 \end{itemize}
569
570 The extension of DSF electrostatics to point multipoles requires
571 treatment of {\it both} the self-neutralization and reciprocal
572 contributions to the self-interaction for higher order multipoles. In
573 this section we give formulae for these interactions up to quadrupolar
574 order.
575
576 The self-neutralization term is computed by taking the {\it
577 non-shifted} kernel for each interaction, placing a multipole of
578 equal magnitude (but opposite in polarization) on the surface of the
579 cutoff sphere, and averaging over the surface of the cutoff sphere.
580 Because the self term is carried out as a single sum over sites, the
581 reciprocal-space portion is identical to half of the self-term
582 obtained by Smith and Aguado and Madden for the application of the
583 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
584 site which posesses a charge, dipole, and multipole, both types of
585 contribution are given in table \ref{tab:tableSelf}.
586
587 \begin{table*}
588 \caption{\label{tab:tableSelf} Self-interaction contributions for
589 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
590 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
591 \begin{ruledtabular}
592 \begin{tabular}{lccc}
593 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
594 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
595 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
596 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
597 Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
598 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
599 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
600 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
601 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
602 \end{tabular}
603 \end{ruledtabular}
604 \end{table*}
605
606 For sites which simultaneously contain charges and quadrupoles, the
607 self-interaction includes a cross-interaction between these two
608 multipole orders. Symmetry prevents the charge-dipole and
609 dipole-quadrupole interactions from contributing to the
610 self-interaction. The functions that go into the self-neutralization
611 terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
612 derivatives of the electrostatic kernel (either the undamped $1/r$ or
613 the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that are
614 evaluated at the cutoff distance. For undamped interactions, $f(r_c)
615 = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For damped interactions,
616 $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so on. Appendix XX
617 contains recursion relations that allow rapid evaluation of these
618 derivatives.
619
620 \section{Energies, forces, and torques}
621 \subsection{Interaction energies}
622
623 We now list multipole interaction energies using a set of generic
624 radial functions. Table \ref{tab:tableenergy} maps between the
625 generic functions and the radial functions derived for both the
626 Taylor-shifted and Gradient-shifted methods. This set of equations is
627 written in terms of space coordinates:
628
629 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
630 %
631 %
632 % u ca cb
633 %
634 \begin{align}
635 U_{C_{\bf a}C_{\bf b}}(r)=&
636 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
637 \\
638 %
639 % u ca db
640 %
641 U_{C_{\bf a}D_{\bf b}}(r)=&
642 \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
643 \label{uchdip}
644 \\
645 %
646 % u ca qb
647 %
648 U_{C_{\bf a}Q_{\bf b}}(r)=&
649 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
650 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
651 \label{uchquad}
652 \\
653 %
654 % u da cb
655 %
656 %U_{D_{\bf a}C_{\bf b}}(r)=&
657 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
658 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
659 %\\
660 %
661 % u da db
662 %
663 U_{D_{\bf a}D_{\bf b}}(r)=&
664 -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
665 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
666 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
667 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
668 v_{22}(r) \Bigr]
669 \label{udipdip}
670 \\
671 %
672 % u da qb
673 %
674 \begin{split}
675 % 1
676 U_{D_{\bf a}Q_{\bf b}}(r) =&
677 -\frac{1}{4\pi \epsilon_0} \Bigl[
678 \text{Tr}\mathbf{Q}_{\mathbf{b}}
679 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
680 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
681 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
682 % 2
683 &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
684 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
685 \label{udipquad}
686 \end{split}
687 \\
688 %
689 % u qa cb
690 %
691 %U_{Q_{\bf a}C_{\bf b}}(r)=&
692 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
693 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
694 %\label{uquadch}
695 %\\
696 %
697 % u qa db
698 %
699 %\begin{split}
700 %1
701 %U_{Q_{\bf a}D_{\bf b}}(r)=&
702 %\frac{1}{4\pi \epsilon_0} \Bigl[
703 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
704 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
705 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
706 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
707 % 2
708 %&+\frac{1}{4\pi \epsilon_0}
709 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
710 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
711 %\label{uquaddip}
712 %\end{split}
713 %\\
714 %
715 % u qa qb
716 %
717 \begin{split}
718 %1
719 U_{Q_{\bf a}Q_{\bf b}}(r)=&
720 \frac{1}{4\pi \epsilon_0} \Bigl[
721 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
722 +2 \text{Tr} \left(
723 \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
724 \\
725 % 2
726 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
727 \left( \hat{r} \cdot
728 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
729 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
730 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
731 \cdot \hat{r} \right) +4 (\hat{r} \cdot
732 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
733 \Bigr] v_{42}(r)
734 \\
735 % 4
736 &+ \frac{1}{4\pi \epsilon_0}
737 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
738 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
739 \label{uquadquad}
740 \end{split}
741 \end{align}
742
743 Note that the energies of multipoles on site $\mathbf{b}$ interacting
744 with those on site $\mathbf{a}$ can be obtained by swapping indices
745 along with the sign of the intersite vector, $\hat{r}$.
746
747 %
748 %
749 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
750 %
751
752 \begin{table*}
753 \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
754 used in this table are defined in Appendices B and C.}
755 \begin{ruledtabular}
756 \begin{tabular}{|l|c|l|l}
757 Generic&Coulomb&Taylor-Shifted&Gradient-Shifted
758 \\ \hline
759 %
760 %
761 %
762 %Ch-Ch&
763 $v_{01}(r)$ &
764 $\frac{1}{r}$ &
765 $f_0(r)$ &
766 $f(r)-f(r_c)-(r-r_c)g(r_c)$
767 \\
768 %
769 %
770 %
771 %Ch-Di&
772 $v_{11}(r)$ &
773 $-\frac{1}{r^2}$ &
774 $g_1(r)$ &
775 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
776 %
777 %
778 %
779 %Ch-Qu/Di-Di&
780 $v_{21}(r)$ &
781 $-\frac{1}{r^3} $ &
782 $\frac{g_2(r)}{r} $ &
783 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
784 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
785 $v_{22}(r)$ &
786 $\frac{3}{r^3} $ &
787 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
788 $\left(-\frac{g(r)}{r}+h(r) \right)
789 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
790 &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
791 \\
792 %
793 %
794 %
795 %Di-Qu &
796 $v_{31}(r)$ &
797 $\frac{3}{r^4} $ &
798 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
799 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
800 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
801 &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
802 \\
803 %
804 $v_{32}(r)$ &
805 $-\frac{15}{r^4} $ &
806 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
807 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
808 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
809 &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
810 \\
811 %
812 %
813 %
814 %Qu-Qu&
815 $v_{41}(r)$ &
816 $\frac{3}{r^5} $ &
817 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
818 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
819 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
820 &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
821 \\
822 % 2
823 $v_{42}(r)$ &
824 $- \frac{15}{r^5} $ &
825 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
826 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
827 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
828 &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
829 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
830 \\
831 % 3
832 $v_{43}(r)$ &
833 $ \frac{105}{r^5} $ &
834 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
835 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
836 &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
837 &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
838 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
839 \end{tabular}
840 \end{ruledtabular}
841 \end{table*}
842 %
843 %
844 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
845 %
846
847 \begin{table}
848 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
849 \begin{ruledtabular}
850 \begin{tabular}{cc}
851 Generic&Method 1 or Method 2
852 \\ \hline
853 %
854 %
855 %
856 $w_a(r)$&
857 $\frac{d v_{01}}{dr}$ \\
858 %
859 %
860 $w_b(r)$ &
861 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
862 %
863 $w_c(r)$ &
864 $\frac{v_{11}(r)}{r}$ \\
865 %
866 %
867 $w_d(r)$&
868 $\frac{d v_{21}}{dr}$ \\
869 %
870 $w_e(r)$ &
871 $\frac{v_{22}(r)}{r}$ \\
872 %
873 %
874 $w_f(r)$&
875 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
876 %
877 $w_g(r)$&
878 $\frac{v_{31}(r)}{r}$\\
879 %
880 $w_h(r)$ &
881 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
882 % 2
883 $w_i(r)$ &
884 $\frac{v_{32}(r)}{r}$ \\
885 %
886 $w_j(r)$ &
887 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
888 %
889 $w_k(r)$ &
890 $\frac{d v_{41}}{dr} $ \\
891 %
892 $w_l(r)$ &
893 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
894 %
895 $w_m(r)$ &
896 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
897 %
898 $w_n(r)$ &
899 $\frac{v_{42}(r)}{r}$ \\
900 %
901 $w_o(r)$ &
902 $\frac{v_{43}(r)}{r}$ \\
903 %
904
905 \end{tabular}
906 \end{ruledtabular}
907 \end{table}
908 %
909 %
910 %
911
912 \subsection{Forces}
913
914 The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
915 the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
916 interaction, these forces will point along the $\pm \hat{r}$ directions, where
917 $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
918 %
919 \begin{equation}
920 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
921 \quad \text{and} \quad F_{\bf b \alpha}
922 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
923 \end{equation}
924 %
925 The concept of obtaining a force from an energy by taking a gradient is the same for
926 higher-order multipole interactions, the trick is to make sure that all
927 $r$-dependent derivatives are considered.
928 As is pointed out by Allen and Germano, this is straightforward if the
929 interaction energies are written recognizing explicit
930 $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
931 %
932 \begin{equation}
933 U(r,\{\hat{a}_m \cdot \hat{r} \},
934 \{\hat{b}_n\cdot \hat{r} \}
935 \{\hat{a}_m \cdot \hat{b}_n \}) .
936 \label{ugeneral}
937 \end{equation}
938 %
939 Then,
940 %
941 \begin{equation}
942 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
943 = \frac{\partial U}{\partial r} \hat{r}
944 + \sum_m \left[
945 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
946 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
947 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
948 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
949 \right] \label{forceequation}.
950 \end{equation}
951 %
952 Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
953 that of Allen and Germano. In simplifying the algebra, we also use:
954 %
955 \begin{eqnarray}
956 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
957 = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
958 \right) \\
959 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
960 = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
961 \right) .
962 \end{eqnarray}
963 %
964 We list below the force equations written in terms of space coordinates. The
965 radial functions used in the two methods are listed in Table II.
966 %
967 %SPACE COORDINATES FORCE EQUTIONS
968 %
969 % **************************************************************************
970 % f ca cb
971 %
972 \begin{equation}
973 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
974 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
975 \end{equation}
976 %
977 %
978 %
979 \begin{equation}
980 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
981 \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
982 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
983 w_b(r) \hat{r}
984 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
985 \end{equation}
986 %
987 %
988 %
989 \begin{equation}
990 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
991 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
992 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
993 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
994 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
995 \end{equation}
996 %
997 %
998 %
999 \begin{equation}
1000 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1001 -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
1002 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1003 + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1004 \end{equation}
1005 %
1006 %
1007 %
1008 \begin{equation}
1009 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
1010 \frac{1}{4\pi \epsilon_0} \Bigl[
1011 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1012 + \left( \mathbf{D}_{\mathbf {a}}
1013 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1014 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
1015 % 2
1016 - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1017 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
1018 \end{equation}
1019 %
1020 %
1021 %
1022 \begin{equation}
1023 \begin{split}
1024 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1025 & - \frac{1}{4\pi \epsilon_0} \Bigl[
1026 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1027 +2 \mathbf{D}_{\mathbf{a}} \cdot
1028 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1029 - \frac{1}{4\pi \epsilon_0} \Bigl[
1030 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1031 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1032 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1033 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1034 % 3
1035 & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1036 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1037 w_i(r)
1038 % 4
1039 -\frac{1}{4\pi \epsilon_0}
1040 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1041 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
1042 \end{split}
1043 \end{equation}
1044 %
1045 %
1046 \begin{equation}
1047 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1048 \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1049 \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1050 + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1051 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1052 \end{equation}
1053 %
1054 \begin{equation}
1055 \begin{split}
1056 \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1057 &\frac{1}{4\pi \epsilon_0} \Bigl[
1058 \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1059 +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1060 % 2
1061 + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1062 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1063 +2 (\mathbf{D}_{\mathbf{b}} \cdot
1064 \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1065 % 3
1066 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1067 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1068 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1069 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1070 % 4
1071 +\frac{1}{4\pi \epsilon_0}
1072 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1073 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1074 \end{split}
1075 \end{equation}
1076 %
1077 %
1078 %
1079 \begin{equation}
1080 \begin{split}
1081 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1082 +\frac{1}{4\pi \epsilon_0} \Bigl[
1083 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1084 + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1085 % 2
1086 +\frac{1}{4\pi \epsilon_0} \Bigl[
1087 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1088 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1089 % 3
1090 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1091 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1092 % 4
1093 + \frac{1}{4\pi \epsilon_0} \Bigl[
1094 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1095 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1096 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1097 % 5
1098 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1099 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1100 %
1101 + \frac{1}{4\pi \epsilon_0} \Bigl[
1102 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1103 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1104 %6
1105 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1106 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1107 % 7
1108 + \frac{1}{4\pi \epsilon_0}
1109 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1110 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1111 \end{split}
1112 \end{equation}
1113 %
1114 %
1115 % TORQUES SECTION -----------------------------------------------------------------------------------------
1116 %
1117 \subsection{Torques}
1118
1119 Following again Allen and Germano, when energies are written in the form
1120 of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1121 %
1122 \begin{eqnarray}
1123 \mathbf{\tau}_{\bf a} =
1124 \sum_m
1125 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1126 ( \hat{r} \times \hat{a}_m )
1127 -\sum_{mn}
1128 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1129 (\hat{a}_m \times \hat{b}_n) \\
1130 %
1131 \mathbf{\tau}_{\bf b} =
1132 \sum_m
1133 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1134 ( \hat{r} \times \hat{b}_m)
1135 +\sum_{mn}
1136 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1137 (\hat{a}_m \times \hat{b}_n) .
1138 \end{eqnarray}
1139 %
1140 %
1141 Here we list the torque equations written in terms of space coordinates.
1142 %
1143 %
1144 %
1145 \begin{equation}
1146 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1147 \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
1148 \end{equation}
1149 %
1150 %
1151 %
1152 \begin{equation}
1153 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1154 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1155 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
1156 \end{equation}
1157 %
1158 %
1159 %
1160 \begin{equation}
1161 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1162 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1163 (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1164 \end{equation}
1165 %
1166 %
1167 %
1168 \begin{equation}
1169 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
1170 \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1171 % 2
1172 -\frac{1}{4\pi \epsilon_0}
1173 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1174 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1175 \end{equation}
1176 %
1177 %
1178 %
1179 \begin{equation}
1180 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1181 -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1182 % 2
1183 +\frac{1}{4\pi \epsilon_0}
1184 (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1185 (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1186 \end{equation}
1187 %
1188 %
1189 %
1190 \begin{equation}
1191 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1192 \frac{1}{4\pi \epsilon_0} \Bigl[
1193 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1194 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1195 +2 \mathbf{D}_{\mathbf{a}} \times
1196 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1197 \Bigr] v_{31}(r)
1198 % 3
1199 -\frac{1}{4\pi \epsilon_0}
1200 \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1201 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
1202 \end{equation}
1203 %
1204 %
1205 %
1206 \begin{equation}
1207 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
1208 \frac{1}{4\pi \epsilon_0} \Bigl[
1209 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1210 \hat{r}
1211 -2 \mathbf{D}_{\mathbf{a}} \times
1212 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1213 \Bigr] v_{31}(r)
1214 % 2
1215 +\frac{2}{4\pi \epsilon_0}
1216 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1217 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1218 \end{equation}
1219 %
1220 %
1221 %
1222 \begin{equation}
1223 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1224 \frac{1}{4\pi \epsilon_0} \Bigl[
1225 -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1226 +2 \mathbf{D}_{\mathbf{b}} \times
1227 (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1228 \Bigr] v_{31}(r)
1229 % 3
1230 - \frac{2}{4\pi \epsilon_0}
1231 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1232 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1233 \end{equation}
1234 %
1235 %
1236 %
1237 \begin{equation}
1238 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1239 \frac{1}{4\pi \epsilon_0} \Bigl[
1240 \text{Tr}\mathbf{Q}_{\mathbf{a}}
1241 (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1242 +2 \mathbf{D}_{\mathbf{b}} \times
1243 ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1244 % 2
1245 +\frac{1}{4\pi \epsilon_0}
1246 (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1247 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1248 \end{equation}
1249 %
1250 %
1251 %
1252 \begin{equation}
1253 \begin{split}
1254 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1255 &-\frac{4}{4\pi \epsilon_0}
1256 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1257 v_{41}(r) \\
1258 % 2
1259 &+ \frac{1}{4\pi \epsilon_0}
1260 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1261 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1262 +4 \hat{r} \times
1263 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1264 % 3
1265 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1266 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1267 % 4
1268 &+ \frac{2}{4\pi \epsilon_0}
1269 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1270 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1271 \end{split}
1272 \end{equation}
1273 %
1274 %
1275 %
1276 \begin{equation}
1277 \begin{split}
1278 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1279 &\frac{4}{4\pi \epsilon_0}
1280 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1281 % 2
1282 &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1283 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1284 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1285 \mathbf{Q}_{{\mathbf b}} ) \times
1286 \hat{r}
1287 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1288 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1289 \Bigr] v_{42}(r) \\
1290 % 4
1291 &+ \frac{2}{4\pi \epsilon_0}
1292 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1293 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1294 \end{split}
1295 \end{equation}
1296 %
1297
1298 \section{Comparison to known multipolar energies}
1299
1300 To understand how these new real-space multipole methods behave in
1301 computer simulations, it is vital to test against established methods
1302 for computing electrostatic interactions in periodic systems, and to
1303 evaluate the size and sources of any errors that arise from the
1304 real-space cutoffs. In this paper we test Taylor-shifted and
1305 Gradient-shifted electrostatics against analytical methods for
1306 computing the energies of ordered multipolar arrays. In the following
1307 paper, we test the new methods against the multipolar Ewald sum for
1308 computing the energies, forces and torques for a wide range of typical
1309 condensed-phase (disordered) systems.
1310
1311 Because long-range electrostatic effects can be significant in
1312 crystalline materials, ordered multipolar arrays present one of the
1313 biggest challenges for real-space cutoff methods. The dipolar
1314 analogues to the Madelung constants were first worked out by Sauer,
1315 who computed the energies of ordered dipole arrays of zero
1316 magnetization and obtained a number of these constants.\cite{Sauer}
1317 This theory was developed more completely by Luttinger and
1318 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1319 other periodic structures. We have repeated the Luttinger \& Tisza
1320 series summations to much higher order and obtained the following
1321 energy constants (converged to one part in $10^9$):
1322 \begin{table*}
1323 \centering{
1324 \caption{Luttinger \& Tisza arrays and their associated
1325 energy constants. Type "A" arrays have nearest neighbor strings of
1326 antiparallel dipoles. Type "B" arrays have nearest neighbor
1327 strings of antiparallel dipoles if the dipoles are contained in a
1328 plane perpendicular to the dipole direction that passes through
1329 the dipole.}
1330 }
1331 \label{tab:LT}
1332 \begin{ruledtabular}
1333 \begin{tabular}{cccc}
1334 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1335 A & SC & 001 & -2.676788684 \\
1336 A & BCC & 001 & 0 \\
1337 A & BCC & 111 & -1.770078733 \\
1338 A & FCC & 001 & 2.166932835 \\
1339 A & FCC & 011 & -1.083466417 \\
1340
1341 * & BCC & minimum & -1.985920929 \\
1342
1343 B & SC & 001 & -2.676788684 \\
1344 B & BCC & 001 & -1.338394342 \\
1345 B & BCC & 111 & -1.770078733 \\
1346 B & FCC & 001 & -1.083466417 \\
1347 B & FCC & 011 & -1.807573634
1348 \end{tabular}
1349 \end{ruledtabular}
1350 \end{table*}
1351
1352 In addition to the A and B arrays, there is an additional minimum
1353 energy structure for the BCC lattice that was found by Luttinger \&
1354 Tisza. The total electrostatic energy for an array is given by:
1355 \begin{equation}
1356 E = C N^2 \mu^2
1357 \end{equation}
1358 where $C$ is the energy constant given above, $N$ is the number of
1359 dipoles per unit volume, and $\mu$ is the strength of the dipole.
1360
1361 {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1362 computed the energies of selected quadrupole arrays based on
1363 extensions to the Luttinger and Tisza
1364 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1365 energy constants for the lowest energy configurations for linear
1366 quadrupoles shown in table \ref{tab:NNQ}
1367
1368 \begin{table*}
1369 \centering{
1370 \caption{Nagai and Nakamura Quadurpolar arrays}}
1371 \label{tab:NNQ}
1372 \begin{ruledtabular}
1373 \begin{tabular}{ccc}
1374 Lattice & Quadrupole Direction & Energy constants \\ \hline
1375 SC & 111 & -8.3 \\
1376 BCC & 011 & -21.7 \\
1377 FCC & 111 & -80.5
1378 \end{tabular}
1379 \end{ruledtabular}
1380 \end{table*}
1381
1382 In analogy to the dipolar arrays, the total electrostatic energy for
1383 the quadrupolar arrays is:
1384 \begin{equation}
1385 E = C \frac{3}{4} N^2 Q^2
1386 \end{equation}
1387 where $Q$ is the quadrupole moment.
1388
1389
1390
1391
1392
1393
1394
1395
1396 \begin{acknowledgments}
1397 Support for this project was provided by the National Science
1398 Foundation under grant CHE-0848243. Computational time was provided by
1399 the Center for Research Computing (CRC) at the University of Notre
1400 Dame.
1401 \end{acknowledgments}
1402
1403 \appendix
1404
1405 \section{Smith's $B_l(r)$ functions for smeared-charge distributions}
1406
1407 The following summarizes Smith's $B_l(r)$ functions and
1408 includes formulas given in his appendix.
1409
1410 The first function $B_0(r)$ is defined by
1411 %
1412 \begin{equation}
1413 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1414 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1415 \end{equation}
1416 %
1417 The first derivative of this function is
1418 %
1419 \begin{equation}
1420 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1421 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1422 \end{equation}
1423 %
1424 and can be rewritten in terms of a function $B_1(r)$:
1425 %
1426 \begin{equation}
1427 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1428 \end{equation}
1429 %
1430 In general,
1431 \begin{equation}
1432 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1433 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1434 \text{e}^{-{\alpha}^2r^2}
1435 \right] .
1436 \end{equation}
1437 %
1438 Using these formulas, we find
1439 %
1440 \begin{eqnarray}
1441 \frac{dB_0}{dr}=-rB_1(r) \\
1442 \frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\
1443 \frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\
1444 \frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\
1445 \frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) .
1446 \end{eqnarray}
1447 %
1448 As noted by Smith,
1449 %
1450 \begin{equation}
1451 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1452 +\text{O}(r) .
1453 \end{equation}
1454
1455 \section{Method 1, the $r$-dependent factors}
1456
1457 Using the shifted damped functions $f_n(r)$ defined by:
1458 %
1459 \begin{equation}
1460 f_n(r)= B_0 \Big \lvert _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert _{r_c} ,
1461 \end{equation}
1462 %
1463 we first provide formulas for successive derivatives of this function. (If there is
1464 no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.) First, we find:
1465 %
1466 \begin{equation}
1467 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1468 \end{equation}
1469 %
1470 This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to
1471 define higher-order derivatives as follows:
1472 %
1473 \begin{eqnarray}
1474 g_n(r)= \frac{d f_n}{d r} =
1475 B_0^{(1)} \Big \lvert _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert _{r_c} \\
1476 h_n(r)= \frac{d^2f_n}{d r^2} =
1477 B_0^{(2)} \Big \lvert _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert _{r_c} \\
1478 s_n(r)= \frac{d^3f_n}{d r^3} =
1479 B_0^{(3)} \Big \lvert _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert _{r_c} \\
1480 t_n(r)= \frac{d^4f_n}{d r^4} =
1481 B_0^{(4)} \Big \lvert _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert _{r_c} \\
1482 u_n(r)= \frac{d^5f_n}{d r^5} =
1483 B_0^{(5)} \Big \lvert _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert _{r_c} .
1484 \end{eqnarray}
1485 %
1486 We note that the last function needed (for quadrupole-quadrupole) is
1487 %
1488 \begin{equation}
1489 u_4(r)=B_0^{(5)} \Big \lvert _r - B_0^{(5)} \Big \lvert _{r_c} .
1490 \end{equation}
1491
1492 The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$
1493 from $0$ to $r_c$. The functions needed are listed schematically below:
1494 %
1495 \begin{eqnarray}
1496 f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1497 g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1498 h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1499 s_2 \quad s_3 \quad &s_4 \nonumber \\
1500 t_3 \quad &t_4 \nonumber \\
1501 &u_4 \nonumber .
1502 \end{eqnarray}
1503
1504 Using these functions, we find
1505 %
1506 \begin{equation}
1507 \frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r}
1508 \end{equation}
1509 %
1510 \begin{equation}
1511 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r}
1512 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right)
1513 \end{equation}
1514 %
1515 \begin{equation}
1516 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =
1517 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1518 \delta_{ \beta \gamma} r_\alpha \right)
1519 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1520 + r_\alpha r_\beta r_\gamma
1521 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right)
1522 \end{equation}
1523 %
1524 \begin{eqnarray}
1525 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =
1526 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1527 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1528 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1529 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1530 + \left( \delta_{\alpha \beta} r_\gamma r_\delta
1531 + \text{5 perm}
1532 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1533 \right) \nonumber \\
1534 + r_\alpha r_\beta r_\gamma r_\delta
1535 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1536 + \frac{t_n}{r^4} \right)
1537 \end{eqnarray}
1538 %
1539 \begin{eqnarray}
1540 \frac{\partial^5 f_n}
1541 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =
1542 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1543 + \text{14 perm} \right)
1544 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1545 + \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1546 + \text{9 perm}
1547 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1548 \right) \nonumber \\
1549 + r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1550 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1551 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right)
1552 \end{eqnarray}
1553 %
1554 %
1555 %
1556 \section{Method 2, the $r$-dependent factors}
1557
1558 In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies,
1559 see Eq. (20?). For a smeared-charge distribution, this still brings into the algebra multiple derivatives
1560 of the kernel $B_0(r)$. To denote these terms, we generalize the notation of the previous appendix.
1561 For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1562 %
1563 \begin{eqnarray}
1564 g(r)= \frac{df}{d r}\\
1565 h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1566 s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1567 t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1568 u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} .
1569 \end{eqnarray}
1570 %
1571 For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.'' Checks of algebra can be made by using limiting forms
1572 of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$. Equations (B9) to B(13)
1573 are correct for method 2 if one just eliminates the subscript $n$.
1574
1575 \section{Extra Material}
1576 %
1577 %
1578 %Energy in body coordinate form ---------------------------------------------------------------
1579 %
1580 Here are the interaction energies written in terms of the body coordinates:
1581
1582 %
1583 % u ca cb
1584 %
1585 \begin{equation}
1586 U_{C_{\bf a}C_{\bf b}}(r)=
1587 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1588 \end{equation}
1589 %
1590 % u ca db
1591 %
1592 \begin{equation}
1593 U_{C_{\bf a}D_{\bf b}}(r)=
1594 \frac{C_{\bf a}}{4\pi \epsilon_0}
1595 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1596 \end{equation}
1597 %
1598 % u ca qb
1599 %
1600 \begin{equation}
1601 U_{C_{\bf a}Q_{\bf b}}(r)=
1602 \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1603 v_{21}(r) \nonumber \\
1604 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1605 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1606 v_{22}(r)
1607 \end{equation}
1608 %
1609 % u da cb
1610 %
1611 \begin{equation}
1612 U_{D_{\bf a}C_{\bf b}}(r)=
1613 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1614 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1615 \end{equation}
1616 %
1617 % u da db
1618 %
1619 \begin{equation}
1620 \begin{split}
1621 % 1
1622 U_{D_{\bf a}D_{\bf b}}(r)&=
1623 -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1624 (\hat{a}_m \cdot \hat{b}_n)
1625 D_{\mathbf{b}n} v_{21}(r) \\
1626 % 2
1627 &-\frac{1}{4\pi \epsilon_0}
1628 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1629 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1630 v_{22}(r)
1631 \end{split}
1632 \end{equation}
1633 %
1634 % u da qb
1635 %
1636 \begin{equation}
1637 \begin{split}
1638 % 1
1639 U_{D_{\bf a}Q_{\bf b}}(r)&=
1640 -\frac{1}{4\pi \epsilon_0} \left(
1641 \text{Tr}Q_{\mathbf{b}}
1642 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1643 +2\sum_{lmn}D_{\mathbf{a}l}
1644 (\hat{a}_l \cdot \hat{b}_m)
1645 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1646 \right) v_{31}(r) \\
1647 % 2
1648 &-\frac{1}{4\pi \epsilon_0}
1649 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1650 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1651 Q_{{\mathbf b}mn}
1652 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1653 \end{split}
1654 \end{equation}
1655 %
1656 % u qa cb
1657 %
1658 \begin{equation}
1659 U_{Q_{\bf a}C_{\bf b}}(r)=
1660 \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1661 +\frac{C_{\bf b}}{4\pi \epsilon_0}
1662 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1663 \end{equation}
1664 %
1665 % u qa db
1666 %
1667 \begin{equation}
1668 \begin{split}
1669 %1
1670 U_{Q_{\bf a}D_{\bf b}}(r)&=
1671 \frac{1}{4\pi \epsilon_0} \left(
1672 \text{Tr}Q_{\mathbf{a}}
1673 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1674 +2\sum_{lmn}D_{\mathbf{b}l}
1675 (\hat{b}_l \cdot \hat{a}_m)
1676 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1677 \right) v_{31}(r) \\
1678 % 2
1679 &+\frac{1}{4\pi \epsilon_0}
1680 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1681 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1682 Q_{{\mathbf a}mn}
1683 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1684 \end{split}
1685 \end{equation}
1686 %
1687 % u qa qb
1688 %
1689 \begin{equation}
1690 \begin{split}
1691 %1
1692 U_{Q_{\bf a}Q_{\bf b}}(r)&=
1693 \frac{1}{4\pi \epsilon_0} \Bigl[
1694 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1695 +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1696 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1697 (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1698 v_{41}(r) \\
1699 % 2
1700 &+ \frac{1}{4\pi \epsilon_0}
1701 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1702 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1703 Q_{{\mathbf b}lm}
1704 (\hat{b}_m \cdot \hat{r})
1705 +\text{Tr}Q_{\mathbf{b}}
1706 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1707 Q_{{\mathbf a}lm}
1708 (\hat{a}_m \cdot \hat{r}) \\
1709 % 3
1710 &+4 \sum_{lmnp}
1711 (\hat{r} \cdot \hat{a}_l )
1712 Q_{{\mathbf a}lm}
1713 (\hat{a}_m \cdot \hat{b}_n)
1714 Q_{{\mathbf b}np}
1715 (\hat{b}_p \cdot \hat{r})
1716 \Bigr] v_{42}(r) \\
1717 % 4
1718 &+ \frac{1}{4\pi \epsilon_0}
1719 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1720 Q_{{\mathbf a}lm}
1721 (\hat{a}_m \cdot \hat{r})
1722 \sum_{np} (\hat{r} \cdot \hat{b}_n)
1723 Q_{{\mathbf b}np}
1724 (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1725 \end{split}
1726 \end{equation}
1727 %
1728
1729
1730 % BODY coordinates force equations --------------------------------------------
1731 %
1732 %
1733 Here are the force equations written in terms of body coordinates.
1734 %
1735 % f ca cb
1736 %
1737 \begin{equation}
1738 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1739 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1740 \end{equation}
1741 %
1742 % f ca db
1743 %
1744 \begin{equation}
1745 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1746 \frac{C_{\bf a}}{4\pi \epsilon_0}
1747 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1748 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1749 \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1750 \end{equation}
1751 %
1752 % f ca qb
1753 %
1754 \begin{equation}
1755 \begin{split}
1756 % 1
1757 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1758 \frac{1}{4\pi \epsilon_0}
1759 C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1760 + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1761 % 2
1762 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1763 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1764 \end{split}
1765 \end{equation}
1766 %
1767 % f da cb
1768 %
1769 \begin{equation}
1770 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1771 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1772 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1773 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1774 \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1775 \end{equation}
1776 %
1777 % f da db
1778 %
1779 \begin{equation}
1780 \begin{split}
1781 % 1
1782 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1783 -\frac{1}{4\pi \epsilon_0}
1784 \sum_{mn} D_{\mathbf {a}m}
1785 (\hat{a}_m \cdot \hat{b}_n)
1786 D_{\mathbf{b}n} w_d(r) \hat{r}
1787 -\frac{1}{4\pi \epsilon_0}
1788 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1789 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1790 % 2
1791 & \quad + \frac{1}{4\pi \epsilon_0}
1792 \Bigl[ \sum_m D_{\mathbf {a}m}
1793 \hat{a}_m \sum_n D_{\mathbf{b}n}
1794 (\hat{b}_n \cdot \hat{r})
1795 + \sum_m D_{\mathbf {b}m}
1796 \hat{b}_m \sum_n D_{\mathbf{a}n}
1797 (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1798 \end{split}
1799 \end{equation}
1800 %
1801 % f da qb
1802 %
1803 \begin{equation}
1804 \begin{split}
1805 % 1
1806 &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1807 - \frac{1}{4\pi \epsilon_0} \Bigl[
1808 \text{Tr}Q_{\mathbf{b}}
1809 \sum_l D_{\mathbf{a}l} \hat{a}_l
1810 +2\sum_{lmn} D_{\mathbf{a}l}
1811 (\hat{a}_l \cdot \hat{b}_m)
1812 Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1813 % 3
1814 & - \frac{1}{4\pi \epsilon_0} \Bigl[
1815 \text{Tr}Q_{\mathbf{b}}
1816 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1817 +2\sum_{lmn}D_{\mathbf{a}l}
1818 (\hat{a}_l \cdot \hat{b}_m)
1819 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1820 % 4
1821 &+ \frac{1}{4\pi \epsilon_0}
1822 \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1823 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1824 Q_{{\mathbf b}mn}
1825 (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1826 D_{\mathbf{a}l}
1827 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1828 Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1829 % 6
1830 & -\frac{1}{4\pi \epsilon_0}
1831 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1832 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1833 Q_{{\mathbf b}mn}
1834 (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1835 \end{split}
1836 \end{equation}
1837 %
1838 % force qa cb
1839 %
1840 \begin{equation}
1841 \begin{split}
1842 % 1
1843 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1844 \frac{1}{4\pi \epsilon_0}
1845 C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1846 + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1847 % 2
1848 & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1849 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1850 \end{split}
1851 \end{equation}
1852 %
1853 % f qa db
1854 %
1855 \begin{equation}
1856 \begin{split}
1857 % 1
1858 &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1859 \frac{1}{4\pi \epsilon_0} \Bigl[
1860 \text{Tr}Q_{\mathbf{a}}
1861 \sum_l D_{\mathbf{b}l} \hat{b}_l
1862 +2\sum_{lmn} D_{\mathbf{b}l}
1863 (\hat{b}_l \cdot \hat{a}_m)
1864 Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1865 w_g(r)\\
1866 % 3
1867 & + \frac{1}{4\pi \epsilon_0} \Bigl[
1868 \text{Tr}Q_{\mathbf{a}}
1869 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1870 +2\sum_{lmn}D_{\mathbf{b}l}
1871 (\hat{b}_l \cdot \hat{a}_m)
1872 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1873 % 4
1874 & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1875 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1876 Q_{{\mathbf a}mn}
1877 (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1878 D_{\mathbf{b}l}
1879 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1880 Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1881 % 6
1882 & +\frac{1}{4\pi \epsilon_0}
1883 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1884 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1885 Q_{{\mathbf a}mn}
1886 (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1887 \end{split}
1888 \end{equation}
1889 %
1890 % f qa qb
1891 %
1892 \begin{equation}
1893 \begin{split}
1894 &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1895 \frac{1}{4\pi \epsilon_0} \Bigl[
1896 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1897 + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1898 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1899 (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1900 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1901 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1902 + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1903 &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1904 + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1905 \Bigr] w_n(r) \\
1906 &+ \frac{1}{4\pi \epsilon_0}
1907 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1908 \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1909 + \text{Tr}Q_{\mathbf{b}}
1910 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1911 &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1912 Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1913 %
1914 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1915 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1916 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1917 &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1918 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1919 & + \frac{1}{4\pi \epsilon_0}
1920 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1921 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1922 \end{split}
1923 \end{equation}
1924 %
1925 Here we list the form of the non-zero damped shifted multipole torques showing
1926 explicitly dependences on body axes:
1927 %
1928 % t ca db
1929 %
1930 \begin{equation}
1931 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1932 \frac{C_{\bf a}}{4\pi \epsilon_0}
1933 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1934 \end{equation}
1935 %
1936 % t ca qb
1937 %
1938 \begin{equation}
1939 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1940 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1941 \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1942 \end{equation}
1943 %
1944 % t da cb
1945 %
1946 \begin{equation}
1947 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1948 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1949 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1950 \end{equation}%
1951 %
1952 %
1953 % ta da db
1954 %
1955 \begin{equation}
1956 \begin{split}
1957 % 1
1958 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1959 \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1960 (\hat{a}_m \times \hat{b}_n)
1961 D_{\mathbf{b}n} v_{21}(r) \\
1962 % 2
1963 &-\frac{1}{4\pi \epsilon_0}
1964 \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1965 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1966 \end{split}
1967 \end{equation}
1968 %
1969 % tb da db
1970 %
1971 \begin{equation}
1972 \begin{split}
1973 % 1
1974 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1975 -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1976 (\hat{a}_m \times \hat{b}_n)
1977 D_{\mathbf{b}n} v_{21}(r) \\
1978 % 2
1979 &+\frac{1}{4\pi \epsilon_0}
1980 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1981 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1982 \end{split}
1983 \end{equation}
1984 %
1985 % ta da qb
1986 %
1987 \begin{equation}
1988 \begin{split}
1989 % 1
1990 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1991 \frac{1}{4\pi \epsilon_0} \left(
1992 -\text{Tr}Q_{\mathbf{b}}
1993 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1994 +2\sum_{lmn}D_{\mathbf{a}l}
1995 (\hat{a}_l \times \hat{b}_m)
1996 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1997 \right) v_{31}(r)\\
1998 % 2
1999 &-\frac{1}{4\pi \epsilon_0}
2000 \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2001 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2002 Q_{{\mathbf b}mn}
2003 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2004 \end{split}
2005 \end{equation}
2006 %
2007 % tb da qb
2008 %
2009 \begin{equation}
2010 \begin{split}
2011 % 1
2012 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2013 \frac{1}{4\pi \epsilon_0} \left(
2014 -2\sum_{lmn}D_{\mathbf{a}l}
2015 (\hat{a}_l \cdot \hat{b}_m)
2016 Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2017 -2\sum_{lmn}D_{\mathbf{a}l}
2018 (\hat{a}_l \times \hat{b}_m)
2019 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2020 \right) v_{31}(r) \\
2021 % 2
2022 &-\frac{2}{4\pi \epsilon_0}
2023 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2024 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2025 Q_{{\mathbf b}mn}
2026 (\hat{r}\times \hat{b}_n) v_{32}(r)
2027 \end{split}
2028 \end{equation}
2029 %
2030 % ta qa cb
2031 %
2032 \begin{equation}
2033 \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2034 \frac{2C_{\bf a}}{4\pi \epsilon_0}
2035 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2036 \end{equation}
2037 %
2038 % ta qa db
2039 %
2040 \begin{equation}
2041 \begin{split}
2042 % 1
2043 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2044 \frac{1}{4\pi \epsilon_0} \left(
2045 2\sum_{lmn}D_{\mathbf{b}l}
2046 (\hat{b}_l \cdot \hat{a}_m)
2047 Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2048 +2\sum_{lmn}D_{\mathbf{b}l}
2049 (\hat{a}_l \times \hat{b}_m)
2050 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2051 \right) v_{31}(r) \\
2052 % 2
2053 &+\frac{2}{4\pi \epsilon_0}
2054 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2055 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2056 Q_{{\mathbf a}mn}
2057 (\hat{r}\times \hat{a}_n) v_{32}(r)
2058 \end{split}
2059 \end{equation}
2060 %
2061 % tb qa db
2062 %
2063 \begin{equation}
2064 \begin{split}
2065 % 1
2066 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2067 \frac{1}{4\pi \epsilon_0} \left(
2068 \text{Tr}Q_{\mathbf{a}}
2069 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2070 +2\sum_{lmn}D_{\mathbf{b}l}
2071 (\hat{a}_l \times \hat{b}_m)
2072 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2073 \right) v_{31}(r)\\
2074 % 2
2075 &\frac{1}{4\pi \epsilon_0}
2076 \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2077 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2078 Q_{{\mathbf a}mn}
2079 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2080 \end{split}
2081 \end{equation}
2082 %
2083 % ta qa qb
2084 %
2085 \begin{equation}
2086 \begin{split}
2087 % 1
2088 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2089 -\frac{4}{4\pi \epsilon_0}
2090 \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2091 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2092 (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2093 % 2
2094 &+ \frac{1}{4\pi \epsilon_0}
2095 \Bigl[
2096 2\text{Tr}Q_{\mathbf{b}}
2097 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2098 Q_{{\mathbf a}lm}
2099 (\hat{r} \times \hat{a}_m)
2100 +4 \sum_{lmnp}
2101 (\hat{r} \times \hat{a}_l )
2102 Q_{{\mathbf a}lm}
2103 (\hat{a}_m \cdot \hat{b}_n)
2104 Q_{{\mathbf b}np}
2105 (\hat{b}_p \cdot \hat{r}) \\
2106 % 3
2107 &-4 \sum_{lmnp}
2108 (\hat{r} \cdot \hat{a}_l )
2109 Q_{{\mathbf a}lm}
2110 (\hat{a}_m \times \hat{b}_n)
2111 Q_{{\mathbf b}np}
2112 (\hat{b}_p \cdot \hat{r})
2113 \Bigr] v_{42}(r) \\
2114 % 4
2115 &+ \frac{2}{4\pi \epsilon_0}
2116 \sum_{lm} (\hat{r} \times \hat{a}_l)
2117 Q_{{\mathbf a}lm}
2118 (\hat{a}_m \cdot \hat{r})
2119 \sum_{np} (\hat{r} \cdot \hat{b}_n)
2120 Q_{{\mathbf b}np}
2121 (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2122 \end{split}
2123 \end{equation}
2124 %
2125 % tb qa qb
2126 %
2127 \begin{equation}
2128 \begin{split}
2129 % 1
2130 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2131 \frac{4}{4\pi \epsilon_0}
2132 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2133 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2134 (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2135 % 2
2136 &+ \frac{1}{4\pi \epsilon_0}
2137 \Bigl[
2138 2\text{Tr}Q_{\mathbf{a}}
2139 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2140 Q_{{\mathbf b}lm}
2141 (\hat{r} \times \hat{b}_m)
2142 +4 \sum_{lmnp}
2143 (\hat{r} \cdot \hat{a}_l )
2144 Q_{{\mathbf a}lm}
2145 (\hat{a}_m \cdot \hat{b}_n)
2146 Q_{{\mathbf b}np}
2147 (\hat{r} \times \hat{b}_p) \\
2148 % 3
2149 &+4 \sum_{lmnp}
2150 (\hat{r} \cdot \hat{a}_l )
2151 Q_{{\mathbf a}lm}
2152 (\hat{a}_m \times \hat{b}_n)
2153 Q_{{\mathbf b}np}
2154 (\hat{b}_p \cdot \hat{r})
2155 \Bigr] v_{42}(r) \\
2156 % 4
2157 &+ \frac{2}{4\pi \epsilon_0}
2158 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2159 Q_{{\mathbf a}lm}
2160 (\hat{a}_m \cdot \hat{r})
2161 \sum_{np} (\hat{r} \times \hat{b}_n)
2162 Q_{{\mathbf b}np}
2163 (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2164 \end{split}
2165 \end{equation}
2166 %
2167 \begin{table*}
2168 \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2169 \begin{ruledtabular}
2170 \begin{tabular}{ccc}
2171 Generic&Method 1&Method 2
2172 \\ \hline
2173 %
2174 %
2175 %
2176 $w_a(r)$&
2177 $g_0(r)$&
2178 $g(r)-g(r_c)$ \\
2179 %
2180 %
2181 $w_b(r)$ &
2182 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2183 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2184 %
2185 $w_c(r)$ &
2186 $\frac{g_1(r)}{r} $ &
2187 $\frac{v_{11}(r)}{r}$ \\
2188 %
2189 %
2190 $w_d(r)$&
2191 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2192 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2193 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2194 %
2195 $w_e(r)$ &
2196 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2197 $\frac{v_{22}(r)}{r}$ \\
2198 %
2199 %
2200 $w_f(r)$&
2201 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2202 $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2203 &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2204 %
2205 $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2206 $\frac{v_{31}(r)}{r}$\\
2207 %
2208 $w_h(r)$ &
2209 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2210 $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2211 &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2212 &&$-\frac{v_{31}(r)}{r}$\\
2213 % 2
2214 $w_i(r)$ &
2215 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2216 $\frac{v_{32}(r)}{r}$ \\
2217 %
2218 $w_j(r)$ &
2219 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2220 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2221 &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2222 %
2223 $w_k(r)$ &
2224 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2225 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2226 &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2227 %
2228 $w_l(r)$ &
2229 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2230 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2231 &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2232 -\frac{2v_{42}(r)}{r}$ \\
2233 %
2234 $w_m(r)$ &
2235 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2236 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2237 &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2238 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2239 &&$-\frac{4v_{43}(r)}{r}$ \\
2240 %
2241 $w_n(r)$ &
2242 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2243 $\frac{v_{42}(r)}{r}$ \\
2244 %
2245 $w_o(r)$ &
2246 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2247 $\frac{v_{43}(r)}{r}$ \\
2248 %
2249 \end{tabular}
2250 \end{ruledtabular}
2251 \end{table*}
2252
2253 \newpage
2254
2255 \bibliography{multipole}
2256
2257 \end{document}
2258 %
2259 % ****** End of file multipole.tex ******