ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3984
Committed: Sat Dec 28 18:41:19 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 77999 byte(s)
Log Message:
more edits

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37
38 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
39 %\linenumbers\relax % Commence numbering lines
40
41 \begin{document}
42
43 \preprint{AIP/123-QED}
44
45 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
46 {Real space alternatives to the Ewald
47 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48
49 \author{Madan Lamichhane}
50 \affiliation{Department of Physics, University
51 of Notre Dame, Notre Dame, IN 46556}
52
53 \author{J. Daniel Gezelter}
54 \email{gezelter@nd.edu.}
55 \affiliation{Department of Chemistry and Biochemistry, University
56 of Notre Dame, Notre Dame, IN 46556}
57
58 \author{Kathie E. Newman}
59 \affiliation{Department of Physics, University
60 of Notre Dame, Notre Dame, IN 46556}
61
62
63 \date{\today}% It is always \today, today,
64 % but any date may be explicitly specified
65
66 \begin{abstract}
67 We have extended the original damped-shifted force (DSF)
68 electrostatic kernel and have been able to derive two new
69 electrostatic potentials for higher-order multipoles that are based
70 on truncated Taylor expansions around the cutoff radius. For
71 multipole-multipole interactions, we find that each of the distinct
72 orientational contributions has a separate radial function to ensure
73 that the overall forces and torques vanish at the cutoff radius. In
74 this paper, we present energy, force, and torque expressions for the
75 new models, and compare these real-space interaction models to exact
76 results for ordered arrays of multipoles.
77 \end{abstract}
78
79 \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80 % Classification Scheme.
81 \keywords{Suggested keywords}%Use showkeys class option if keyword
82 %display desired
83 \maketitle
84
85 \section{Introduction}
86 There has been increasing interest in real-space methods for
87 calculating electrostatic interactions in computer simulations of
88 condensed molecular
89 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90 The simplest of these techniques was developed by Wolf {\it et al.}
91 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 For systems of point charges, Fennell and Gezelter showed that a
93 simple damped shifted force (DSF) modification to Wolf's method could
94 give nearly quantitative agreement with smooth particle mesh Ewald
95 (SPME)\cite{Essmann95} configurational energy differences as well as
96 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97
98 The computational efficiency and the accuracy of the DSF method are
99 surprisingly good, particularly for systems with uniform charge
100 density. Additionally, dielectric constants obtained using DSF and
101 similar methods where the force vanishes at $R_\textrm{c}$ are
102 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103 related methods have now been widely investigated,\cite{Hansen:2012uq}
104 and DSF is now used routinely in simulations of ionic
105 liquids,\cite{doi:10.1021/la400226g,McCann:2013fk} flow in carbon
106 nanotubes,\cite{kannam:094701} gas sorption in metal-organic framework
107 materials,\cite{Forrest:2012ly} thermal conductivity of methane
108 hydrates,\cite{English:2008kx} condensation coefficients of
109 water,\cite{Louden:2013ve} and in tribology at solid-liquid-solid
110 interfaces.\cite{Tokumasu:2013zr} DSF electrostatics provides a
111 compromise between the computational speed of real-space cutoffs and
112 the accuracy of fully-periodic Ewald treatments.
113
114 \subsection{Coarse Graining using Point Multipoles}
115 One common feature of many coarse-graining approaches, which treat
116 entire molecular subsystems as a single rigid body, is simplification
117 of the electrostatic interactions between these bodies so that fewer
118 site-site interactions are required to compute configurational
119 energies. Notably, the force matching approaches of Voth and coworkers
120 are an exciting development in their ability to represent realistic
121 (and {\it reactive}) chemical systems for very large length scales and
122 long times. This approach utilized a coarse-graining in interaction
123 space (CGIS) which fits an effective force for the coarse grained
124 system using a variational force-matching method to a fine-grained
125 simulation.\cite{Izvekov:2008wo}
126
127 The coarse-graining approaches of Ren \& coworkers,\cite{Golubkov06}
128 and Essex \&
129 coworkers,\cite{ISI:000276097500009,ISI:000298664400012}
130 both utilize Gay-Berne
131 ellipsoids~\cite{Berne72,Gay81,Luckhurst90,Cleaver96,Berardi98,Ravichandran:1999fk,Berardi99,Pasterny00}
132 to model dispersive interactions and point multipoles to model
133 electrostatics for entire molecules or functional groups.
134
135 Ichiye and coworkers have recently introduced a number of very fast
136 water models based on a ``sticky'' multipole model which are
137 qualitatively better at reproducing the behavior of real water than
138 the more common point-charge models (SPC/E, TIPnP). The point charge
139 models are also substantially more computationally demanding than the
140 sticky multipole
141 approach.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} The
142 SSDQO model requires the use of an approximate multipole expansion
143 (AME) as the exact multipole expansion is quite expensive
144 (particularly when handled via the Ewald sum).\cite{Ichiye:2006qy}
145 Another particularly important use of point multipoles (and multipole
146 polarizability) is in the very high-quality AMOEBA water model and
147 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
148
149 Higher-order multipoles present a peculiar issue for molecular
150 dynamics. Multipolar interactions are inherently short-ranged, and
151 should not need the relatively expensive Ewald treatment. However,
152 real-space cutoff methods are normally applied in an orientation-blind
153 fashion so multipoles which leave and then re-enter a cutoff sphere in
154 a different orientation can cause energy discontinuities.
155
156 This paper outlines an extension of the original DSF electrostatic
157 kernel to point multipoles. We have developed two distinct real-space
158 interaction models for higher-order multipoles based on two truncated
159 Taylor expansions that are carried out at the cutoff radius. We are
160 calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
161 electrostatics. Because of differences in the initial assumptions,
162 the two methods yield related, but different expressions for energies,
163 forces, and torques.
164
165 In this paper we outline the new methodology and give functional forms
166 for the energies, forces, and torques up to quadrupole-quadrupole
167 order. We also compare the new methods to analytic energy constants
168 for periodic arrays of point multipoles. In the following paper, we
169 provide extensive numerical comparisons to Ewald-based electrostatics
170 in common simulation enviornments.
171
172 \section{Methodology}
173
174 \subsection{Self-neutralization, damping, and force-shifting}
175 The DSF and Wolf methods operate by neutralizing the total charge
176 contained within the cutoff sphere surrounding each particle. This is
177 accomplished by shifting the potential functions to generate image
178 charges on the surface of the cutoff sphere for each pair interaction
179 computed within $R_\textrm{c}$. Damping using a complementary error
180 function is applied to the potential to accelerate convergence. The
181 potential for the DSF method, where $\alpha$ is the adjustable damping
182 parameter, is given by
183 \begin{equation*}
184 V_\mathrm{DSF}(r) = C_a C_b \Biggr{[}
185 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
186 - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} + \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
187 + \frac{2\alpha}{\pi^{1/2}}
188 \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
189 \right)\left(r_{ij}-R_\mathrm{c}\right)\ \Biggr{]}
190 \label{eq:DSFPot}
191 \end{equation*}
192
193 To insure net charge neutrality within each cutoff sphere, an
194 additional ``self'' term is added to the potential. This term is
195 constant (as long as the charges and cutoff radius do not change), and
196 exists outside the normal pair-loop for molecular simulations. It can
197 be thought of as a contribution from a charge opposite in sign, but
198 equal in magnitude, to the central charge, which has been spread out
199 over the surface of the cutoff sphere. A portion of the self term is
200 identical to the self term in the Ewald summation, and comes from the
201 utilization of the complimentary error function for electrostatic
202 damping.\cite{deLeeuw80,Wolf99}
203
204 There have been recent efforts to extend the Wolf self-neutralization
205 method to zero out the dipole and higher order multipoles contained
206 within the cutoff
207 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
208
209 In this work, we will be extending the idea of self-neutralization for
210 the point multipoles in a similar way. In Figure
211 \ref{fig:shiftedMultipoles}, the central dipolar site $\mathbf{D}_i$
212 is interacting with point dipole $\mathbf{D}_j$ and point quadrupole,
213 $\mathbf{Q}_k$. The self-neutralization scheme for point multipoles
214 involves projecting opposing multipoles for sites $j$ and $k$ on the
215 surface of the cutoff sphere.
216
217 \begin{figure}
218 \includegraphics[width=3in]{SM}
219 \caption{Reversed multipoles are projected onto the surface of the
220 cutoff sphere. The forces, torques, and potential are then smoothly
221 shifted to zero as the sites leave the cutoff region.}
222 \label{fig:shiftedMultipoles}
223 \end{figure}
224
225 As in the point-charge approach, there is a contribution from
226 self-neutralization of site $i$. The self term for multipoles is
227 described in section \ref{sec:selfTerm}.
228
229 \subsection{The multipole expansion}
230
231 Consider two discrete rigid collections of point charges, denoted as
232 $\bf a$ and $\bf b$. In the following, we assume that the two objects
233 interact via electrostatics only and describe those interactions in
234 terms of a standard multipole expansion. Putting the origin of the
235 coordinate system at the center of mass of $\bf a$, we use vectors
236 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
237 a$. Then the electrostatic potential of object $\bf a$ at
238 $\mathbf{r}$ is given by
239 \begin{equation}
240 V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0}
241 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
242 \end{equation}
243 The Taylor expansion in $r$ can be written using an implied summation
244 notation. Here Greek indices are used to indicate space coordinates
245 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
246 labelling specific charges in $\bf a$ and $\bf b$ respectively. The
247 Taylor expansion,
248 \begin{equation}
249 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
250 \left( 1
251 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
252 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
253 \right)
254 \frac{1}{r} ,
255 \end{equation}
256 can then be used to express the electrostatic potential on $\bf a$ in
257 terms of multipole operators,
258 \begin{equation}
259 V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r}
260 \end{equation}
261 where
262 \begin{equation}
263 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
264 + Q_{{\bf a}\alpha\beta}
265 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
266 \end{equation}
267 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
268 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
269 a}\alpha\beta}$, respectively. These are the primitive multipoles
270 which can be expressed as a distribution of charges,
271 \begin{align}
272 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
273 D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
274 Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
275 \end{align}
276 Note that the definition of the primitive quadrupole here differs from
277 the standard traceless form, and contains an additional Taylor-series
278 based factor of $1/2$.
279
280 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
281 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
282 \begin{equation}
283 U_{\bf{ab}}(r)
284 = \frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
285 \end{equation}
286 This can also be expanded as a Taylor series in $r$. Using a notation
287 similar to before to define the multipoles on object {\bf b},
288 \begin{equation}
289 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
290 + Q_{{\bf b}\alpha\beta}
291 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
292 \end{equation}
293 we arrive at the multipole expression for the total interaction energy.
294 \begin{equation}
295 U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}.
296 \end{equation}
297 This form has the benefit of separating out the energies of
298 interaction into contributions from the charge, dipole, and quadrupole
299 of $\bf a$ interacting with the same multipoles $\bf b$.
300
301 \subsection{Damped Coulomb interactions}
302 In the standard multipole expansion, one typically uses the bare
303 Coulomb potential, with radial dependence $1/r$, as shown in
304 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
305 interaction, which results from replacing point charges with Gaussian
306 distributions of charge with width $\alpha$. In damped multipole
307 electrostatics, the kernel ($1/r$) of the expansion is replaced with
308 the function:
309 \begin{equation}
310 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
311 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
312 \end{equation}
313 We develop equations below using the function $f(r)$ to represent
314 either $1/r$ or $B_0(r)$, and all of the techniques can be applied
315 either to bare or damped Coulomb kernels as long as derivatives of
316 these functions are known. Smith's convenient functions $B_l(r)$ are
317 summarized in Appendix A.
318
319
320 The main goal of this work is to smoothly cut off the interaction
321 energy as well as forces and torques as $r\rightarrow r_c$. To
322 describe how this goal may be met, we use two examples, charge-charge
323 and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain
324 the idea.
325
326 \subsection{Shifted-force methods}
327 In the shifted-force approximation, the interaction energy for two
328 charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
329 written:
330 \begin{equation}
331 U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b}
332 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
333 \right) .
334 \end{equation}
335 Two shifting terms appear in this equations, one from the
336 neutralization procedure ($-1/r_c$), and one that causes the first
337 derivative to vanish at the cutoff radius.
338
339 Since one derivative of the interaction energy is needed for the
340 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
341 interaction energy, that is:
342 \begin{equation}
343 \frac{d\,}{dr}
344 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
345 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
346 \right) .
347 \end{equation}
348 There are a number of ways to generalize this derivative shift for
349 higher-order multipoles. Below, we present two methods, one based on
350 higher-order Taylor series for $r$ near $r_c$, and the other based on
351 linear shift of the kernel gradients at the cutoff itself.
352
353 \subsection{Taylor-shifted force (TSF) electrostatics}
354 In the Taylor-shifted force (TSF) method, the procedure that we follow
355 is based on a Taylor expansion containing the same number of
356 derivatives required for each force term to vanish at the cutoff. For
357 example, the quadrupole-quadrupole interaction energy requires four
358 derivatives of the kernel, and the force requires one additional
359 derivative. We therefore require shifted energy expressions that
360 include enough terms so that all energies, forces, and torques are
361 zero as $r \rightarrow r_c$. In each case, we will subtract off a
362 function $f_n^{\text{shift}}(r)$ from the kernel $f(r)=1/r$. The
363 subscript $n$ indicates the number of derivatives to be taken when
364 deriving a given multipole energy. We choose a function with
365 guaranteed smooth derivatives --- a truncated Taylor series of the
366 function $f(r)$, e.g.,
367 %
368 \begin{equation}
369 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
370 \end{equation}
371 %
372 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
373 Thus, for $f(r)=1/r$, we find
374 %
375 \begin{equation}
376 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
377 \end{equation}
378 %
379 Continuing with the example of a charge $\bf a$ interacting with a
380 dipole $\bf b$, we write
381 %
382 \begin{equation}
383 U_{C_{\bf a}D_{\bf b}}(r)=
384 \frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha}
385 =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
386 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
387 \end{equation}
388 %
389 The force that dipole $\bf b$ exerts on charge $\bf a$ is
390 %
391 \begin{equation}
392 F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0}
393 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
394 \frac{r_\alpha r_\beta}{r^2}
395 \left( -\frac{1}{r} \frac {\partial} {\partial r}
396 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
397 \end{equation}
398 %
399 For undamped coulombic interactions, $f(r)=1/r$, we find
400 %
401 \begin{equation}
402 F_{C_{\bf a}D_{\bf b}\beta} =
403 \frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r}
404 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
405 +\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0}
406 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
407 \end{equation}
408 %
409 This expansion shows the expected $1/r^3$ dependence of the force.
410
411 In general, we can write
412 %
413 \begin{equation}
414 U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r)
415 \label{generic}
416 \end{equation}
417 %
418 where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole
419 and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole.
420 An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is
421 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are
422 $\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with
423 implied summation combining the space indices.
424
425 In the formulas presented in the tables below, the placeholder
426 function $f(r)$ is used to represent the electrostatic kernel (either
427 damped or undamped). The main functions that go into the force and
428 torque terms, $f_n(r), g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$
429 are successive derivatives of the shifted electrostatic kernel of the
430 same index $n$. The algebra required to evaluate energies, forces and
431 torques is somewhat tedious and are summarized in Appendices A and B.
432
433 \subsection{Gradient-shifted force (GSF) electrostatics}
434 Note the method used in the previous subsection to smoothly shift the
435 force to zero is a truncated Taylor Series in the radius $r$. The
436 second method maintains only the linear $(r-r_c)$ term and has a
437 similar interaction energy for all multipole orders:
438 \begin{equation}
439 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} .
440 \end{equation}
441 No higher order terms $(r-r_c)^n$ appear. The primary difference
442 between the TSF and GSF methods is the stage at which the Taylor
443 Series is applied; in the Taylor-shifted approach, it is applied to
444 the kernel itself. In the Gradient-shifted approach, it is applied to
445 individual radial interactions terms in the multipole expansion.
446 Terms from this method thus have the general form:
447 \begin{equation}
448 U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}).
449 \label{generic2}
450 \end{equation}
451
452 Results for both methods can be summarized using the form of
453 Eq.~(\ref{generic2}) and are listed in Table I below.
454
455 \subsection{\label{sec:level2}Body and space axes}
456
457 So far, all energies and forces have been written in terms of fixed
458 space coordinates $x$, $y$, $z$. Interaction energies are computed
459 from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2})
460 which combine prefactors with radial functions. Because objects $\bf
461 a$ and $\bf b$ both translate and rotate during a molecular dynamics
462 (MD) simulation, it is desirable to contract all $r$-dependent terms
463 with dipole and quadrupole moments expressed in terms of their body
464 axes. To do so, we follow the methodology of Allen and
465 Germano,\cite{Allen:2006fk} which was itself based on an earlier paper
466 by Price {\em et al.}\cite{Price:1984fk}
467
468 We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
469 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
470 referring to a convenient set of inertial body axes. (N.B., these
471 body axes are generally not the same as those for which the quadrupole
472 moment is diagonal.) Then,
473 %
474 \begin{eqnarray}
475 \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
476 \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
477 \end{eqnarray}
478 Allen and Germano define matrices $\hat{\mathbf {a}}$
479 and $\hat{\mathbf {b}}$ using these unit vectors:
480 \begin{eqnarray}
481 \hat{\mathbf {a}} =
482 \begin{pmatrix}
483 \hat{a}_1 \\
484 \hat{a}_2 \\
485 \hat{a}_3
486 \end{pmatrix}
487 =
488 \begin{pmatrix}
489 a_{1x} \quad a_{1y} \quad a_{1z} \\
490 a_{2x} \quad a_{2y} \quad a_{2z} \\
491 a_{3x} \quad a_{3y} \quad a_{3z}
492 \end{pmatrix}\\
493 \hat{\mathbf {b}} =
494 \begin{pmatrix}
495 \hat{b}_1 \\
496 \hat{b}_2 \\
497 \hat{b}_3
498 \end{pmatrix}
499 =
500 \begin{pmatrix}
501 b_{1x}\quad b_{1y} \quad b_{1z} \\
502 b_{2x} \quad b_{2y} \quad b_{2z} \\
503 b_{3x} \quad b_{3y} \quad b_{3z}
504 \end{pmatrix} .
505 \end{eqnarray}
506 %
507 These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates.
508 All contractions of prefactors with derivatives of functions can be written in terms of these matrices.
509 It proves to be equally convenient to just write any contraction in terms of unit vectors
510 $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$.
511 We have found it useful to write angular-dependent terms in three different fashions,
512 illustrated by the following
513 three examples from the interaction-energy expressions:
514 %
515 \begin{eqnarray}
516 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
517 =D_{\bf {a}\alpha} D_{\bf {b}\alpha}=
518 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\
519 r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)=
520 r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2
521 \sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\
522 r ( \mathbf{D}_{\mathbf{a}} \cdot
523 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})=
524 D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta
525 =r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn}
526 (\hat{b}_n \cdot \hat{r}) .
527 \end{eqnarray}
528 %
529 [Dan, perhaps there are better examples to show here.]
530
531 In each line, the first two terms are written using space coordinates. The first form is standard
532 in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third
533 form shows explicitly sums over body indices and the dot products now indicate contractions using space indices.
534 We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful
535 in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will
536 be discussed below.
537
538
539 \subsection{The Self-Interaction \label{sec:selfTerm}}
540
541 The Wolf summation~\cite{Wolf99} and the later damped shifted force
542 (DSF) extension~\cite{Fennell06} included self-interactions that are
543 handled separately from the pairwise interactions between sites. The
544 self-term is normally calculated via a single loop over all sites in
545 the system, and is relatively cheap to evaluate. The self-interaction
546 has contributions from two sources:
547 \begin{itemize}
548 \item The neutralization procedure within the cutoff radius requires a
549 contribution from a charge opposite in sign, but equal in magnitude,
550 to the central charge, which has been spread out over the surface of
551 the cutoff sphere. For a system of undamped charges, the total
552 self-term is
553 \begin{equation}
554 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
555 \label{eq:selfTerm}
556 \end{equation}
557 Note that in this potential and in all electrostatic quantities that
558 follow, the standard $4 \pi \epsilon_{0}$ has been omitted for
559 clarity.
560 \item Charge damping with the complementary error function is a
561 partial analogy to the Ewald procedure which splits the interaction
562 into real and reciprocal space sums. The real space sum is retained
563 in the Wolf and DSF methods. The reciprocal space sum is first
564 minimized by folding the largest contribution (the self-interaction)
565 into the self-interaction from charge neutralization of the damped
566 potential. The remainder of the reciprocal space portion is then
567 discarded (as this contributes the largest computational cost and
568 complexity to the Ewald sum). For a system containing only damped
569 charges, the complete self-interaction can be written as
570 \begin{equation}
571 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
572 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
573 C_{\bf a}^{2}.
574 \label{eq:dampSelfTerm}
575 \end{equation}
576 \end{itemize}
577
578 The extension of DSF electrostatics to point multipoles requires
579 treatment of {\it both} the self-neutralization and reciprocal
580 contributions to the self-interaction for higher order multipoles. In
581 this section we give formulae for these interactions up to quadrupolar
582 order.
583
584 The self-neutralization term is computed by taking the {\it
585 non-shifted} kernel for each interaction, placing a multipole of
586 equal magnitude (but opposite in polarization) on the surface of the
587 cutoff sphere, and averaging over the surface of the cutoff sphere.
588 Because the self term is carried out as a single sum over sites, the
589 reciprocal-space portion is identical to half of the self-term
590 obtained by Smith and Aguado and Madden for the application of the
591 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
592 site which posesses a charge, dipole, and multipole, both types of
593 contribution are given in table \ref{tab:tableSelf}.
594
595 \begin{table*}
596 \caption{\label{tab:tableSelf} Self-interaction contributions for
597 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
598 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
599 \begin{ruledtabular}
600 \begin{tabular}{lccc}
601 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
602 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
603 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
604 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
605 Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
606 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
607 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
608 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
609 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
610 \end{tabular}
611 \end{ruledtabular}
612 \end{table*}
613
614 For sites which simultaneously contain charges and quadrupoles, the
615 self-interaction includes a cross-interaction between these two
616 multipole orders. Symmetry prevents the charge-dipole and
617 dipole-quadrupole interactions from contributing to the
618 self-interaction. The functions that go into the self-neutralization
619 terms, $f(r), g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
620 derivatives of the electrostatic kernel (either the undamped $1/r$ or
621 the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that are
622 evaluated at the cutoff distance. For undamped interactions, $f(r_c)
623 = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For damped interactions,
624 $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so on. Appendix XX
625 contains recursion relations that allow rapid evaluation of these
626 derivatives.
627
628 \section{Energies, forces, and torques}
629 \subsection{Interaction energies}
630
631 We now list multipole interaction energies using a set of generic
632 radial functions. Table \ref{tab:tableenergy} maps between the
633 generic functions and the radial functions derived for both the
634 Taylor-shifted and Gradient-shifted methods. This set of equations is
635 written in terms of space coordinates:
636
637 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
638 %
639 %
640 % u ca cb
641 %
642 \begin{align}
643 U_{C_{\bf a}C_{\bf b}}(r)=&
644 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch}
645 \\
646 %
647 % u ca db
648 %
649 U_{C_{\bf a}D_{\bf b}}(r)=&
650 \frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
651 \label{uchdip}
652 \\
653 %
654 % u ca qb
655 %
656 U_{C_{\bf a}Q_{\bf b}}(r)=&
657 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r)
658 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
659 \label{uchquad}
660 \\
661 %
662 % u da cb
663 %
664 %U_{D_{\bf a}C_{\bf b}}(r)=&
665 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
666 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
667 %\\
668 %
669 % u da db
670 %
671 U_{D_{\bf a}D_{\bf b}}(r)=&
672 -\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
673 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
674 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
675 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
676 v_{22}(r) \Bigr]
677 \label{udipdip}
678 \\
679 %
680 % u da qb
681 %
682 \begin{split}
683 % 1
684 U_{D_{\bf a}Q_{\bf b}}(r) =&
685 -\frac{1}{4\pi \epsilon_0} \Bigl[
686 \text{Tr}\mathbf{Q}_{\mathbf{b}}
687 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
688 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
689 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
690 % 2
691 &-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
692 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
693 \label{udipquad}
694 \end{split}
695 \\
696 %
697 % u qa cb
698 %
699 %U_{Q_{\bf a}C_{\bf b}}(r)=&
700 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
701 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
702 %\label{uquadch}
703 %\\
704 %
705 % u qa db
706 %
707 %\begin{split}
708 %1
709 %U_{Q_{\bf a}D_{\bf b}}(r)=&
710 %\frac{1}{4\pi \epsilon_0} \Bigl[
711 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
712 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
713 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
714 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
715 % 2
716 %&+\frac{1}{4\pi \epsilon_0}
717 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
718 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
719 %\label{uquaddip}
720 %\end{split}
721 %\\
722 %
723 % u qa qb
724 %
725 \begin{split}
726 %1
727 U_{Q_{\bf a}Q_{\bf b}}(r)=&
728 \frac{1}{4\pi \epsilon_0} \Bigl[
729 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
730 +2 \text{Tr} \left(
731 \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
732 \\
733 % 2
734 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
735 \left( \hat{r} \cdot
736 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
737 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
738 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
739 \cdot \hat{r} \right) +4 (\hat{r} \cdot
740 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
741 \Bigr] v_{42}(r)
742 \\
743 % 4
744 &+ \frac{1}{4\pi \epsilon_0}
745 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
746 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
747 \label{uquadquad}
748 \end{split}
749 \end{align}
750
751 Note that the energies of multipoles on site $\mathbf{b}$ interacting
752 with those on site $\mathbf{a}$ can be obtained by swapping indices
753 along with the sign of the intersite vector, $\hat{r}$.
754
755 %
756 %
757 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
758 %
759
760 \begin{table*}
761 \caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions
762 used in this table are defined in Appendices B and C.}
763 \begin{ruledtabular}
764 \begin{tabular}{|l|c|l|l}
765 Generic&Coulomb&Taylor-Shifted&Gradient-Shifted
766 \\ \hline
767 %
768 %
769 %
770 %Ch-Ch&
771 $v_{01}(r)$ &
772 $\frac{1}{r}$ &
773 $f_0(r)$ &
774 $f(r)-f(r_c)-(r-r_c)g(r_c)$
775 \\
776 %
777 %
778 %
779 %Ch-Di&
780 $v_{11}(r)$ &
781 $-\frac{1}{r^2}$ &
782 $g_1(r)$ &
783 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
784 %
785 %
786 %
787 %Ch-Qu/Di-Di&
788 $v_{21}(r)$ &
789 $-\frac{1}{r^3} $ &
790 $\frac{g_2(r)}{r} $ &
791 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
792 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
793 $v_{22}(r)$ &
794 $\frac{3}{r^3} $ &
795 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
796 $\left(-\frac{g(r)}{r}+h(r) \right)
797 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\
798 &&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
799 \\
800 %
801 %
802 %
803 %Di-Qu &
804 $v_{31}(r)$ &
805 $\frac{3}{r^4} $ &
806 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
807 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
808 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
809 &&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
810 \\
811 %
812 $v_{32}(r)$ &
813 $-\frac{15}{r^4} $ &
814 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
815 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
816 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
817 &&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
818 \\
819 %
820 %
821 %
822 %Qu-Qu&
823 $v_{41}(r)$ &
824 $\frac{3}{r^5} $ &
825 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
826 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
827 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
828 &&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
829 \\
830 % 2
831 $v_{42}(r)$ &
832 $- \frac{15}{r^5} $ &
833 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
834 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
835 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
836 &&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
837 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
838 \\
839 % 3
840 $v_{43}(r)$ &
841 $ \frac{105}{r^5} $ &
842 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
843 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
844 &&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
845 &&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
846 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\
847 \end{tabular}
848 \end{ruledtabular}
849 \end{table*}
850 %
851 %
852 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
853 %
854
855 \begin{table}
856 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
857 \begin{ruledtabular}
858 \begin{tabular}{cc}
859 Generic&Method 1 or Method 2
860 \\ \hline
861 %
862 %
863 %
864 $w_a(r)$&
865 $\frac{d v_{01}}{dr}$ \\
866 %
867 %
868 $w_b(r)$ &
869 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\
870 %
871 $w_c(r)$ &
872 $\frac{v_{11}(r)}{r}$ \\
873 %
874 %
875 $w_d(r)$&
876 $\frac{d v_{21}}{dr}$ \\
877 %
878 $w_e(r)$ &
879 $\frac{v_{22}(r)}{r}$ \\
880 %
881 %
882 $w_f(r)$&
883 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\
884 %
885 $w_g(r)$&
886 $\frac{v_{31}(r)}{r}$\\
887 %
888 $w_h(r)$ &
889 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\
890 % 2
891 $w_i(r)$ &
892 $\frac{v_{32}(r)}{r}$ \\
893 %
894 $w_j(r)$ &
895 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\
896 %
897 $w_k(r)$ &
898 $\frac{d v_{41}}{dr} $ \\
899 %
900 $w_l(r)$ &
901 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\
902 %
903 $w_m(r)$ &
904 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\
905 %
906 $w_n(r)$ &
907 $\frac{v_{42}(r)}{r}$ \\
908 %
909 $w_o(r)$ &
910 $\frac{v_{43}(r)}{r}$ \\
911 %
912
913 \end{tabular}
914 \end{ruledtabular}
915 \end{table}
916 %
917 %
918 %
919
920 \subsection{Forces}
921
922 The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of
923 the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge
924 interaction, these forces will point along the $\pm \hat{r}$ directions, where
925 $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus
926 %
927 \begin{equation}
928 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
929 \quad \text{and} \quad F_{\bf b \alpha}
930 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
931 \end{equation}
932 %
933 The concept of obtaining a force from an energy by taking a gradient is the same for
934 higher-order multipole interactions, the trick is to make sure that all
935 $r$-dependent derivatives are considered.
936 As is pointed out by Allen and Germano,\cite{Allen:2006fk} this is straightforward if the
937 interaction energies are written recognizing explicit
938 $\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences:
939 %
940 \begin{equation}
941 U(r,\{\hat{a}_m \cdot \hat{r} \},
942 \{\hat{b}_n\cdot \hat{r} \}
943 \{\hat{a}_m \cdot \hat{b}_n \}) .
944 \label{ugeneral}
945 \end{equation}
946 %
947 Then,
948 %
949 \begin{equation}
950 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
951 = \frac{\partial U}{\partial r} \hat{r}
952 + \sum_m \left[
953 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
954 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
955 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
956 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
957 \right] \label{forceequation}.
958 \end{equation}
959 %
960 Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite
961 that of Allen and Germano.\cite{Allen:2006fk} In simplifying the algebra, we also use:
962 %
963 \begin{eqnarray}
964 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
965 = \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
966 \right) \\
967 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
968 = \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
969 \right) .
970 \end{eqnarray}
971 %
972 We list below the force equations written in terms of space coordinates. The
973 radial functions used in the two methods are listed in Table II.
974 %
975 %SPACE COORDINATES FORCE EQUTIONS
976 %
977 % **************************************************************************
978 % f ca cb
979 %
980 \begin{equation}
981 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
982 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
983 \end{equation}
984 %
985 %
986 %
987 \begin{equation}
988 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
989 \frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[
990 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
991 w_b(r) \hat{r}
992 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr]
993 \end{equation}
994 %
995 %
996 %
997 \begin{equation}
998 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
999 \frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[
1000 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1001 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1002 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1003 \end{equation}
1004 %
1005 %
1006 %
1007 \begin{equation}
1008 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1009 -\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[
1010 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1011 + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1012 \end{equation}
1013 %
1014 %
1015 %
1016 \begin{equation}
1017 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =
1018 \frac{1}{4\pi \epsilon_0} \Bigl[
1019 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1020 + \left( \mathbf{D}_{\mathbf {a}}
1021 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1022 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)
1023 % 2
1024 - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1025 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr]
1026 \end{equation}
1027 %
1028 %
1029 %
1030 \begin{equation}
1031 \begin{split}
1032 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1033 & - \frac{1}{4\pi \epsilon_0} \Bigl[
1034 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1035 +2 \mathbf{D}_{\mathbf{a}} \cdot
1036 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1037 - \frac{1}{4\pi \epsilon_0} \Bigl[
1038 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1039 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1040 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1041 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1042 % 3
1043 & - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1044 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1045 w_i(r)
1046 % 4
1047 -\frac{1}{4\pi \epsilon_0}
1048 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1049 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r}
1050 \end{split}
1051 \end{equation}
1052 %
1053 %
1054 \begin{equation}
1055 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1056 \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1057 \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1058 + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1059 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1060 \end{equation}
1061 %
1062 \begin{equation}
1063 \begin{split}
1064 \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1065 &\frac{1}{4\pi \epsilon_0} \Bigl[
1066 \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1067 +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1068 % 2
1069 + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1070 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1071 +2 (\mathbf{D}_{\mathbf{b}} \cdot
1072 \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1073 % 3
1074 &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1075 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1076 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1077 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1078 % 4
1079 +\frac{1}{4\pi \epsilon_0}
1080 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1081 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1082 \end{split}
1083 \end{equation}
1084 %
1085 %
1086 %
1087 \begin{equation}
1088 \begin{split}
1089 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1090 +\frac{1}{4\pi \epsilon_0} \Bigl[
1091 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1092 + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1093 % 2
1094 +\frac{1}{4\pi \epsilon_0} \Bigl[
1095 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1096 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1097 % 3
1098 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1099 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1100 % 4
1101 + \frac{1}{4\pi \epsilon_0} \Bigl[
1102 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1103 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1104 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1105 % 5
1106 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1107 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1108 %
1109 + \frac{1}{4\pi \epsilon_0} \Bigl[
1110 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1111 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1112 %6
1113 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1114 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1115 % 7
1116 + \frac{1}{4\pi \epsilon_0}
1117 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1118 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r}
1119 \end{split}
1120 \end{equation}
1121 %
1122 %
1123 % TORQUES SECTION -----------------------------------------------------------------------------------------
1124 %
1125 \subsection{Torques}
1126
1127 Following again Allen and Germano,\cite{Allen:2006fk} when energies are written in the form
1128 of Eq.~({\ref{ugeneral}), then torques can be expressed as:
1129 %
1130 \begin{eqnarray}
1131 \mathbf{\tau}_{\bf a} =
1132 \sum_m
1133 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1134 ( \hat{r} \times \hat{a}_m )
1135 -\sum_{mn}
1136 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1137 (\hat{a}_m \times \hat{b}_n) \\
1138 %
1139 \mathbf{\tau}_{\bf b} =
1140 \sum_m
1141 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1142 ( \hat{r} \times \hat{b}_m)
1143 +\sum_{mn}
1144 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1145 (\hat{a}_m \times \hat{b}_n) .
1146 \end{eqnarray}
1147 %
1148 %
1149 Here we list the torque equations written in terms of space coordinates.
1150 %
1151 %
1152 %
1153 \begin{equation}
1154 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1155 \frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r)
1156 \end{equation}
1157 %
1158 %
1159 %
1160 \begin{equation}
1161 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1162 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1163 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r)
1164 \end{equation}
1165 %
1166 %
1167 %
1168 \begin{equation}
1169 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1170 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1171 (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1172 \end{equation}
1173 %
1174 %
1175 %
1176 \begin{equation}
1177 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =
1178 \frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1179 % 2
1180 -\frac{1}{4\pi \epsilon_0}
1181 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1182 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1183 \end{equation}
1184 %
1185 %
1186 %
1187 \begin{equation}
1188 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1189 -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1190 % 2
1191 +\frac{1}{4\pi \epsilon_0}
1192 (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1193 (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1194 \end{equation}
1195 %
1196 %
1197 %
1198 \begin{equation}
1199 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1200 \frac{1}{4\pi \epsilon_0} \Bigl[
1201 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1202 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1203 +2 \mathbf{D}_{\mathbf{a}} \times
1204 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1205 \Bigr] v_{31}(r)
1206 % 3
1207 -\frac{1}{4\pi \epsilon_0}
1208 \ (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1209 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)
1210 \end{equation}
1211 %
1212 %
1213 %
1214 \begin{equation}
1215 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =
1216 \frac{1}{4\pi \epsilon_0} \Bigl[
1217 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1218 \hat{r}
1219 -2 \mathbf{D}_{\mathbf{a}} \times
1220 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1221 \Bigr] v_{31}(r)
1222 % 2
1223 +\frac{2}{4\pi \epsilon_0}
1224 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1225 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)
1226 \end{equation}
1227 %
1228 %
1229 %
1230 \begin{equation}
1231 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1232 \frac{1}{4\pi \epsilon_0} \Bigl[
1233 -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1234 +2 \mathbf{D}_{\mathbf{b}} \times
1235 (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1236 \Bigr] v_{31}(r)
1237 % 3
1238 - \frac{2}{4\pi \epsilon_0}
1239 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1240 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1241 \end{equation}
1242 %
1243 %
1244 %
1245 \begin{equation}
1246 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1247 \frac{1}{4\pi \epsilon_0} \Bigl[
1248 \text{Tr}\mathbf{Q}_{\mathbf{a}}
1249 (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1250 +2 \mathbf{D}_{\mathbf{b}} \times
1251 ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1252 % 2
1253 +\frac{1}{4\pi \epsilon_0}
1254 (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1255 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1256 \end{equation}
1257 %
1258 %
1259 %
1260 \begin{equation}
1261 \begin{split}
1262 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1263 &-\frac{4}{4\pi \epsilon_0}
1264 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1265 v_{41}(r) \\
1266 % 2
1267 &+ \frac{1}{4\pi \epsilon_0}
1268 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1269 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1270 +4 \hat{r} \times
1271 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1272 % 3
1273 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1274 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1275 % 4
1276 &+ \frac{2}{4\pi \epsilon_0}
1277 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1278 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1279 \end{split}
1280 \end{equation}
1281 %
1282 %
1283 %
1284 \begin{equation}
1285 \begin{split}
1286 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1287 &\frac{4}{4\pi \epsilon_0}
1288 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1289 % 2
1290 &+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1291 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1292 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1293 \mathbf{Q}_{{\mathbf b}} ) \times
1294 \hat{r}
1295 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1296 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1297 \Bigr] v_{42}(r) \\
1298 % 4
1299 &+ \frac{2}{4\pi \epsilon_0}
1300 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1301 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)
1302 \end{split}
1303 \end{equation}
1304 %
1305
1306 \section{Comparison to known multipolar energies}
1307
1308 To understand how these new real-space multipole methods behave in
1309 computer simulations, it is vital to test against established methods
1310 for computing electrostatic interactions in periodic systems, and to
1311 evaluate the size and sources of any errors that arise from the
1312 real-space cutoffs. In this paper we test Taylor-shifted and
1313 Gradient-shifted electrostatics against analytical methods for
1314 computing the energies of ordered multipolar arrays. In the following
1315 paper, we test the new methods against the multipolar Ewald sum for
1316 computing the energies, forces and torques for a wide range of typical
1317 condensed-phase (disordered) systems.
1318
1319 Because long-range electrostatic effects can be significant in
1320 crystalline materials, ordered multipolar arrays present one of the
1321 biggest challenges for real-space cutoff methods. The dipolar
1322 analogues to the Madelung constants were first worked out by Sauer,
1323 who computed the energies of ordered dipole arrays of zero
1324 magnetization and obtained a number of these constants.\cite{Sauer}
1325 This theory was developed more completely by Luttinger and
1326 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays and
1327 other periodic structures. We have repeated the Luttinger \& Tisza
1328 series summations to much higher order and obtained the following
1329 energy constants (converged to one part in $10^9$):
1330 \begin{table*}
1331 \centering{
1332 \caption{Luttinger \& Tisza arrays and their associated
1333 energy constants. Type "A" arrays have nearest neighbor strings of
1334 antiparallel dipoles. Type "B" arrays have nearest neighbor
1335 strings of antiparallel dipoles if the dipoles are contained in a
1336 plane perpendicular to the dipole direction that passes through
1337 the dipole.}
1338 }
1339 \label{tab:LT}
1340 \begin{ruledtabular}
1341 \begin{tabular}{cccc}
1342 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1343 A & SC & 001 & -2.676788684 \\
1344 A & BCC & 001 & 0 \\
1345 A & BCC & 111 & -1.770078733 \\
1346 A & FCC & 001 & 2.166932835 \\
1347 A & FCC & 011 & -1.083466417 \\
1348
1349 * & BCC & minimum & -1.985920929 \\
1350
1351 B & SC & 001 & -2.676788684 \\
1352 B & BCC & 001 & -1.338394342 \\
1353 B & BCC & 111 & -1.770078733 \\
1354 B & FCC & 001 & -1.083466417 \\
1355 B & FCC & 011 & -1.807573634
1356 \end{tabular}
1357 \end{ruledtabular}
1358 \end{table*}
1359
1360 In addition to the A and B arrays, there is an additional minimum
1361 energy structure for the BCC lattice that was found by Luttinger \&
1362 Tisza. The total electrostatic energy for an array is given by:
1363 \begin{equation}
1364 E = C N^2 \mu^2
1365 \end{equation}
1366 where $C$ is the energy constant given above, $N$ is the number of
1367 dipoles per unit volume, and $\mu$ is the strength of the dipole.
1368
1369 {\it Quadrupolar} analogues to the Madelung constants were first worked out by Nagai and Nakamura who
1370 computed the energies of selected quadrupole arrays based on
1371 extensions to the Luttinger and Tisza
1372 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1373 energy constants for the lowest energy configurations for linear
1374 quadrupoles shown in table \ref{tab:NNQ}
1375
1376 \begin{table*}
1377 \centering{
1378 \caption{Nagai and Nakamura Quadurpolar arrays}}
1379 \label{tab:NNQ}
1380 \begin{ruledtabular}
1381 \begin{tabular}{ccc}
1382 Lattice & Quadrupole Direction & Energy constants \\ \hline
1383 SC & 111 & -8.3 \\
1384 BCC & 011 & -21.7 \\
1385 FCC & 111 & -80.5
1386 \end{tabular}
1387 \end{ruledtabular}
1388 \end{table*}
1389
1390 In analogy to the dipolar arrays, the total electrostatic energy for
1391 the quadrupolar arrays is:
1392 \begin{equation}
1393 E = C \frac{3}{4} N^2 Q^2
1394 \end{equation}
1395 where $Q$ is the quadrupole moment.
1396
1397
1398
1399
1400
1401
1402
1403
1404 \begin{acknowledgments}
1405 Support for this project was provided by the National Science
1406 Foundation under grant CHE-0848243. Computational time was provided by
1407 the Center for Research Computing (CRC) at the University of Notre
1408 Dame.
1409 \end{acknowledgments}
1410
1411 \newpage
1412 \appendix
1413
1414 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1415
1416 The following summarizes Smith's $B_l(r)$ functions and includes
1417 formulas given in his appendix.\cite{Smith98} The first function
1418 $B_0(r)$ is defined by
1419 %
1420 \begin{equation}
1421 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1422 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1423 \end{equation}
1424 %
1425 The first derivative of this function is
1426 %
1427 \begin{equation}
1428 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1429 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1430 \end{equation}
1431 %
1432 which can be used to define a function $B_1(r)$:
1433 %
1434 \begin{equation}
1435 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1436 \end{equation}
1437 %
1438 In general, the recurrence relation,
1439 \begin{equation}
1440 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1441 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1442 \text{e}^{-{\alpha}^2r^2}
1443 \right] ,
1444 \end{equation}
1445 is very useful for building up higher derivatives. Using these
1446 formulas, we find:
1447 %
1448 \begin{align}
1449 \frac{dB_0}{dr}=&-rB_1(r) \\
1450 \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1451 \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1452 \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1453 \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1454 \end{align}
1455 %
1456 As noted by Smith, it is possible to approximate the $B_l(r)$
1457 functions,
1458 %
1459 \begin{equation}
1460 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1461 +\text{O}(r) .
1462 \end{equation}
1463 \newpage
1464 \section{The $r$-dependent factors for TSF electrostatics}
1465
1466 Using the shifted damped functions $f_n(r)$ defined by:
1467 %
1468 \begin{equation}
1469 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1470 \end{equation}
1471 %
1472 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1473 this Appendix, we provide formulas for successive derivatives of this
1474 function. (If there is no damping, then $B_0(r)$ is replaced by
1475 $1/r$.) First, we find:
1476 %
1477 \begin{equation}
1478 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1479 \end{equation}
1480 %
1481 This formula clearly brings in derivatives of Smith's $B_0(r)$
1482 function, and we define higher-order derivatives as follows:
1483 %
1484 \begin{align}
1485 g_n(r)=& \frac{d f_n}{d r} =
1486 B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1487 h_n(r)=& \frac{d^2f_n}{d r^2} =
1488 B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1489 s_n(r)=& \frac{d^3f_n}{d r^3} =
1490 B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1491 t_n(r)=& \frac{d^4f_n}{d r^4} =
1492 B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1493 u_n(r)=& \frac{d^5f_n}{d r^5} =
1494 B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1495 \end{align}
1496 %
1497 We note that the last function needed (for quadrupole-quadrupole interactions) is
1498 %
1499 \begin{equation}
1500 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1501 \end{equation}
1502
1503 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1504 stored on a grid for values of $r$ from $0$ to $r_c$. The functions
1505 needed are listed schematically below:
1506 %
1507 \begin{eqnarray}
1508 f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1509 g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1510 h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1511 s_2 \quad s_3 \quad &s_4 \nonumber \\
1512 t_3 \quad &t_4 \nonumber \\
1513 &u_4 \nonumber .
1514 \end{eqnarray}
1515
1516 Using these functions, we find
1517 %
1518 \begin{align}
1519 \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1520 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1521 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1522 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1523 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1524 \delta_{ \beta \gamma} r_\alpha \right)
1525 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1526 + r_\alpha r_\beta r_\gamma
1527 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1528 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1529 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1530 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1531 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1532 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1533 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1534 + \text{5 permutations}
1535 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1536 \right) \nonumber \\
1537 &+ r_\alpha r_\beta r_\gamma r_\delta
1538 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1539 + \frac{t_n}{r^4} \right)\\
1540 \frac{\partial^5 f_n}
1541 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1542 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1543 + \text{14 permutations} \right)
1544 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1545 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1546 + \text{9 permutations}
1547 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1548 \right) \nonumber \\
1549 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1550 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1551 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1552 \end{align}
1553 %
1554 %
1555 %
1556 \newpage
1557 \section{The $r$-dependent factors for GSF electrostatics}
1558
1559 In Gradient-shifted force electrostatics, the kernel is not expanded,
1560 rather the individual terms in the multipole interaction energies.
1561 For damped charges , this still brings into the algebra multiple
1562 derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1563 we generalize the notation of the previous appendix. For $f(r)=1/r$
1564 (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1565 %
1566 \begin{align}
1567 g(r)=& \frac{df}{d r}\\
1568 h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1569 s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1570 t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1571 u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1572 \end{align}
1573 %
1574 For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1575 under the column ``Bare Coulomb.'' Equations \ref{eq:b9} to
1576 \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1577 $n$ is eliminated.
1578
1579 \section{Extra Material}
1580 %
1581 %
1582 %Energy in body coordinate form ---------------------------------------------------------------
1583 %
1584 Here are the interaction energies written in terms of the body coordinates:
1585
1586 %
1587 % u ca cb
1588 %
1589 \begin{equation}
1590 U_{C_{\bf a}C_{\bf b}}(r)=
1591 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r)
1592 \end{equation}
1593 %
1594 % u ca db
1595 %
1596 \begin{equation}
1597 U_{C_{\bf a}D_{\bf b}}(r)=
1598 \frac{C_{\bf a}}{4\pi \epsilon_0}
1599 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1600 \end{equation}
1601 %
1602 % u ca qb
1603 %
1604 \begin{equation}
1605 U_{C_{\bf a}Q_{\bf b}}(r)=
1606 \frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0}
1607 v_{21}(r) \nonumber \\
1608 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1609 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r})
1610 v_{22}(r)
1611 \end{equation}
1612 %
1613 % u da cb
1614 %
1615 \begin{equation}
1616 U_{D_{\bf a}C_{\bf b}}(r)=
1617 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1618 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1619 \end{equation}
1620 %
1621 % u da db
1622 %
1623 \begin{equation}
1624 \begin{split}
1625 % 1
1626 U_{D_{\bf a}D_{\bf b}}(r)&=
1627 -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1628 (\hat{a}_m \cdot \hat{b}_n)
1629 D_{\mathbf{b}n} v_{21}(r) \\
1630 % 2
1631 &-\frac{1}{4\pi \epsilon_0}
1632 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1633 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n}
1634 v_{22}(r)
1635 \end{split}
1636 \end{equation}
1637 %
1638 % u da qb
1639 %
1640 \begin{equation}
1641 \begin{split}
1642 % 1
1643 U_{D_{\bf a}Q_{\bf b}}(r)&=
1644 -\frac{1}{4\pi \epsilon_0} \left(
1645 \text{Tr}Q_{\mathbf{b}}
1646 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1647 +2\sum_{lmn}D_{\mathbf{a}l}
1648 (\hat{a}_l \cdot \hat{b}_m)
1649 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
1650 \right) v_{31}(r) \\
1651 % 2
1652 &-\frac{1}{4\pi \epsilon_0}
1653 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1654 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1655 Q_{{\mathbf b}mn}
1656 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
1657 \end{split}
1658 \end{equation}
1659 %
1660 % u qa cb
1661 %
1662 \begin{equation}
1663 U_{Q_{\bf a}C_{\bf b}}(r)=
1664 \frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r)
1665 +\frac{C_{\bf b}}{4\pi \epsilon_0}
1666 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r)
1667 \end{equation}
1668 %
1669 % u qa db
1670 %
1671 \begin{equation}
1672 \begin{split}
1673 %1
1674 U_{Q_{\bf a}D_{\bf b}}(r)&=
1675 \frac{1}{4\pi \epsilon_0} \left(
1676 \text{Tr}Q_{\mathbf{a}}
1677 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1678 +2\sum_{lmn}D_{\mathbf{b}l}
1679 (\hat{b}_l \cdot \hat{a}_m)
1680 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
1681 \right) v_{31}(r) \\
1682 % 2
1683 &+\frac{1}{4\pi \epsilon_0}
1684 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1685 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1686 Q_{{\mathbf a}mn}
1687 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
1688 \end{split}
1689 \end{equation}
1690 %
1691 % u qa qb
1692 %
1693 \begin{equation}
1694 \begin{split}
1695 %1
1696 U_{Q_{\bf a}Q_{\bf b}}(r)&=
1697 \frac{1}{4\pi \epsilon_0} \Bigl[
1698 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1699 +2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1700 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1701 (\hat{a}_m \cdot \hat{b}_n) \Bigr]
1702 v_{41}(r) \\
1703 % 2
1704 &+ \frac{1}{4\pi \epsilon_0}
1705 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1706 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
1707 Q_{{\mathbf b}lm}
1708 (\hat{b}_m \cdot \hat{r})
1709 +\text{Tr}Q_{\mathbf{b}}
1710 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
1711 Q_{{\mathbf a}lm}
1712 (\hat{a}_m \cdot \hat{r}) \\
1713 % 3
1714 &+4 \sum_{lmnp}
1715 (\hat{r} \cdot \hat{a}_l )
1716 Q_{{\mathbf a}lm}
1717 (\hat{a}_m \cdot \hat{b}_n)
1718 Q_{{\mathbf b}np}
1719 (\hat{b}_p \cdot \hat{r})
1720 \Bigr] v_{42}(r) \\
1721 % 4
1722 &+ \frac{1}{4\pi \epsilon_0}
1723 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
1724 Q_{{\mathbf a}lm}
1725 (\hat{a}_m \cdot \hat{r})
1726 \sum_{np} (\hat{r} \cdot \hat{b}_n)
1727 Q_{{\mathbf b}np}
1728 (\hat{b}_p \cdot \hat{r}) v_{43}(r).
1729 \end{split}
1730 \end{equation}
1731 %
1732
1733
1734 % BODY coordinates force equations --------------------------------------------
1735 %
1736 %
1737 Here are the force equations written in terms of body coordinates.
1738 %
1739 % f ca cb
1740 %
1741 \begin{equation}
1742 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =
1743 \frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r}
1744 \end{equation}
1745 %
1746 % f ca db
1747 %
1748 \begin{equation}
1749 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =
1750 \frac{C_{\bf a}}{4\pi \epsilon_0}
1751 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r}
1752 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1753 \sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r)
1754 \end{equation}
1755 %
1756 % f ca qb
1757 %
1758 \begin{equation}
1759 \begin{split}
1760 % 1
1761 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =
1762 \frac{1}{4\pi \epsilon_0}
1763 C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r}
1764 + 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\
1765 % 2
1766 +\frac{C_{\bf a}}{4\pi \epsilon_0}
1767 \sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r}
1768 \end{split}
1769 \end{equation}
1770 %
1771 % f da cb
1772 %
1773 \begin{equation}
1774 \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1775 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1776 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r}
1777 -\frac{C_{\bf{b}}}{4\pi \epsilon_0}
1778 \sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r)
1779 \end{equation}
1780 %
1781 % f da db
1782 %
1783 \begin{equation}
1784 \begin{split}
1785 % 1
1786 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1787 -\frac{1}{4\pi \epsilon_0}
1788 \sum_{mn} D_{\mathbf {a}m}
1789 (\hat{a}_m \cdot \hat{b}_n)
1790 D_{\mathbf{b}n} w_d(r) \hat{r}
1791 -\frac{1}{4\pi \epsilon_0}
1792 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1793 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\
1794 % 2
1795 & \quad + \frac{1}{4\pi \epsilon_0}
1796 \Bigl[ \sum_m D_{\mathbf {a}m}
1797 \hat{a}_m \sum_n D_{\mathbf{b}n}
1798 (\hat{b}_n \cdot \hat{r})
1799 + \sum_m D_{\mathbf {b}m}
1800 \hat{b}_m \sum_n D_{\mathbf{a}n}
1801 (\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\
1802 \end{split}
1803 \end{equation}
1804 %
1805 % f da qb
1806 %
1807 \begin{equation}
1808 \begin{split}
1809 % 1
1810 &\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =
1811 - \frac{1}{4\pi \epsilon_0} \Bigl[
1812 \text{Tr}Q_{\mathbf{b}}
1813 \sum_l D_{\mathbf{a}l} \hat{a}_l
1814 +2\sum_{lmn} D_{\mathbf{a}l}
1815 (\hat{a}_l \cdot \hat{b}_m)
1816 Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\
1817 % 3
1818 & - \frac{1}{4\pi \epsilon_0} \Bigl[
1819 \text{Tr}Q_{\mathbf{b}}
1820 \sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n}
1821 +2\sum_{lmn}D_{\mathbf{a}l}
1822 (\hat{a}_l \cdot \hat{b}_m)
1823 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1824 % 4
1825 &+ \frac{1}{4\pi \epsilon_0}
1826 \Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l
1827 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1828 Q_{{\mathbf b}mn}
1829 (\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l)
1830 D_{\mathbf{a}l}
1831 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1832 Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\
1833 % 6
1834 & -\frac{1}{4\pi \epsilon_0}
1835 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
1836 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
1837 Q_{{\mathbf b}mn}
1838 (\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r}
1839 \end{split}
1840 \end{equation}
1841 %
1842 % force qa cb
1843 %
1844 \begin{equation}
1845 \begin{split}
1846 % 1
1847 \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &=
1848 \frac{1}{4\pi \epsilon_0}
1849 C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r)
1850 + \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\
1851 % 2
1852 & +\frac{C_{\bf b}}{4\pi \epsilon_0}
1853 \sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r}
1854 \end{split}
1855 \end{equation}
1856 %
1857 % f qa db
1858 %
1859 \begin{equation}
1860 \begin{split}
1861 % 1
1862 &\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1863 \frac{1}{4\pi \epsilon_0} \Bigl[
1864 \text{Tr}Q_{\mathbf{a}}
1865 \sum_l D_{\mathbf{b}l} \hat{b}_l
1866 +2\sum_{lmn} D_{\mathbf{b}l}
1867 (\hat{b}_l \cdot \hat{a}_m)
1868 Q_{\mathbf{a}mn} \hat{a}_n \Bigr]
1869 w_g(r)\\
1870 % 3
1871 & + \frac{1}{4\pi \epsilon_0} \Bigl[
1872 \text{Tr}Q_{\mathbf{a}}
1873 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n}
1874 +2\sum_{lmn}D_{\mathbf{b}l}
1875 (\hat{b}_l \cdot \hat{a}_m)
1876 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1877 % 4
1878 & + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l
1879 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1880 Q_{{\mathbf a}mn}
1881 (\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l)
1882 D_{\mathbf{b}l}
1883 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1884 Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\
1885 % 6
1886 & +\frac{1}{4\pi \epsilon_0}
1887 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
1888 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
1889 Q_{{\mathbf a}mn}
1890 (\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r}
1891 \end{split}
1892 \end{equation}
1893 %
1894 % f qa qb
1895 %
1896 \begin{equation}
1897 \begin{split}
1898 &\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =
1899 \frac{1}{4\pi \epsilon_0} \Bigl[
1900 \text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}}
1901 + 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
1902 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
1903 (\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\
1904 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1905 2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1906 + 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\
1907 &+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r})
1908 + 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p
1909 \Bigr] w_n(r) \\
1910 &+ \frac{1}{4\pi \epsilon_0}
1911 \Bigl[ \text{Tr}Q_{\mathbf{a}}
1912 \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r})
1913 + \text{Tr}Q_{\mathbf{b}}
1914 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\
1915 &+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n)
1916 Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1917 %
1918 &+\frac{1}{4\pi \epsilon_0} \Bigl[
1919 2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m
1920 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\
1921 &+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1922 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\
1923 & + \frac{1}{4\pi \epsilon_0}
1924 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r})
1925 \sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r}
1926 \end{split}
1927 \end{equation}
1928 %
1929 Here we list the form of the non-zero damped shifted multipole torques showing
1930 explicitly dependences on body axes:
1931 %
1932 % t ca db
1933 %
1934 \begin{equation}
1935 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =
1936 \frac{C_{\bf a}}{4\pi \epsilon_0}
1937 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r)
1938 \end{equation}
1939 %
1940 % t ca qb
1941 %
1942 \begin{equation}
1943 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =
1944 \frac{2C_{\bf a}}{4\pi \epsilon_0}
1945 \sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r)
1946 \end{equation}
1947 %
1948 % t da cb
1949 %
1950 \begin{equation}
1951 \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1952 -\frac{C_{\bf b}}{4\pi \epsilon_0}
1953 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r)
1954 \end{equation}%
1955 %
1956 %
1957 % ta da db
1958 %
1959 \begin{equation}
1960 \begin{split}
1961 % 1
1962 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &=
1963 \frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1964 (\hat{a}_m \times \hat{b}_n)
1965 D_{\mathbf{b}n} v_{21}(r) \\
1966 % 2
1967 &-\frac{1}{4\pi \epsilon_0}
1968 \sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m}
1969 \sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1970 \end{split}
1971 \end{equation}
1972 %
1973 % tb da db
1974 %
1975 \begin{equation}
1976 \begin{split}
1977 % 1
1978 \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &=
1979 -\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m}
1980 (\hat{a}_m \times \hat{b}_n)
1981 D_{\mathbf{b}n} v_{21}(r) \\
1982 % 2
1983 &+\frac{1}{4\pi \epsilon_0}
1984 \sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m}
1985 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r)
1986 \end{split}
1987 \end{equation}
1988 %
1989 % ta da qb
1990 %
1991 \begin{equation}
1992 \begin{split}
1993 % 1
1994 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &=
1995 \frac{1}{4\pi \epsilon_0} \left(
1996 -\text{Tr}Q_{\mathbf{b}}
1997 \sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n}
1998 +2\sum_{lmn}D_{\mathbf{a}l}
1999 (\hat{a}_l \times \hat{b}_m)
2000 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2001 \right) v_{31}(r)\\
2002 % 2
2003 &-\frac{1}{4\pi \epsilon_0}
2004 \sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l}
2005 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2006 Q_{{\mathbf b}mn}
2007 (\hat{b}_n \cdot \hat{r}) v_{32}(r)
2008 \end{split}
2009 \end{equation}
2010 %
2011 % tb da qb
2012 %
2013 \begin{equation}
2014 \begin{split}
2015 % 1
2016 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &=
2017 \frac{1}{4\pi \epsilon_0} \left(
2018 -2\sum_{lmn}D_{\mathbf{a}l}
2019 (\hat{a}_l \cdot \hat{b}_m)
2020 Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n)
2021 -2\sum_{lmn}D_{\mathbf{a}l}
2022 (\hat{a}_l \times \hat{b}_m)
2023 Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r})
2024 \right) v_{31}(r) \\
2025 % 2
2026 &-\frac{2}{4\pi \epsilon_0}
2027 \sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l}
2028 \sum_{mn} (\hat{r} \cdot \hat{b}_m)
2029 Q_{{\mathbf b}mn}
2030 (\hat{r}\times \hat{b}_n) v_{32}(r)
2031 \end{split}
2032 \end{equation}
2033 %
2034 % ta qa cb
2035 %
2036 \begin{equation}
2037 \mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} =
2038 \frac{2C_{\bf a}}{4\pi \epsilon_0}
2039 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r)
2040 \end{equation}
2041 %
2042 % ta qa db
2043 %
2044 \begin{equation}
2045 \begin{split}
2046 % 1
2047 \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &=
2048 \frac{1}{4\pi \epsilon_0} \left(
2049 2\sum_{lmn}D_{\mathbf{b}l}
2050 (\hat{b}_l \cdot \hat{a}_m)
2051 Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n)
2052 +2\sum_{lmn}D_{\mathbf{b}l}
2053 (\hat{a}_l \times \hat{b}_m)
2054 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2055 \right) v_{31}(r) \\
2056 % 2
2057 &+\frac{2}{4\pi \epsilon_0}
2058 \sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l}
2059 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2060 Q_{{\mathbf a}mn}
2061 (\hat{r}\times \hat{a}_n) v_{32}(r)
2062 \end{split}
2063 \end{equation}
2064 %
2065 % tb qa db
2066 %
2067 \begin{equation}
2068 \begin{split}
2069 % 1
2070 \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &=
2071 \frac{1}{4\pi \epsilon_0} \left(
2072 \text{Tr}Q_{\mathbf{a}}
2073 \sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n}
2074 +2\sum_{lmn}D_{\mathbf{b}l}
2075 (\hat{a}_l \times \hat{b}_m)
2076 Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r})
2077 \right) v_{31}(r)\\
2078 % 2
2079 &\frac{1}{4\pi \epsilon_0}
2080 \sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l}
2081 \sum_{mn} (\hat{r} \cdot \hat{a}_m)
2082 Q_{{\mathbf a}mn}
2083 (\hat{a}_n \cdot \hat{r}) v_{32}(r)
2084 \end{split}
2085 \end{equation}
2086 %
2087 % ta qa qb
2088 %
2089 \begin{equation}
2090 \begin{split}
2091 % 1
2092 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &=
2093 -\frac{4}{4\pi \epsilon_0}
2094 \sum_{lmnp} (\hat{a}_l \times \hat{b}_p)
2095 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2096 (\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\
2097 % 2
2098 &+ \frac{1}{4\pi \epsilon_0}
2099 \Bigl[
2100 2\text{Tr}Q_{\mathbf{b}}
2101 \sum_{lm} (\hat{r} \cdot \hat{a}_l )
2102 Q_{{\mathbf a}lm}
2103 (\hat{r} \times \hat{a}_m)
2104 +4 \sum_{lmnp}
2105 (\hat{r} \times \hat{a}_l )
2106 Q_{{\mathbf a}lm}
2107 (\hat{a}_m \cdot \hat{b}_n)
2108 Q_{{\mathbf b}np}
2109 (\hat{b}_p \cdot \hat{r}) \\
2110 % 3
2111 &-4 \sum_{lmnp}
2112 (\hat{r} \cdot \hat{a}_l )
2113 Q_{{\mathbf a}lm}
2114 (\hat{a}_m \times \hat{b}_n)
2115 Q_{{\mathbf b}np}
2116 (\hat{b}_p \cdot \hat{r})
2117 \Bigr] v_{42}(r) \\
2118 % 4
2119 &+ \frac{2}{4\pi \epsilon_0}
2120 \sum_{lm} (\hat{r} \times \hat{a}_l)
2121 Q_{{\mathbf a}lm}
2122 (\hat{a}_m \cdot \hat{r})
2123 \sum_{np} (\hat{r} \cdot \hat{b}_n)
2124 Q_{{\mathbf b}np}
2125 (\hat{b}_p \cdot \hat{r}) v_{43}(r)\\
2126 \end{split}
2127 \end{equation}
2128 %
2129 % tb qa qb
2130 %
2131 \begin{equation}
2132 \begin{split}
2133 % 1
2134 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &=
2135 \frac{4}{4\pi \epsilon_0}
2136 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p)
2137 Q_{\mathbf{a}lm} Q_{\mathbf{b}np}
2138 (\hat{a}_m \times \hat{b}_n) v_{41}(r) \\
2139 % 2
2140 &+ \frac{1}{4\pi \epsilon_0}
2141 \Bigl[
2142 2\text{Tr}Q_{\mathbf{a}}
2143 \sum_{lm} (\hat{r} \cdot \hat{b}_l )
2144 Q_{{\mathbf b}lm}
2145 (\hat{r} \times \hat{b}_m)
2146 +4 \sum_{lmnp}
2147 (\hat{r} \cdot \hat{a}_l )
2148 Q_{{\mathbf a}lm}
2149 (\hat{a}_m \cdot \hat{b}_n)
2150 Q_{{\mathbf b}np}
2151 (\hat{r} \times \hat{b}_p) \\
2152 % 3
2153 &+4 \sum_{lmnp}
2154 (\hat{r} \cdot \hat{a}_l )
2155 Q_{{\mathbf a}lm}
2156 (\hat{a}_m \times \hat{b}_n)
2157 Q_{{\mathbf b}np}
2158 (\hat{b}_p \cdot \hat{r})
2159 \Bigr] v_{42}(r) \\
2160 % 4
2161 &+ \frac{2}{4\pi \epsilon_0}
2162 \sum_{lm} (\hat{r} \cdot \hat{a}_l)
2163 Q_{{\mathbf a}lm}
2164 (\hat{a}_m \cdot \hat{r})
2165 \sum_{np} (\hat{r} \times \hat{b}_n)
2166 Q_{{\mathbf b}np}
2167 (\hat{b}_p \cdot \hat{r}) v_{43}(r). \\
2168 \end{split}
2169 \end{equation}
2170 %
2171 \begin{table*}
2172 \caption{\label{tab:tableFORCE2}Radial functions used in the force equations.}
2173 \begin{ruledtabular}
2174 \begin{tabular}{|l|l|l|}
2175 Generic&Taylor-shifted Force&Gradient-shifted Force
2176 \\ \hline
2177 %
2178 %
2179 %
2180 $w_a(r)$&
2181 $g_0(r)$&
2182 $g(r)-g(r_c)$ \\
2183 %
2184 %
2185 $w_b(r)$ &
2186 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
2187 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
2188 %
2189 $w_c(r)$ &
2190 $\frac{g_1(r)}{r} $ &
2191 $\frac{v_{11}(r)}{r}$ \\
2192 %
2193 %
2194 $w_d(r)$&
2195 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
2196 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
2197 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\
2198 %
2199 $w_e(r)$ &
2200 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
2201 $\frac{v_{22}(r)}{r}$ \\
2202 %
2203 %
2204 $w_f(r)$&
2205 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
2206 $\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\
2207 &&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\
2208 %
2209 $w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
2210 $\frac{v_{31}(r)}{r}$\\
2211 %
2212 $w_h(r)$ &
2213 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2214 $\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\
2215 &&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
2216 &&$-\frac{v_{31}(r)}{r}$\\
2217 % 2
2218 $w_i(r)$ &
2219 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
2220 $\frac{v_{32}(r)}{r}$ \\
2221 %
2222 $w_j(r)$ &
2223 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
2224 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\
2225 &&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
2226 %
2227 $w_k(r)$ &
2228 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2229 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\
2230 &&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
2231 %
2232 $w_l(r)$ &
2233 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2234 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
2235 &&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)
2236 -\frac{2v_{42}(r)}{r}$ \\
2237 %
2238 $w_m(r)$ &
2239 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
2240 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\
2241 &&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
2242 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\
2243 &&$-\frac{4v_{43}(r)}{r}$ \\
2244 %
2245 $w_n(r)$ &
2246 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
2247 $\frac{v_{42}(r)}{r}$ \\
2248 %
2249 $w_o(r)$ &
2250 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
2251 $\frac{v_{43}(r)}{r}$ \\
2252 %
2253 \end{tabular}
2254 \end{ruledtabular}
2255 \end{table*}
2256
2257 \newpage
2258
2259 \bibliography{multipole}
2260
2261 \end{document}
2262 %
2263 % ****** End of file multipole.tex ******