ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3986
Committed: Tue Dec 31 17:28:43 2013 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 64549 byte(s)
Log Message:
Migrated much to Supplemental, nearing completion on manuscript 1.

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38
39 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40 %\linenumbers\relax % Commence numbering lines
41
42 \begin{document}
43
44 \preprint{AIP/123-QED}
45
46 \title[Taylor-shifted and Gradient-shifted electrostatics for multipoles]
47 {Real space alternatives to the Ewald
48 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
49
50 \author{Madan Lamichhane}
51 \affiliation{Department of Physics, University
52 of Notre Dame, Notre Dame, IN 46556}
53
54 \author{J. Daniel Gezelter}
55 \email{gezelter@nd.edu.}
56 \affiliation{Department of Chemistry and Biochemistry, University
57 of Notre Dame, Notre Dame, IN 46556}
58
59 \author{Kathie E. Newman}
60 \affiliation{Department of Physics, University
61 of Notre Dame, Notre Dame, IN 46556}
62
63
64 \date{\today}% It is always \today, today,
65 % but any date may be explicitly specified
66
67 \begin{abstract}
68 We have extended the original damped-shifted force (DSF)
69 electrostatic kernel and have been able to derive two new
70 electrostatic potentials for higher-order multipoles that are based
71 on truncated Taylor expansions around the cutoff radius. For
72 multipole-multipole interactions, we find that each of the distinct
73 orientational contributions has a separate radial function to ensure
74 that the overall forces and torques vanish at the cutoff radius. In
75 this paper, we present energy, force, and torque expressions for the
76 new models, and compare these real-space interaction models to exact
77 results for ordered arrays of multipoles.
78 \end{abstract}
79
80 \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
81 % Classification Scheme.
82 \keywords{Suggested keywords}%Use showkeys class option if keyword
83 %display desired
84 \maketitle
85
86 \section{Introduction}
87 There has been increasing interest in real-space methods for
88 calculating electrostatic interactions in computer simulations of
89 condensed molecular
90 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
91 The simplest of these techniques was developed by Wolf {\it et al.}
92 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
93 For systems of point charges, Fennell and Gezelter showed that a
94 simple damped shifted force (DSF) modification to Wolf's method could
95 give nearly quantitative agreement with smooth particle mesh Ewald
96 (SPME)\cite{Essmann95} configurational energy differences as well as
97 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
98
99 The computational efficiency and the accuracy of the DSF method are
100 surprisingly good, particularly for systems with uniform charge
101 density. Additionally, dielectric constants obtained using DSF and
102 similar methods where the force vanishes at $r_{c}$ are
103 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
104 related methods have now been widely investigated,\cite{Hansen:2012uq}
105 and DSF is now used routinely in a diverse set of chemical
106 environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
107 DSF electrostatics provides a compromise between the computational
108 speed of real-space cutoffs and the accuracy of fully-periodic Ewald
109 treatments.
110
111 One common feature of many coarse-graining approaches, which treat
112 entire molecular subsystems as a single rigid body, is simplification
113 of the electrostatic interactions between these bodies so that fewer
114 site-site interactions are required to compute configurational
115 energies. To do this, the interactions between coarse-grained sites
116 are typically taken to be point
117 multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
118
119 Water, in particular, has been modeled recently with point multipoles
120 up to octupolar
121 order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
122 maximum efficiency, these models require the use of an approximate
123 multipole expansion as the exact multipole expansion can become quite
124 expensive (particularly when handled via the Ewald
125 sum).\cite{Ichiye:2006qy} Point multipoles and multipole
126 polarizability have also been utilized in the AMOEBA water model and
127 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
128
129 Higher-order multipoles present a peculiar issue for molecular
130 dynamics. Multipolar interactions are inherently short-ranged, and
131 should not need the relatively expensive Ewald treatment. However,
132 real-space cutoff methods are normally applied in an orientation-blind
133 fashion so multipoles which leave and then re-enter a cutoff sphere in
134 a different orientation can cause energy discontinuities.
135
136 This paper outlines an extension of the original DSF electrostatic
137 kernel to point multipoles. We describe two distinct real-space
138 interaction models for higher-order multipoles based on two truncated
139 Taylor expansions that are carried out at the cutoff radius. We are
140 calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
141 electrostatics. Because of differences in the initial assumptions,
142 the two methods yield related, but somewhat different expressions for
143 energies, forces, and torques.
144
145 In this paper we outline the new methodology and give functional forms
146 for the energies, forces, and torques up to quadrupole-quadrupole
147 order. We also compare the new methods to analytic energy constants
148 for periodic arrays of point multipoles. In the following paper, we
149 provide numerical comparisons to Ewald-based electrostatics in common
150 simulation enviornments.
151
152 \section{Methodology}
153 An efficient real-space electrostatic method involves the use of a
154 pair-wise functional form,
155 \begin{equation}
156 V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
157 \sum_i V_i^\mathrm{correction}
158 \end{equation}
159 that is short-ranged and easily truncated at a cutoff radius,
160 \begin{equation}
161 V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) = \left\{
162 \begin{array}{ll}
163 V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
164 0 & \quad r > r_c ,
165 \end{array}
166 \right.
167 \end{equation}
168 along with an easily computed correction term ($\sum_i
169 V_i^\mathrm{correction}$) which has linear-scaling with the number of
170 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
171 coordinates of the two sites. The computational efficiency, energy
172 conservation, and even some physical properties of a simulation can
173 depend dramatically on how the $V_\mathrm{approx}$ function behaves at
174 the cutoff radius. The goal of any approximation method should be to
175 mimic the real behavior of the electrostatic interactions as closely
176 as possible without sacrificing the near-linear scaling of a cutoff
177 method.
178
179 \subsection{Self-neutralization, damping, and force-shifting}
180 The DSF and Wolf methods operate by neutralizing the total charge
181 contained within the cutoff sphere surrounding each particle. This is
182 accomplished by shifting the potential functions to generate image
183 charges on the surface of the cutoff sphere for each pair interaction
184 computed within $r_c$. Damping using a complementary error
185 function is applied to the potential to accelerate convergence. The
186 potential for the DSF method, where $\alpha$ is the adjustable damping
187 parameter, is given by
188 \begin{equation*}
189 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
190 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
191 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
192 + \frac{2\alpha}{\pi^{1/2}}
193 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
194 \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
195 \label{eq:DSFPot}
196 \end{equation*}
197 Note that in this potential and in all electrostatic quantities that
198 follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
199 clarity.
200
201 To insure net charge neutrality within each cutoff sphere, an
202 additional ``self'' term is added to the potential. This term is
203 constant (as long as the charges and cutoff radius do not change), and
204 exists outside the normal pair-loop for molecular simulations. It can
205 be thought of as a contribution from a charge opposite in sign, but
206 equal in magnitude, to the central charge, which has been spread out
207 over the surface of the cutoff sphere. A portion of the self term is
208 identical to the self term in the Ewald summation, and comes from the
209 utilization of the complimentary error function for electrostatic
210 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
211 extend the Wolf self-neutralization method to zero out the dipole and
212 higher order multipoles contained within the cutoff
213 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
214
215 In this work, we extend the idea of self-neutralization for the point
216 multipoles by insuring net charge-neutrality and net-zero moments
217 within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
218 central dipolar site $\mathbf{D}_i$ is interacting with point dipole
219 $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
220 self-neutralization scheme for point multipoles involves projecting
221 opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
222 sphere. There are also significant modifications made to make the
223 forces and torques go smoothly to zero at the cutoff distance.
224
225 \begin{figure}
226 \includegraphics[width=3in]{SM}
227 \caption{Reversed multipoles are projected onto the surface of the
228 cutoff sphere. The forces, torques, and potential are then smoothly
229 shifted to zero as the sites leave the cutoff region.}
230 \label{fig:shiftedMultipoles}
231 \end{figure}
232
233 As in the point-charge approach, there is an additional contribution
234 from self-neutralization of site $i$. The self term for multipoles is
235 described in section \ref{sec:selfTerm}.
236
237 \subsection{The multipole expansion}
238
239 Consider two discrete rigid collections of point charges, denoted as
240 $\bf a$ and $\bf b$. In the following, we assume that the two objects
241 interact via electrostatics only and describe those interactions in
242 terms of a standard multipole expansion. Putting the origin of the
243 coordinate system at the center of mass of $\bf a$, we use vectors
244 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
245 a$. Then the electrostatic potential of object $\bf a$ at
246 $\mathbf{r}$ is given by
247 \begin{equation}
248 V_a(\mathbf r) =
249 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
250 \end{equation}
251 The Taylor expansion in $r$ can be written using an implied summation
252 notation. Here Greek indices are used to indicate space coordinates
253 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
254 labelling specific charges in $\bf a$ and $\bf b$ respectively. The
255 Taylor expansion,
256 \begin{equation}
257 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
258 \left( 1
259 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
260 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
261 \right)
262 \frac{1}{r} ,
263 \end{equation}
264 can then be used to express the electrostatic potential on $\bf a$ in
265 terms of multipole operators,
266 \begin{equation}
267 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
268 \end{equation}
269 where
270 \begin{equation}
271 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
272 + Q_{{\bf a}\alpha\beta}
273 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
274 \end{equation}
275 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
276 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
277 a}\alpha\beta}$, respectively. These are the primitive multipoles
278 which can be expressed as a distribution of charges,
279 \begin{align}
280 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
281 D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
282 Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
283 \end{align}
284 Note that the definition of the primitive quadrupole here differs from
285 the standard traceless form, and contains an additional Taylor-series
286 based factor of $1/2$.
287
288 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
289 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
290 \begin{equation}
291 U_{\bf{ab}}(r)
292 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
293 \end{equation}
294 This can also be expanded as a Taylor series in $r$. Using a notation
295 similar to before to define the multipoles on object {\bf b},
296 \begin{equation}
297 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
298 + Q_{{\bf b}\alpha\beta}
299 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
300 \end{equation}
301 we arrive at the multipole expression for the total interaction energy.
302 \begin{equation}
303 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
304 \end{equation}
305 This form has the benefit of separating out the energies of
306 interaction into contributions from the charge, dipole, and quadrupole
307 of $\bf a$ interacting with the same multipoles on $\bf b$.
308
309 \subsection{Damped Coulomb interactions}
310 In the standard multipole expansion, one typically uses the bare
311 Coulomb potential, with radial dependence $1/r$, as shown in
312 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
313 interaction, which results from replacing point charges with Gaussian
314 distributions of charge with width $\alpha$. In damped multipole
315 electrostatics, the kernel ($1/r$) of the expansion is replaced with
316 the function:
317 \begin{equation}
318 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
319 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
320 \end{equation}
321 We develop equations below using the function $f(r)$ to represent
322 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
323 bare or damped Coulomb kernels (or any other function) as long as
324 derivatives of these functions are known. Smith's convenient
325 functions $B_l(r)$ are summarized in Appendix A.
326
327 The main goal of this work is to smoothly cut off the interaction
328 energy as well as forces and torques as $r\rightarrow r_c$. To
329 describe how this goal may be met, we use two examples, charge-charge
330 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
331 explain the idea.
332
333 \subsection{Shifted-force methods}
334 In the shifted-force approximation, the interaction energy for two
335 charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
336 written:
337 \begin{equation}
338 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
339 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
340 \right) .
341 \end{equation}
342 Two shifting terms appear in this equations, one from the
343 neutralization procedure ($-1/r_c$), and one that causes the first
344 derivative to vanish at the cutoff radius.
345
346 Since one derivative of the interaction energy is needed for the
347 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
348 interaction energy, that is:
349 \begin{equation}
350 \frac{d\,}{dr}
351 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
352 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
353 \right) .
354 \end{equation}
355 which clearly vanishes as the $r$ approaches the cutoff radius. There
356 are a number of ways to generalize this derivative shift for
357 higher-order multipoles. Below, we present two methods, one based on
358 higher-order Taylor series for $r$ near $r_c$, and the other based on
359 linear shift of the kernel gradients at the cutoff itself.
360
361 \subsection{Taylor-shifted force (TSF) electrostatics}
362 In the Taylor-shifted force (TSF) method, the procedure that we follow
363 is based on a Taylor expansion containing the same number of
364 derivatives required for each force term to vanish at the cutoff. For
365 example, the quadrupole-quadrupole interaction energy requires four
366 derivatives of the kernel, and the force requires one additional
367 derivative. For quadrupole-quadrupole interactions, we therefore
368 require shifted energy expressions that include up to $(r-r_c)^5$ so
369 that all energies, forces, and torques are zero as $r \rightarrow
370 r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
371 from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
372 derivatives to be taken when deriving a given multipole energy. We
373 choose a function with guaranteed smooth derivatives -- a truncated
374 Taylor series of the function $f(r)$, e.g.,
375 %
376 \begin{equation}
377 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
378 \end{equation}
379 %
380 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
381 Thus, for $f(r)=1/r$, we find
382 %
383 \begin{equation}
384 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
385 \end{equation}
386 %
387 Continuing with the example of a charge $\bf a$ interacting with a
388 dipole $\bf b$, we write
389 %
390 \begin{equation}
391 U_{C_{\bf a}D_{\bf b}}(r)=
392 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
393 = C_{\bf a} D_{{\bf b}\alpha}
394 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
395 \end{equation}
396 %
397 The force that dipole $\bf b$ exerts on charge $\bf a$ is
398 %
399 \begin{equation}
400 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
401 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
402 \frac{r_\alpha r_\beta}{r^2}
403 \left( -\frac{1}{r} \frac {\partial} {\partial r}
404 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
405 \end{equation}
406 %
407 For undamped coulombic interactions, $f(r)=1/r$, we find
408 %
409 \begin{equation}
410 F_{C_{\bf a}D_{\bf b}\beta} =
411 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
412 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
413 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
414 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
415 \end{equation}
416 %
417 This expansion shows the expected $1/r^3$ dependence of the force.
418
419 In general, we can write
420 %
421 \begin{equation}
422 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
423 \label{generic}
424 \end{equation}
425 %
426 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
427 charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
428 $n=4$ for quadrupole-quadrupole. For example, in
429 quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
430 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
431 $\partial^4/\partial r_\alpha \partial r_\beta \partial
432 r_\gamma \partial r_\delta$, with implied summation combining the
433 space indices.
434
435 In the formulas presented in the tables below, the placeholder
436 function $f(r)$ is used to represent the electrostatic kernel (either
437 damped or undamped). The main functions that go into the force and
438 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
439 successive derivatives of the shifted electrostatic kernel, $f_n(r)$
440 of the same index $n$. The algebra required to evaluate energies,
441 forces and torques is somewhat tedious, so only the final forms are
442 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
443
444 \subsection{Gradient-shifted force (GSF) electrostatics}
445 The second, and conceptually simpler approach to force-shifting
446 maintains only the linear $(r-r_c)$ term in the truncated Taylor
447 expansion, and has a similar interaction energy for all multipole
448 orders:
449 \begin{equation}
450 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
451 \lvert _{r_c} .
452 \label{generic2}
453 \end{equation}
454 Here the gradient for force shifting is evaluated for an image
455 multipole projected onto the surface of the cutoff sphere (see fig
456 \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
457 appear. The primary difference between the TSF and GSF methods is the
458 stage at which the Taylor Series is applied; in the Taylor-shifted
459 approach, it is applied to the kernel itself. In the Gradient-shifted
460 approach, it is applied to individual radial interactions terms in the
461 multipole expansion. Energies from this method thus have the general
462 form:
463 \begin{equation}
464 U= \sum (\text{angular factor}) (\text{radial factor}).
465 \label{generic3}
466 \end{equation}
467
468 Functional forms for both methods (TSF and GSF) can both be summarized
469 using the form of Eq.~(\ref{generic3}). The basic forms for the
470 energy, force, and torque expressions are tabulated for both shifting
471 approaches below -- for each separate orientational contribution, only
472 the radial factors differ between the two methods.
473
474 \subsection{\label{sec:level2}Body and space axes}
475
476 [XXX Do we need this section in the main paper? or should it go in the
477 extra materials?]
478
479 So far, all energies and forces have been written in terms of fixed
480 space coordinates. Interaction energies are computed from the generic
481 formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which combine
482 orientational prefactors with radial functions. Because objects $\bf
483 a$ and $\bf b$ both translate and rotate during a molecular dynamics
484 (MD) simulation, it is desirable to contract all $r$-dependent terms
485 with dipole and quadrupole moments expressed in terms of their body
486 axes. To do so, we have followed the methodology of Allen and
487 Germano,\cite{Allen:2006fk} which was itself based on earlier work by
488 Price {\em et al.}\cite{Price:1984fk}
489
490 We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
491 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
492 referring to a convenient set of inertial body axes. (N.B., these
493 body axes are generally not the same as those for which the quadrupole
494 moment is diagonal.) Then,
495 %
496 \begin{eqnarray}
497 \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
498 \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
499 \end{eqnarray}
500 Rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
501 expressed using these unit vectors:
502 \begin{eqnarray}
503 \hat{\mathbf {a}} =
504 \begin{pmatrix}
505 \hat{a}_1 \\
506 \hat{a}_2 \\
507 \hat{a}_3
508 \end{pmatrix}
509 =
510 \begin{pmatrix}
511 a_{1x} \quad a_{1y} \quad a_{1z} \\
512 a_{2x} \quad a_{2y} \quad a_{2z} \\
513 a_{3x} \quad a_{3y} \quad a_{3z}
514 \end{pmatrix}\\
515 \hat{\mathbf {b}} =
516 \begin{pmatrix}
517 \hat{b}_1 \\
518 \hat{b}_2 \\
519 \hat{b}_3
520 \end{pmatrix}
521 =
522 \begin{pmatrix}
523 b_{1x} \quad b_{1y} \quad b_{1z} \\
524 b_{2x} \quad b_{2y} \quad b_{2z} \\
525 b_{3x} \quad b_{3y} \quad b_{3z}
526 \end{pmatrix} .
527 \end{eqnarray}
528 %
529 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
530 coordinates. All contractions of prefactors with derivatives of
531 functions can be written in terms of these matrices. It proves to be
532 equally convenient to just write any contraction in terms of unit
533 vectors $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. In the torque
534 expressions, it is useful to have the angular-dependent terms
535 available in three different fashions, e.g. for the dipole-dipole
536 contraction:
537 %
538 \begin{equation}
539 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
540 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
541 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
542 \end{equation}
543 %
544 The first two forms are written using space coordinates. The first
545 form is standard in the chemistry literature, while the second is
546 expressed using implied summation notation. The third form shows
547 explicit sums over body indices and the dot products now indicate
548 contractions using space indices.
549
550
551 \subsection{The Self-Interaction \label{sec:selfTerm}}
552
553 In addition to cutoff-sphere neutralization, the Wolf
554 summation~\cite{Wolf99} and the damped shifted force (DSF)
555 extension~\cite{Fennell:2006zl} also included self-interactions that
556 are handled separately from the pairwise interactions between
557 sites. The self-term is normally calculated via a single loop over all
558 sites in the system, and is relatively cheap to evaluate. The
559 self-interaction has contributions from two sources.
560
561 First, the neutralization procedure within the cutoff radius requires
562 a contribution from a charge opposite in sign, but equal in magnitude,
563 to the central charge, which has been spread out over the surface of
564 the cutoff sphere. For a system of undamped charges, the total
565 self-term is
566 \begin{equation}
567 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
568 \label{eq:selfTerm}
569 \end{equation}
570
571 Second, charge damping with the complementary error function is a
572 partial analogy to the Ewald procedure which splits the interaction
573 into real and reciprocal space sums. The real space sum is retained
574 in the Wolf and DSF methods. The reciprocal space sum is first
575 minimized by folding the largest contribution (the self-interaction)
576 into the self-interaction from charge neutralization of the damped
577 potential. The remainder of the reciprocal space portion is then
578 discarded (as this contributes the largest computational cost and
579 complexity to the Ewald sum). For a system containing only damped
580 charges, the complete self-interaction can be written as
581 \begin{equation}
582 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
583 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
584 C_{\bf a}^{2}.
585 \label{eq:dampSelfTerm}
586 \end{equation}
587
588 The extension of DSF electrostatics to point multipoles requires
589 treatment of {\it both} the self-neutralization and reciprocal
590 contributions to the self-interaction for higher order multipoles. In
591 this section we give formulae for these interactions up to quadrupolar
592 order.
593
594 The self-neutralization term is computed by taking the {\it
595 non-shifted} kernel for each interaction, placing a multipole of
596 equal magnitude (but opposite in polarization) on the surface of the
597 cutoff sphere, and averaging over the surface of the cutoff sphere.
598 Because the self term is carried out as a single sum over sites, the
599 reciprocal-space portion is identical to half of the self-term
600 obtained by Smith and Aguado and Madden for the application of the
601 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
602 site which posesses a charge, dipole, and multipole, both types of
603 contribution are given in table \ref{tab:tableSelf}.
604
605 \begin{table*}
606 \caption{\label{tab:tableSelf} Self-interaction contributions for
607 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
608 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
609 \begin{ruledtabular}
610 \begin{tabular}{lccc}
611 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
612 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
613 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
614 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
615 Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
616 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
617 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
618 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
619 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
620 \end{tabular}
621 \end{ruledtabular}
622 \end{table*}
623
624 For sites which simultaneously contain charges and quadrupoles, the
625 self-interaction includes a cross-interaction between these two
626 multipole orders. Symmetry prevents the charge-dipole and
627 dipole-quadrupole interactions from contributing to the
628 self-interaction. The functions that go into the self-neutralization
629 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
630 derivatives of the electrostatic kernel, $f(r)$ (either the undamped
631 $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
632 have been evaluated at the cutoff distance. For undamped
633 interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
634 damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
635 on. Appendix \ref{SmithFunc} contains recursion relations that allow
636 rapid evaluation of these derivatives.
637
638 \section{Interaction energies, forces, and torques}
639 The main result of this paper is a set of expressions for the
640 energies, forces and torques (up to quadrupole-quadrupole order) that
641 work for both the Taylor-shifted and Gradient-shifted approximations.
642 These expressions were derived using a set of generic radial
643 functions. Without using the shifting approximations mentioned above,
644 some of these radial functions would be identical, and the expressions
645 coalesce into the familiar forms for unmodified multipole-multipole
646 interactions. Table \ref{tab:tableenergy} maps between the generic
647 functions and the radial functions derived for both the Taylor-shifted
648 and Gradient-shifted methods. The energy equations are written in
649 terms of lab-frame representations of the dipoles, quadrupoles, and
650 the unit vector connecting the two objects,
651
652 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
653 %
654 %
655 % u ca cb
656 %
657 \begin{align}
658 U_{C_{\bf a}C_{\bf b}}(r)=&
659 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
660 \\
661 %
662 % u ca db
663 %
664 U_{C_{\bf a}D_{\bf b}}(r)=&
665 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
666 \label{uchdip}
667 \\
668 %
669 % u ca qb
670 %
671 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
672 v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
673 \hat{r} \right) v_{22}(r) \Bigr]
674 \label{uchquad}
675 \\
676 %
677 % u da cb
678 %
679 %U_{D_{\bf a}C_{\bf b}}(r)=&
680 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
681 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
682 %\\
683 %
684 % u da db
685 %
686 U_{D_{\bf a}D_{\bf b}}(r)=&
687 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
688 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
689 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
690 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
691 v_{22}(r) \Bigr]
692 \label{udipdip}
693 \\
694 %
695 % u da qb
696 %
697 \begin{split}
698 % 1
699 U_{D_{\bf a}Q_{\bf b}}(r) =&
700 -\Bigl[
701 \text{Tr}\mathbf{Q}_{\mathbf{b}}
702 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
703 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
704 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
705 % 2
706 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
707 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
708 \label{udipquad}
709 \end{split}
710 \\
711 %
712 % u qa cb
713 %
714 %U_{Q_{\bf a}C_{\bf b}}(r)=&
715 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
716 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
717 %\label{uquadch}
718 %\\
719 %
720 % u qa db
721 %
722 %\begin{split}
723 %1
724 %U_{Q_{\bf a}D_{\bf b}}(r)=&
725 %\frac{1}{4\pi \epsilon_0} \Bigl[
726 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
727 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
728 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
729 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
730 % 2
731 %&+\frac{1}{4\pi \epsilon_0}
732 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
733 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
734 %\label{uquaddip}
735 %\end{split}
736 %\\
737 %
738 % u qa qb
739 %
740 \begin{split}
741 %1
742 U_{Q_{\bf a}Q_{\bf b}}(r)=&
743 \Bigl[
744 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
745 +2 \text{Tr} \left(
746 \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
747 \\
748 % 2
749 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
750 \left( \hat{r} \cdot
751 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
752 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
753 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
754 \cdot \hat{r} \right) +4 (\hat{r} \cdot
755 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
756 \Bigr] v_{42}(r)
757 \\
758 % 4
759 &+
760 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
761 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
762 \label{uquadquad}
763 \end{split}
764 \end{align}
765 %
766 Note that the energies of multipoles on site $\mathbf{b}$ interacting
767 with those on site $\mathbf{a}$ can be obtained by swapping indices
768 along with the sign of the intersite vector, $\hat{r}$.
769
770 %
771 %
772 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
773 %
774
775 \begin{sidewaystable}
776 \caption{\label{tab:tableenergy}Radial functions used in the energy
777 and torque equations. The $f, g, h, s, t, \mathrm{and} u$
778 functions used in this table are defined in Appendices B and C.}
779 \begin{tabular}{|c|c|l|l|} \hline
780 Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
781 \\ \hline
782 %
783 %
784 %
785 %Ch-Ch&
786 $v_{01}(r)$ &
787 $\frac{1}{r}$ &
788 $f_0(r)$ &
789 $f(r)-f(r_c)-(r-r_c)g(r_c)$
790 \\
791 %
792 %
793 %
794 %Ch-Di&
795 $v_{11}(r)$ &
796 $-\frac{1}{r^2}$ &
797 $g_1(r)$ &
798 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
799 %
800 %
801 %
802 %Ch-Qu/Di-Di&
803 $v_{21}(r)$ &
804 $-\frac{1}{r^3} $ &
805 $\frac{g_2(r)}{r} $ &
806 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
807 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
808 $v_{22}(r)$ &
809 $\frac{3}{r^3} $ &
810 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
811 $\left(-\frac{g(r)}{r}+h(r) \right)
812 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
813 &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
814 \\
815 %
816 %
817 %
818 %Di-Qu &
819 $v_{31}(r)$ &
820 $\frac{3}{r^4} $ &
821 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
822 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
823 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
824 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
825 \\
826 %
827 $v_{32}(r)$ &
828 $-\frac{15}{r^4} $ &
829 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
830 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
831 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
832 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
833 \\
834 %
835 %
836 %
837 %Qu-Qu&
838 $v_{41}(r)$ &
839 $\frac{3}{r^5} $ &
840 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
841 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
842 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
843 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
844 \\
845 % 2
846 $v_{42}(r)$ &
847 $- \frac{15}{r^5} $ &
848 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
849 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
850 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
851 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
852 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
853 \\
854 % 3
855 $v_{43}(r)$ &
856 $ \frac{105}{r^5} $ &
857 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
858 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
859 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
860 &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
861 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
862 \end{tabular}
863 \end{sidewaystable}
864 %
865 %
866 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
867 %
868
869 \begin{sidewaystable}
870 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
871 \begin{tabular}{|c|c|l|l|} \hline
872 Function&Definition&Taylor-Shifted&Gradient-Shifted
873 \\ \hline
874 %
875 %
876 %
877 $w_a(r)$&
878 $\frac{d v_{01}}{dr}$&
879 $g_0(r)$&
880 $g(r)-g(r_c)$ \\
881 %
882 %
883 $w_b(r)$ &
884 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
885 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
886 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
887 %
888 $w_c(r)$ &
889 $\frac{v_{11}(r)}{r}$ &
890 $\frac{g_1(r)}{r} $ &
891 $\frac{v_{11}(r)}{r}$\\
892 %
893 %
894 $w_d(r)$&
895 $\frac{d v_{21}}{dr}$&
896 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
897 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
898 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
899 %
900 $w_e(r)$ &
901 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
902 $\frac{v_{22}(r)}{r}$ &
903 $\frac{v_{22}(r)}{r}$ \\
904 %
905 %
906 $w_f(r)$&
907 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
908 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
909 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
910 &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
911 \right)-\frac{2v_{22}(r)}{r}$\\
912 %
913 $w_g(r)$&
914 $\frac{v_{31}(r)}{r}$&
915 $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
916 $\frac{v_{31}(r)}{r}$\\
917 %
918 $w_h(r)$ &
919 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
920 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
921 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
922 &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
923 % 2
924 $w_i(r)$ &
925 $\frac{v_{32}(r)}{r}$ &
926 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
927 $\frac{v_{32}(r)}{r}$\\
928 %
929 $w_j(r)$ &
930 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
931 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
932 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
933 &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
934 -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
935 %
936 $w_k(r)$ &
937 $\frac{d v_{41}}{dr} $ &
938 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
939 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
940 -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
941 %
942 $w_l(r)$ &
943 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
944 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
945 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
946 &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
947 -\frac{2v_{42}(r)}{r}$\\
948 %
949 $w_m(r)$ &
950 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
951 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
952 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
953 &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
954 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
955 &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
956 %
957 $w_n(r)$ &
958 $\frac{v_{42}(r)}{r}$ &
959 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
960 $\frac{v_{42}(r)}{r}$\\
961 %
962 $w_o(r)$ &
963 $\frac{v_{43}(r)}{r}$&
964 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
965 $\frac{v_{43}(r)}{r}$ \\ \hline
966 %
967
968 \end{tabular}
969 \end{sidewaystable}
970 %
971 %
972 %
973
974 \subsection{Forces}
975 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
976 $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
977 a simple charge-charge interaction, these forces will point along the
978 $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
979 \mathbf{r}_a $. Thus
980 %
981 \begin{equation}
982 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
983 \quad \text{and} \quad F_{\bf b \alpha}
984 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
985 \end{equation}
986 %
987 Obtaining the force from the interaction energy expressions is the
988 same for higher-order multipole interactions -- the trick is to make
989 sure that all $r$-dependent derivatives are considered. This is
990 straighforward if the interaction energies are written explicitly in
991 terms of $\hat{r}$ and the body axes ($\hat{a}_m$,
992 $\hat{b}_n$) :
993 %
994 \begin{equation}
995 U(r,\{\hat{a}_m \cdot \hat{r} \},
996 \{\hat{b}_n\cdot \hat{r} \},
997 \{\hat{a}_m \cdot \hat{b}_n \}) .
998 \label{ugeneral}
999 \end{equation}
1000 %
1001 Allen and Germano,\cite{Allen:2006fk} showed that if the energy is
1002 written in this form, the forces come out relatively cleanly,
1003 %
1004 \begin{equation}
1005 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
1006 = \frac{\partial U}{\partial r} \hat{r}
1007 + \sum_m \left[
1008 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1009 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1010 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1011 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1012 \right] \label{forceequation}.
1013 \end{equation}
1014 %
1015 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
1016 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
1017 In simplifying the algebra, we have also used:
1018 %
1019 \begin{align}
1020 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1021 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1022 \right) \\
1023 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1024 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1025 \right) .
1026 \end{align}
1027 %
1028 We list below the force equations written in terms of lab-frame
1029 coordinates. The radial functions used in the two methods are listed
1030 in Table \ref{tab:tableFORCE}
1031 %
1032 %SPACE COORDINATES FORCE EQUATIONS
1033 %
1034 % **************************************************************************
1035 % f ca cb
1036 %
1037 \begin{align}
1038 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1039 C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1040 %
1041 %
1042 %
1043 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1044 C_{\bf a} \Bigl[
1045 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1046 w_b(r) \hat{r}
1047 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1048 %
1049 %
1050 %
1051 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1052 C_{\bf a } \Bigr[
1053 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1054 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1055 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1056 \right) w_f(r) \hat{r} \Bigr] \\
1057 %
1058 %
1059 %
1060 % \begin{equation}
1061 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1062 % -C_{\bf{b}} \Bigl[
1063 % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1064 % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1065 % \end{equation}
1066 %
1067 %
1068 %
1069 \begin{split}
1070 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1071 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1072 + \left( \mathbf{D}_{\mathbf {a}}
1073 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1074 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1075 % 2
1076 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1077 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1078 \end{split}\\
1079 %
1080 %
1081 %
1082 \begin{split}
1083 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1084 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1085 +2 \mathbf{D}_{\mathbf{a}} \cdot
1086 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1087 - \Bigl[
1088 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1089 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1090 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1091 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1092 % 3
1093 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1094 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1095 w_i(r)
1096 % 4
1097 -
1098 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1099 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1100 %
1101 %
1102 % \begin{equation}
1103 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1104 % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1105 % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1106 % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1107 % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1108 % \end{equation}
1109 % %
1110 % \begin{equation}
1111 % \begin{split}
1112 % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1113 % &\frac{1}{4\pi \epsilon_0} \Bigl[
1114 % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1115 % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1116 % % 2
1117 % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1118 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1119 % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1120 % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1121 % % 3
1122 % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1123 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1124 % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1125 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1126 % % 4
1127 % +\frac{1}{4\pi \epsilon_0}
1128 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1129 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1130 % \end{split}
1131 % \end{equation}
1132 %
1133 %
1134 %
1135 \begin{split}
1136 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1137 \Bigl[
1138 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1139 + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1140 % 2
1141 &+ \Bigl[
1142 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1143 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1144 % 3
1145 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1146 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1147 % 4
1148 &+ \Bigl[
1149 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1150 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1151 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1152 % 5
1153 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1154 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1155 %
1156 &+ \Bigl[
1157 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1158 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1159 %6
1160 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1161 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1162 % 7
1163 &+
1164 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1165 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1166 \end{align}
1167 Note that the forces for higher multipoles on site $\mathbf{a}$
1168 interacting with those of lower order on site $\mathbf{b}$ can be
1169 obtained by swapping indices in the expressions above.
1170
1171 %
1172 % Torques SECTION -----------------------------------------------------------------------------------------
1173 %
1174 \subsection{Torques}
1175 When energies are written in the form of Eq.~({\ref{ugeneral}), then
1176 torques can be found in a relatively straightforward
1177 manner,\cite{Allen:2006fk}
1178 %
1179 \begin{eqnarray}
1180 \mathbf{\tau}_{\bf a} =
1181 \sum_m
1182 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1183 ( \hat{r} \times \hat{a}_m )
1184 -\sum_{mn}
1185 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1186 (\hat{a}_m \times \hat{b}_n) \\
1187 %
1188 \mathbf{\tau}_{\bf b} =
1189 \sum_m
1190 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1191 ( \hat{r} \times \hat{b}_m)
1192 +\sum_{mn}
1193 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1194 (\hat{a}_m \times \hat{b}_n) .
1195 \end{eqnarray}
1196 %
1197 %
1198 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1199 methods are given in space-frame coordinates:
1200 %
1201 %
1202 \begin{align}
1203 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1204 C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1205 %
1206 %
1207 %
1208 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1209 2C_{\bf a}
1210 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1211 %
1212 %
1213 %
1214 % \begin{equation}
1215 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1216 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1217 % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1218 % \end{equation}
1219 %
1220 %
1221 %
1222 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1223 \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1224 % 2
1225 -
1226 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1227 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1228 %
1229 %
1230 %
1231 % \begin{equation}
1232 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1233 % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1234 % % 2
1235 % +\frac{1}{4\pi \epsilon_0}
1236 % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1237 % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1238 % \end{equation}
1239 %
1240 %
1241 %
1242 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1243 \Bigl[
1244 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1245 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1246 +2 \mathbf{D}_{\mathbf{a}} \times
1247 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1248 \Bigr] v_{31}(r)
1249 % 3
1250 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1251 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1252 %
1253 %
1254 %
1255 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1256 \Bigl[
1257 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1258 \hat{r}
1259 -2 \mathbf{D}_{\mathbf{a}} \times
1260 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1261 \Bigr] v_{31}(r)
1262 % 2
1263 +
1264 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1265 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1266 %
1267 %
1268 %
1269 % \begin{equation}
1270 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1271 % \frac{1}{4\pi \epsilon_0} \Bigl[
1272 % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1273 % +2 \mathbf{D}_{\mathbf{b}} \times
1274 % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1275 % \Bigr] v_{31}(r)
1276 % % 3
1277 % - \frac{2}{4\pi \epsilon_0}
1278 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1279 % (\hat{r} \cdot \mathbf
1280 % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1281 % \end{equation}
1282 %
1283 %
1284 %
1285 % \begin{equation}
1286 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1287 % \frac{1}{4\pi \epsilon_0} \Bigl[
1288 % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1289 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1290 % +2 \mathbf{D}_{\mathbf{b}} \times
1291 % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1292 % % 2
1293 % +\frac{1}{4\pi \epsilon_0}
1294 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1295 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1296 % \end{equation}
1297 %
1298 %
1299 %
1300 \begin{split}
1301 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1302 -4
1303 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1304 v_{41}(r) \\
1305 % 2
1306 &+
1307 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1308 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1309 +4 \hat{r} \times
1310 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1311 % 3
1312 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1313 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1314 % 4
1315 &+ 2
1316 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1317 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1318 %
1319 %
1320 %
1321 \begin{split}
1322 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1323 &4
1324 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1325 % 2
1326 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1327 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1328 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1329 \mathbf{Q}_{{\mathbf b}} ) \times
1330 \hat{r}
1331 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1332 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1333 \Bigr] v_{42}(r) \\
1334 % 4
1335 &+2
1336 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1337 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1338 \end{align}
1339 %
1340 Here, we have defined the matrix cross product in an identical form
1341 as in Ref. \onlinecite{Smith98}:
1342 \begin{equation}
1343 \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1344 \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1345 -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1346 \right]
1347 \end{equation}
1348 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1349 permuations of the matrix indices.
1350
1351 All of the radial functions required for torques are identical with
1352 the radial functions previously computed for the interaction energies.
1353 These are tabulated for both shifted force methods in table
1354 \ref{tab:tableenergy}. The torques for higher multipoles on site
1355 $\mathbf{a}$ interacting with those of lower order on site
1356 $\mathbf{b}$ can be obtained by swapping indices in the expressions
1357 above.
1358
1359 \section{Comparison to known multipolar energies}
1360
1361 To understand how these new real-space multipole methods behave in
1362 computer simulations, it is vital to test against established methods
1363 for computing electrostatic interactions in periodic systems, and to
1364 evaluate the size and sources of any errors that arise from the
1365 real-space cutoffs. In this paper we test Taylor-shifted and
1366 Gradient-shifted electrostatics against analytical methods for
1367 computing the energies of ordered multipolar arrays. In the following
1368 paper, we test the new methods against the multipolar Ewald sum for
1369 computing the energies, forces and torques for a wide range of typical
1370 condensed-phase (disordered) systems.
1371
1372 Because long-range electrostatic effects can be significant in
1373 crystalline materials, ordered multipolar arrays present one of the
1374 biggest challenges for real-space cutoff methods. The dipolar
1375 analogues to the Madelung constants were first worked out by Sauer,
1376 who computed the energies of ordered dipole arrays of zero
1377 magnetization and obtained a number of these constants.\cite{Sauer}
1378 This theory was developed more completely by Luttinger and
1379 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1380 and other periodic structures. We have repeated the Luttinger \&
1381 Tisza series summations to much higher order and obtained the energy
1382 constants (converged to one part in $10^9$) in table \ref{tab:LT}.
1383
1384 \begin{table*}[h]
1385 \centering{
1386 \caption{Luttinger \& Tisza arrays and their associated
1387 energy constants. Type "A" arrays have nearest neighbor strings of
1388 antiparallel dipoles. Type "B" arrays have nearest neighbor
1389 strings of antiparallel dipoles if the dipoles are contained in a
1390 plane perpendicular to the dipole direction that passes through
1391 the dipole.}
1392 }
1393 \label{tab:LT}
1394 \begin{ruledtabular}
1395 \begin{tabular}{cccc}
1396 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1397 A & SC & 001 & -2.676788684 \\
1398 A & BCC & 001 & 0 \\
1399 A & BCC & 111 & -1.770078733 \\
1400 A & FCC & 001 & 2.166932835 \\
1401 A & FCC & 011 & -1.083466417 \\
1402 B & SC & 001 & -2.676788684 \\
1403 B & BCC & 001 & -1.338394342 \\
1404 B & BCC & 111 & -1.770078733 \\
1405 B & FCC & 001 & -1.083466417 \\
1406 B & FCC & 011 & -1.807573634 \\
1407 -- & BCC & minimum & -1.985920929 \\
1408 \end{tabular}
1409 \end{ruledtabular}
1410 \end{table*}
1411
1412 In addition to the A and B arrays, there is an additional minimum
1413 energy structure for the BCC lattice that was found by Luttinger \&
1414 Tisza. The total electrostatic energy for any of the arrays is given
1415 by:
1416 \begin{equation}
1417 E = C N^2 \mu^2
1418 \end{equation}
1419 where $C$ is the energy constant given in table \ref{tab:LT}, $N$ is
1420 the number of dipoles per unit volume, and $\mu$ is the strength of
1421 the dipole.
1422
1423 To test the new electrostatic methods, we have constructed very large
1424 ($N = 8,000, 16,000, 32,000$) arrays of dipoles in the orientations
1425 described in \ref{tab:LT}. For the purposes of this paper, the primary
1426 quantity of interest is the analytic energy constant for the perfect
1427 arrays. Convergence to these constants are shown as a function of both
1428 the cutoff radius, $r_c$, and the damping parameter, $\alpha$ in Fig.
1429 XXX. We have simultaneously tested a hard cutoff (where the kernel is
1430 simply truncated at the cutoff radius), as well as a shifted potential
1431 (SP) form which includes a potential-shifting and self-interaction
1432 term, but does not shift the forces and torques smoothly at the cutoff
1433 radius.
1434
1435 {\it Quadrupolar} analogues to the Madelung constants were first
1436 worked out by Nagai and Nakamura who computed the energies of selected
1437 quadrupole arrays based on extensions to the Luttinger and Tisza
1438 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1439 energy constants for the lowest energy configurations for linear
1440 quadrupoles shown in table \ref{tab:NNQ}
1441
1442 \begin{table*}
1443 \centering{
1444 \caption{Nagai and Nakamura Quadurpolar arrays}}
1445 \label{tab:NNQ}
1446 \begin{ruledtabular}
1447 \begin{tabular}{ccc}
1448 Lattice & Quadrupole Direction & Energy constants \\ \hline
1449 SC & 111 & -8.3 \\
1450 BCC & 011 & -21.7 \\
1451 FCC & 111 & -80.5
1452 \end{tabular}
1453 \end{ruledtabular}
1454 \end{table*}
1455
1456 In analogy to the dipolar arrays, the total electrostatic energy for
1457 the quadrupolar arrays is:
1458 \begin{equation}
1459 E = C \frac{3}{4} N^2 Q^2
1460 \end{equation}
1461 where $Q$ is the quadrupole moment.
1462
1463 \section{Conclusion}
1464 We have presented two efficient real-space methods for computing the
1465 interactions between point multipoles. These methods have the benefit
1466 of smoothly truncating the energies, forces, and torques at the cutoff
1467 radius, making them attractive for both molecular dynamics (MD) and
1468 Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1469 (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1470 correct lattice energies for ordered dipolar and quadrupolar arrays,
1471 while the Taylor-Shifted Force (TSF) is too severe an approximation to
1472 provide accurate convergence to lattice energies.
1473
1474 In most cases, GSF can obtain nearly quantitative agreement with the
1475 lattice energy constants with reasonably small cutoff radii. The only
1476 exception we have observed is for crystals which exhibit a bulk
1477 macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1478 In this particular case, the multipole neutralization scheme can
1479 interfere with the correct computation of the energies. We note that
1480 the energies for these arrangements are typically much larger than for
1481 crystals with net-zero moments, so this is not expected to be an issue
1482 in most simulations.
1483
1484 In large systems, these new methods can be made to scale approximately
1485 linearly with system size, and detailed comparisons with the Ewald sum
1486 for a wide range of chemical environments follows in the second paper.
1487
1488 \begin{acknowledgments}
1489 JDG acknowledges helpful discussions with Christopher
1490 Fennell. Support for this project was provided by the National
1491 Science Foundation under grant CHE-0848243. Computational time was
1492 provided by the Center for Research Computing (CRC) at the
1493 University of Notre Dame.
1494 \end{acknowledgments}
1495
1496 \newpage
1497 \appendix
1498
1499 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1500 \label{SmithFunc}
1501 The following summarizes Smith's $B_l(r)$ functions and includes
1502 formulas given in his appendix.\cite{Smith98} The first function
1503 $B_0(r)$ is defined by
1504 %
1505 \begin{equation}
1506 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1507 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1508 \end{equation}
1509 %
1510 The first derivative of this function is
1511 %
1512 \begin{equation}
1513 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1514 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1515 \end{equation}
1516 %
1517 which can be used to define a function $B_1(r)$:
1518 %
1519 \begin{equation}
1520 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1521 \end{equation}
1522 %
1523 In general, the recurrence relation,
1524 \begin{equation}
1525 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1526 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1527 \text{e}^{-{\alpha}^2r^2}
1528 \right] ,
1529 \end{equation}
1530 is very useful for building up higher derivatives. Using these
1531 formulas, we find:
1532 %
1533 \begin{align}
1534 \frac{dB_0}{dr}=&-rB_1(r) \\
1535 \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1536 \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1537 \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1538 \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1539 \end{align}
1540 %
1541 As noted by Smith, it is possible to approximate the $B_l(r)$
1542 functions,
1543 %
1544 \begin{equation}
1545 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1546 +\text{O}(r) .
1547 \end{equation}
1548 \newpage
1549 \section{The $r$-dependent factors for TSF electrostatics}
1550
1551 Using the shifted damped functions $f_n(r)$ defined by:
1552 %
1553 \begin{equation}
1554 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1555 \end{equation}
1556 %
1557 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1558 this Appendix, we provide formulas for successive derivatives of this
1559 function. (If there is no damping, then $B_0(r)$ is replaced by
1560 $1/r$.) First, we find:
1561 %
1562 \begin{equation}
1563 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1564 \end{equation}
1565 %
1566 This formula clearly brings in derivatives of Smith's $B_0(r)$
1567 function, and we define higher-order derivatives as follows:
1568 %
1569 \begin{align}
1570 g_n(r)=& \frac{d f_n}{d r} =
1571 B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1572 h_n(r)=& \frac{d^2f_n}{d r^2} =
1573 B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1574 s_n(r)=& \frac{d^3f_n}{d r^3} =
1575 B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1576 t_n(r)=& \frac{d^4f_n}{d r^4} =
1577 B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1578 u_n(r)=& \frac{d^5f_n}{d r^5} =
1579 B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1580 \end{align}
1581 %
1582 We note that the last function needed (for quadrupole-quadrupole interactions) is
1583 %
1584 \begin{equation}
1585 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1586 \end{equation}
1587
1588 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1589 stored on a grid for values of $r$ from $0$ to $r_c$. The functions
1590 needed are listed schematically below:
1591 %
1592 \begin{eqnarray}
1593 f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1594 g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1595 h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1596 s_2 \quad s_3 \quad &s_4 \nonumber \\
1597 t_3 \quad &t_4 \nonumber \\
1598 &u_4 \nonumber .
1599 \end{eqnarray}
1600
1601 Using these functions, we find
1602 %
1603 \begin{align}
1604 \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1605 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1606 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1607 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1608 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1609 \delta_{ \beta \gamma} r_\alpha \right)
1610 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1611 + r_\alpha r_\beta r_\gamma
1612 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1613 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1614 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1615 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1616 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1617 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1618 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1619 + \text{5 permutations}
1620 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1621 \right) \nonumber \\
1622 &+ r_\alpha r_\beta r_\gamma r_\delta
1623 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1624 + \frac{t_n}{r^4} \right)\\
1625 \frac{\partial^5 f_n}
1626 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1627 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1628 + \text{14 permutations} \right)
1629 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1630 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1631 + \text{9 permutations}
1632 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1633 \right) \nonumber \\
1634 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1635 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1636 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1637 \end{align}
1638 %
1639 %
1640 %
1641 \newpage
1642 \section{The $r$-dependent factors for GSF electrostatics}
1643
1644 In Gradient-shifted force electrostatics, the kernel is not expanded,
1645 rather the individual terms in the multipole interaction energies.
1646 For damped charges , this still brings into the algebra multiple
1647 derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1648 we generalize the notation of the previous appendix. For $f(r)=1/r$
1649 (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1650 %
1651 \begin{align}
1652 g(r)=& \frac{df}{d r}\\
1653 h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1654 s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1655 t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1656 u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1657 \end{align}
1658 %
1659 For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1660 under the column ``Bare Coulomb.'' Equations \ref{eq:b9} to
1661 \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1662 $n$ is eliminated.
1663
1664 \newpage
1665
1666 \bibliography{multipole}
1667
1668 \end{document}
1669 %
1670 % ****** End of file multipole.tex ******