ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3988
Committed: Thu Jan 2 15:46:58 2014 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 65871 byte(s)
Log Message:
Modified a figure and inserted it.

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38
39 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40 %\linenumbers\relax % Commence numbering lines
41
42 \begin{document}
43
44 %\preprint{AIP/123-QED}
45
46 \title{Real space alternatives to the Ewald
47 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48
49 \author{Madan Lamichhane}
50 \affiliation{Department of Physics, University
51 of Notre Dame, Notre Dame, IN 46556}
52
53 \author{J. Daniel Gezelter}
54 \email{gezelter@nd.edu.}
55 \affiliation{Department of Chemistry and Biochemistry, University
56 of Notre Dame, Notre Dame, IN 46556}
57
58 \author{Kathie E. Newman}
59 \affiliation{Department of Physics, University
60 of Notre Dame, Notre Dame, IN 46556}
61
62
63 \date{\today}% It is always \today, today,
64 % but any date may be explicitly specified
65
66 \begin{abstract}
67 We have extended the original damped-shifted force (DSF)
68 electrostatic kernel and have been able to derive two new
69 electrostatic potentials for higher-order multipoles that are based
70 on truncated Taylor expansions around the cutoff radius. For
71 multipole-multipole interactions, we find that each of the distinct
72 orientational contributions has a separate radial function to ensure
73 that the overall forces and torques vanish at the cutoff radius. In
74 this paper, we present energy, force, and torque expressions for the
75 new models, and compare these real-space interaction models to exact
76 results for ordered arrays of multipoles.
77 \end{abstract}
78
79 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80 % Classification Scheme.
81 %\keywords{Suggested keywords}%Use showkeys class option if keyword
82 %display desired
83 \maketitle
84
85 \section{Introduction}
86 There has been increasing interest in real-space methods for
87 calculating electrostatic interactions in computer simulations of
88 condensed molecular
89 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90 The simplest of these techniques was developed by Wolf {\it et al.}
91 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 For systems of point charges, Fennell and Gezelter showed that a
93 simple damped shifted force (DSF) modification to Wolf's method could
94 give nearly quantitative agreement with smooth particle mesh Ewald
95 (SPME)\cite{Essmann95} configurational energy differences as well as
96 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97
98 The computational efficiency and the accuracy of the DSF method are
99 surprisingly good, particularly for systems with uniform charge
100 density. Additionally, dielectric constants obtained using DSF and
101 similar methods where the force vanishes at $r_{c}$ are
102 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103 related methods have now been widely investigated,\cite{Hansen:2012uq}
104 and DSF is now used routinely in a diverse set of chemical
105 environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
106 DSF electrostatics provides a compromise between the computational
107 speed of real-space cutoffs and the accuracy of fully-periodic Ewald
108 treatments.
109
110 One common feature of many coarse-graining approaches, which treat
111 entire molecular subsystems as a single rigid body, is simplification
112 of the electrostatic interactions between these bodies so that fewer
113 site-site interactions are required to compute configurational
114 energies. To do this, the interactions between coarse-grained sites
115 are typically taken to be point
116 multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
117
118 Water, in particular, has been modeled recently with point multipoles
119 up to octupolar
120 order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
121 maximum efficiency, these models require the use of an approximate
122 multipole expansion as the exact multipole expansion can become quite
123 expensive (particularly when handled via the Ewald
124 sum).\cite{Ichiye:2006qy} Point multipoles and multipole
125 polarizability have also been utilized in the AMOEBA water model and
126 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
127
128 Higher-order multipoles present a peculiar issue for molecular
129 dynamics. Multipolar interactions are inherently short-ranged, and
130 should not need the relatively expensive Ewald treatment. However,
131 real-space cutoff methods are normally applied in an orientation-blind
132 fashion so multipoles which leave and then re-enter a cutoff sphere in
133 a different orientation can cause energy discontinuities.
134
135 This paper outlines an extension of the original DSF electrostatic
136 kernel to point multipoles. We describe two distinct real-space
137 interaction models for higher-order multipoles based on two truncated
138 Taylor expansions that are carried out at the cutoff radius. We are
139 calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
140 electrostatics. Because of differences in the initial assumptions,
141 the two methods yield related, but somewhat different expressions for
142 energies, forces, and torques.
143
144 In this paper we outline the new methodology and give functional forms
145 for the energies, forces, and torques up to quadrupole-quadrupole
146 order. We also compare the new methods to analytic energy constants
147 for periodic arrays of point multipoles. In the following paper, we
148 provide numerical comparisons to Ewald-based electrostatics in common
149 simulation enviornments.
150
151 \section{Methodology}
152 An efficient real-space electrostatic method involves the use of a
153 pair-wise functional form,
154 \begin{equation}
155 V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
156 \sum_i V_i^\mathrm{correction}
157 \end{equation}
158 that is short-ranged and easily truncated at a cutoff radius,
159 \begin{equation}
160 V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) = \left\{
161 \begin{array}{ll}
162 V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
163 0 & \quad r > r_c ,
164 \end{array}
165 \right.
166 \end{equation}
167 along with an easily computed correction term ($\sum_i
168 V_i^\mathrm{correction}$) which has linear-scaling with the number of
169 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
170 coordinates of the two sites. The computational efficiency, energy
171 conservation, and even some physical properties of a simulation can
172 depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173 the cutoff radius. The goal of any approximation method should be to
174 mimic the real behavior of the electrostatic interactions as closely
175 as possible without sacrificing the near-linear scaling of a cutoff
176 method.
177
178 \subsection{Self-neutralization, damping, and force-shifting}
179 The DSF and Wolf methods operate by neutralizing the total charge
180 contained within the cutoff sphere surrounding each particle. This is
181 accomplished by shifting the potential functions to generate image
182 charges on the surface of the cutoff sphere for each pair interaction
183 computed within $r_c$. Damping using a complementary error
184 function is applied to the potential to accelerate convergence. The
185 potential for the DSF method, where $\alpha$ is the adjustable damping
186 parameter, is given by
187 \begin{equation*}
188 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
189 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
190 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
191 + \frac{2\alpha}{\pi^{1/2}}
192 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
193 \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
194 \label{eq:DSFPot}
195 \end{equation*}
196 Note that in this potential and in all electrostatic quantities that
197 follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
198 clarity.
199
200 To insure net charge neutrality within each cutoff sphere, an
201 additional ``self'' term is added to the potential. This term is
202 constant (as long as the charges and cutoff radius do not change), and
203 exists outside the normal pair-loop for molecular simulations. It can
204 be thought of as a contribution from a charge opposite in sign, but
205 equal in magnitude, to the central charge, which has been spread out
206 over the surface of the cutoff sphere. A portion of the self term is
207 identical to the self term in the Ewald summation, and comes from the
208 utilization of the complimentary error function for electrostatic
209 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
210 extend the Wolf self-neutralization method to zero out the dipole and
211 higher order multipoles contained within the cutoff
212 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
213
214 In this work, we extend the idea of self-neutralization for the point
215 multipoles by insuring net charge-neutrality and net-zero moments
216 within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
217 central dipolar site $\mathbf{D}_i$ is interacting with point dipole
218 $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
219 self-neutralization scheme for point multipoles involves projecting
220 opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
221 sphere. There are also significant modifications made to make the
222 forces and torques go smoothly to zero at the cutoff distance.
223
224 \begin{figure}
225 \includegraphics[width=3in]{SM}
226 \caption{Reversed multipoles are projected onto the surface of the
227 cutoff sphere. The forces, torques, and potential are then smoothly
228 shifted to zero as the sites leave the cutoff region.}
229 \label{fig:shiftedMultipoles}
230 \end{figure}
231
232 As in the point-charge approach, there is an additional contribution
233 from self-neutralization of site $i$. The self term for multipoles is
234 described in section \ref{sec:selfTerm}.
235
236 \subsection{The multipole expansion}
237
238 Consider two discrete rigid collections of point charges, denoted as
239 $\bf a$ and $\bf b$. In the following, we assume that the two objects
240 interact via electrostatics only and describe those interactions in
241 terms of a standard multipole expansion. Putting the origin of the
242 coordinate system at the center of mass of $\bf a$, we use vectors
243 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
244 a$. Then the electrostatic potential of object $\bf a$ at
245 $\mathbf{r}$ is given by
246 \begin{equation}
247 V_a(\mathbf r) =
248 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
249 \end{equation}
250 The Taylor expansion in $r$ can be written using an implied summation
251 notation. Here Greek indices are used to indicate space coordinates
252 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
253 labelling specific charges in $\bf a$ and $\bf b$ respectively. The
254 Taylor expansion,
255 \begin{equation}
256 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
257 \left( 1
258 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
259 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
260 \right)
261 \frac{1}{r} ,
262 \end{equation}
263 can then be used to express the electrostatic potential on $\bf a$ in
264 terms of multipole operators,
265 \begin{equation}
266 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
267 \end{equation}
268 where
269 \begin{equation}
270 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
271 + Q_{{\bf a}\alpha\beta}
272 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
273 \end{equation}
274 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
275 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
276 a}\alpha\beta}$, respectively. These are the primitive multipoles
277 which can be expressed as a distribution of charges,
278 \begin{align}
279 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
280 D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
281 Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
282 \end{align}
283 Note that the definition of the primitive quadrupole here differs from
284 the standard traceless form, and contains an additional Taylor-series
285 based factor of $1/2$.
286
287 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
288 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
289 \begin{equation}
290 U_{\bf{ab}}(r)
291 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
292 \end{equation}
293 This can also be expanded as a Taylor series in $r$. Using a notation
294 similar to before to define the multipoles on object {\bf b},
295 \begin{equation}
296 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
297 + Q_{{\bf b}\alpha\beta}
298 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
299 \end{equation}
300 we arrive at the multipole expression for the total interaction energy.
301 \begin{equation}
302 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
303 \end{equation}
304 This form has the benefit of separating out the energies of
305 interaction into contributions from the charge, dipole, and quadrupole
306 of $\bf a$ interacting with the same multipoles on $\bf b$.
307
308 \subsection{Damped Coulomb interactions}
309 In the standard multipole expansion, one typically uses the bare
310 Coulomb potential, with radial dependence $1/r$, as shown in
311 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
312 interaction, which results from replacing point charges with Gaussian
313 distributions of charge with width $\alpha$. In damped multipole
314 electrostatics, the kernel ($1/r$) of the expansion is replaced with
315 the function:
316 \begin{equation}
317 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319 \end{equation}
320 We develop equations below using the function $f(r)$ to represent
321 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322 bare or damped Coulomb kernels (or any other function) as long as
323 derivatives of these functions are known. Smith's convenient
324 functions $B_l(r)$ are summarized in Appendix A.
325
326 The main goal of this work is to smoothly cut off the interaction
327 energy as well as forces and torques as $r\rightarrow r_c$. To
328 describe how this goal may be met, we use two examples, charge-charge
329 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
330 explain the idea.
331
332 \subsection{Shifted-force methods}
333 In the shifted-force approximation, the interaction energy for two
334 charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
335 written:
336 \begin{equation}
337 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
338 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
339 \right) .
340 \end{equation}
341 Two shifting terms appear in this equations, one from the
342 neutralization procedure ($-1/r_c$), and one that causes the first
343 derivative to vanish at the cutoff radius.
344
345 Since one derivative of the interaction energy is needed for the
346 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
347 interaction energy, that is:
348 \begin{equation}
349 \frac{d\,}{dr}
350 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
351 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
352 \right) .
353 \end{equation}
354 which clearly vanishes as the $r$ approaches the cutoff radius. There
355 are a number of ways to generalize this derivative shift for
356 higher-order multipoles. Below, we present two methods, one based on
357 higher-order Taylor series for $r$ near $r_c$, and the other based on
358 linear shift of the kernel gradients at the cutoff itself.
359
360 \subsection{Taylor-shifted force (TSF) electrostatics}
361 In the Taylor-shifted force (TSF) method, the procedure that we follow
362 is based on a Taylor expansion containing the same number of
363 derivatives required for each force term to vanish at the cutoff. For
364 example, the quadrupole-quadrupole interaction energy requires four
365 derivatives of the kernel, and the force requires one additional
366 derivative. For quadrupole-quadrupole interactions, we therefore
367 require shifted energy expressions that include up to $(r-r_c)^5$ so
368 that all energies, forces, and torques are zero as $r \rightarrow
369 r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
370 from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
371 derivatives to be taken when deriving a given multipole energy. We
372 choose a function with guaranteed smooth derivatives -- a truncated
373 Taylor series of the function $f(r)$, e.g.,
374 %
375 \begin{equation}
376 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
377 \end{equation}
378 %
379 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
380 Thus, for $f(r)=1/r$, we find
381 %
382 \begin{equation}
383 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
384 \end{equation}
385 %
386 Continuing with the example of a charge $\bf a$ interacting with a
387 dipole $\bf b$, we write
388 %
389 \begin{equation}
390 U_{C_{\bf a}D_{\bf b}}(r)=
391 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
392 = C_{\bf a} D_{{\bf b}\alpha}
393 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
394 \end{equation}
395 %
396 The force that dipole $\bf b$ exerts on charge $\bf a$ is
397 %
398 \begin{equation}
399 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
400 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
401 \frac{r_\alpha r_\beta}{r^2}
402 \left( -\frac{1}{r} \frac {\partial} {\partial r}
403 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
404 \end{equation}
405 %
406 For undamped coulombic interactions, $f(r)=1/r$, we find
407 %
408 \begin{equation}
409 F_{C_{\bf a}D_{\bf b}\beta} =
410 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
411 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
412 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
413 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
414 \end{equation}
415 %
416 This expansion shows the expected $1/r^3$ dependence of the force.
417
418 In general, we can write
419 %
420 \begin{equation}
421 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
422 \label{generic}
423 \end{equation}
424 %
425 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
426 charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
427 $n=4$ for quadrupole-quadrupole. For example, in
428 quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
429 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
430 $\partial^4/\partial r_\alpha \partial r_\beta \partial
431 r_\gamma \partial r_\delta$, with implied summation combining the
432 space indices.
433
434 In the formulas presented in the tables below, the placeholder
435 function $f(r)$ is used to represent the electrostatic kernel (either
436 damped or undamped). The main functions that go into the force and
437 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
438 successive derivatives of the shifted electrostatic kernel, $f_n(r)$
439 of the same index $n$. The algebra required to evaluate energies,
440 forces and torques is somewhat tedious, so only the final forms are
441 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
442
443 \subsection{Gradient-shifted force (GSF) electrostatics}
444 The second, and conceptually simpler approach to force-shifting
445 maintains only the linear $(r-r_c)$ term in the truncated Taylor
446 expansion, and has a similar interaction energy for all multipole
447 orders:
448 \begin{equation}
449 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
450 \lvert _{r_c} .
451 \label{generic2}
452 \end{equation}
453 Here the gradient for force shifting is evaluated for an image
454 multipole projected onto the surface of the cutoff sphere (see fig
455 \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
456 appear. The primary difference between the TSF and GSF methods is the
457 stage at which the Taylor Series is applied; in the Taylor-shifted
458 approach, it is applied to the kernel itself. In the Gradient-shifted
459 approach, it is applied to individual radial interactions terms in the
460 multipole expansion. Energies from this method thus have the general
461 form:
462 \begin{equation}
463 U= \sum (\text{angular factor}) (\text{radial factor}).
464 \label{generic3}
465 \end{equation}
466
467 Functional forms for both methods (TSF and GSF) can both be summarized
468 using the form of Eq.~(\ref{generic3}). The basic forms for the
469 energy, force, and torque expressions are tabulated for both shifting
470 approaches below -- for each separate orientational contribution, only
471 the radial factors differ between the two methods.
472
473 \subsection{\label{sec:level2}Body and space axes}
474
475 [XXX Do we need this section in the main paper? or should it go in the
476 extra materials?]
477
478 So far, all energies and forces have been written in terms of fixed
479 space coordinates. Interaction energies are computed from the generic
480 formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which combine
481 orientational prefactors with radial functions. Because objects $\bf
482 a$ and $\bf b$ both translate and rotate during a molecular dynamics
483 (MD) simulation, it is desirable to contract all $r$-dependent terms
484 with dipole and quadrupole moments expressed in terms of their body
485 axes. To do so, we have followed the methodology of Allen and
486 Germano,\cite{Allen:2006fk} which was itself based on earlier work by
487 Price {\em et al.}\cite{Price:1984fk}
488
489 We denote body axes for objects $\bf a$ and $\bf b$ by unit vectors
490 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$
491 referring to a convenient set of inertial body axes. (N.B., these
492 body axes are generally not the same as those for which the quadrupole
493 moment is diagonal.) Then,
494 %
495 \begin{eqnarray}
496 \hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\
497 \hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} .
498 \end{eqnarray}
499 Rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
500 expressed using these unit vectors:
501 \begin{eqnarray}
502 \hat{\mathbf {a}} =
503 \begin{pmatrix}
504 \hat{a}_1 \\
505 \hat{a}_2 \\
506 \hat{a}_3
507 \end{pmatrix}
508 =
509 \begin{pmatrix}
510 a_{1x} \quad a_{1y} \quad a_{1z} \\
511 a_{2x} \quad a_{2y} \quad a_{2z} \\
512 a_{3x} \quad a_{3y} \quad a_{3z}
513 \end{pmatrix}\\
514 \hat{\mathbf {b}} =
515 \begin{pmatrix}
516 \hat{b}_1 \\
517 \hat{b}_2 \\
518 \hat{b}_3
519 \end{pmatrix}
520 =
521 \begin{pmatrix}
522 b_{1x} \quad b_{1y} \quad b_{1z} \\
523 b_{2x} \quad b_{2y} \quad b_{2z} \\
524 b_{3x} \quad b_{3y} \quad b_{3z}
525 \end{pmatrix} .
526 \end{eqnarray}
527 %
528 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
529 coordinates. All contractions of prefactors with derivatives of
530 functions can be written in terms of these matrices. It proves to be
531 equally convenient to just write any contraction in terms of unit
532 vectors $\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. In the torque
533 expressions, it is useful to have the angular-dependent terms
534 available in three different fashions, e.g. for the dipole-dipole
535 contraction:
536 %
537 \begin{equation}
538 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
539 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
540 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
541 \end{equation}
542 %
543 The first two forms are written using space coordinates. The first
544 form is standard in the chemistry literature, while the second is
545 expressed using implied summation notation. The third form shows
546 explicit sums over body indices and the dot products now indicate
547 contractions using space indices.
548
549
550 \subsection{The Self-Interaction \label{sec:selfTerm}}
551
552 In addition to cutoff-sphere neutralization, the Wolf
553 summation~\cite{Wolf99} and the damped shifted force (DSF)
554 extension~\cite{Fennell:2006zl} also included self-interactions that
555 are handled separately from the pairwise interactions between
556 sites. The self-term is normally calculated via a single loop over all
557 sites in the system, and is relatively cheap to evaluate. The
558 self-interaction has contributions from two sources.
559
560 First, the neutralization procedure within the cutoff radius requires
561 a contribution from a charge opposite in sign, but equal in magnitude,
562 to the central charge, which has been spread out over the surface of
563 the cutoff sphere. For a system of undamped charges, the total
564 self-term is
565 \begin{equation}
566 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
567 \label{eq:selfTerm}
568 \end{equation}
569
570 Second, charge damping with the complementary error function is a
571 partial analogy to the Ewald procedure which splits the interaction
572 into real and reciprocal space sums. The real space sum is retained
573 in the Wolf and DSF methods. The reciprocal space sum is first
574 minimized by folding the largest contribution (the self-interaction)
575 into the self-interaction from charge neutralization of the damped
576 potential. The remainder of the reciprocal space portion is then
577 discarded (as this contributes the largest computational cost and
578 complexity to the Ewald sum). For a system containing only damped
579 charges, the complete self-interaction can be written as
580 \begin{equation}
581 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
582 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
583 C_{\bf a}^{2}.
584 \label{eq:dampSelfTerm}
585 \end{equation}
586
587 The extension of DSF electrostatics to point multipoles requires
588 treatment of {\it both} the self-neutralization and reciprocal
589 contributions to the self-interaction for higher order multipoles. In
590 this section we give formulae for these interactions up to quadrupolar
591 order.
592
593 The self-neutralization term is computed by taking the {\it
594 non-shifted} kernel for each interaction, placing a multipole of
595 equal magnitude (but opposite in polarization) on the surface of the
596 cutoff sphere, and averaging over the surface of the cutoff sphere.
597 Because the self term is carried out as a single sum over sites, the
598 reciprocal-space portion is identical to half of the self-term
599 obtained by Smith and Aguado and Madden for the application of the
600 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
601 site which posesses a charge, dipole, and multipole, both types of
602 contribution are given in table \ref{tab:tableSelf}.
603
604 \begin{table*}
605 \caption{\label{tab:tableSelf} Self-interaction contributions for
606 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
607 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
608 \begin{ruledtabular}
609 \begin{tabular}{lccc}
610 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
611 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
612 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
613 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
614 Quadrupole & $2 \text{Tr}(\mathbf{Q}_{\bf a}^2) + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
615 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
616 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
617 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
618 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
619 \end{tabular}
620 \end{ruledtabular}
621 \end{table*}
622
623 For sites which simultaneously contain charges and quadrupoles, the
624 self-interaction includes a cross-interaction between these two
625 multipole orders. Symmetry prevents the charge-dipole and
626 dipole-quadrupole interactions from contributing to the
627 self-interaction. The functions that go into the self-neutralization
628 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
629 derivatives of the electrostatic kernel, $f(r)$ (either the undamped
630 $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
631 have been evaluated at the cutoff distance. For undamped
632 interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
633 damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
634 on. Appendix \ref{SmithFunc} contains recursion relations that allow
635 rapid evaluation of these derivatives.
636
637 \section{Interaction energies, forces, and torques}
638 The main result of this paper is a set of expressions for the
639 energies, forces and torques (up to quadrupole-quadrupole order) that
640 work for both the Taylor-shifted and Gradient-shifted approximations.
641 These expressions were derived using a set of generic radial
642 functions. Without using the shifting approximations mentioned above,
643 some of these radial functions would be identical, and the expressions
644 coalesce into the familiar forms for unmodified multipole-multipole
645 interactions. Table \ref{tab:tableenergy} maps between the generic
646 functions and the radial functions derived for both the Taylor-shifted
647 and Gradient-shifted methods. The energy equations are written in
648 terms of lab-frame representations of the dipoles, quadrupoles, and
649 the unit vector connecting the two objects,
650
651 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
652 %
653 %
654 % u ca cb
655 %
656 \begin{align}
657 U_{C_{\bf a}C_{\bf b}}(r)=&
658 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
659 \\
660 %
661 % u ca db
662 %
663 U_{C_{\bf a}D_{\bf b}}(r)=&
664 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
665 \label{uchdip}
666 \\
667 %
668 % u ca qb
669 %
670 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
671 v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
672 \hat{r} \right) v_{22}(r) \Bigr]
673 \label{uchquad}
674 \\
675 %
676 % u da cb
677 %
678 %U_{D_{\bf a}C_{\bf b}}(r)=&
679 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
680 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
681 %\\
682 %
683 % u da db
684 %
685 U_{D_{\bf a}D_{\bf b}}(r)=&
686 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
687 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
688 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
689 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
690 v_{22}(r) \Bigr]
691 \label{udipdip}
692 \\
693 %
694 % u da qb
695 %
696 \begin{split}
697 % 1
698 U_{D_{\bf a}Q_{\bf b}}(r) =&
699 -\Bigl[
700 \text{Tr}\mathbf{Q}_{\mathbf{b}}
701 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
702 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
703 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
704 % 2
705 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
706 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
707 \label{udipquad}
708 \end{split}
709 \\
710 %
711 % u qa cb
712 %
713 %U_{Q_{\bf a}C_{\bf b}}(r)=&
714 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
715 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
716 %\label{uquadch}
717 %\\
718 %
719 % u qa db
720 %
721 %\begin{split}
722 %1
723 %U_{Q_{\bf a}D_{\bf b}}(r)=&
724 %\frac{1}{4\pi \epsilon_0} \Bigl[
725 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
726 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
727 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
728 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
729 % 2
730 %&+\frac{1}{4\pi \epsilon_0}
731 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
732 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
733 %\label{uquaddip}
734 %\end{split}
735 %\\
736 %
737 % u qa qb
738 %
739 \begin{split}
740 %1
741 U_{Q_{\bf a}Q_{\bf b}}(r)=&
742 \Bigl[
743 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
744 +2 \text{Tr} \left(
745 \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r)
746 \\
747 % 2
748 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
749 \left( \hat{r} \cdot
750 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
751 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
752 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
753 \cdot \hat{r} \right) +4 (\hat{r} \cdot
754 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
755 \Bigr] v_{42}(r)
756 \\
757 % 4
758 &+
759 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
760 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
761 \label{uquadquad}
762 \end{split}
763 \end{align}
764 %
765 Note that the energies of multipoles on site $\mathbf{b}$ interacting
766 with those on site $\mathbf{a}$ can be obtained by swapping indices
767 along with the sign of the intersite vector, $\hat{r}$.
768
769 %
770 %
771 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
772 %
773
774 \begin{sidewaystable}
775 \caption{\label{tab:tableenergy}Radial functions used in the energy
776 and torque equations. The $f, g, h, s, t, \mathrm{and} u$
777 functions used in this table are defined in Appendices B and C.}
778 \begin{tabular}{|c|c|l|l|} \hline
779 Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
780 \\ \hline
781 %
782 %
783 %
784 %Ch-Ch&
785 $v_{01}(r)$ &
786 $\frac{1}{r}$ &
787 $f_0(r)$ &
788 $f(r)-f(r_c)-(r-r_c)g(r_c)$
789 \\
790 %
791 %
792 %
793 %Ch-Di&
794 $v_{11}(r)$ &
795 $-\frac{1}{r^2}$ &
796 $g_1(r)$ &
797 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
798 %
799 %
800 %
801 %Ch-Qu/Di-Di&
802 $v_{21}(r)$ &
803 $-\frac{1}{r^3} $ &
804 $\frac{g_2(r)}{r} $ &
805 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
806 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
807 $v_{22}(r)$ &
808 $\frac{3}{r^3} $ &
809 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
810 $\left(-\frac{g(r)}{r}+h(r) \right)
811 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
812 &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
813 \\
814 %
815 %
816 %
817 %Di-Qu &
818 $v_{31}(r)$ &
819 $\frac{3}{r^4} $ &
820 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
821 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
822 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
823 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
824 \\
825 %
826 $v_{32}(r)$ &
827 $-\frac{15}{r^4} $ &
828 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
829 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
830 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
831 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
832 \\
833 %
834 %
835 %
836 %Qu-Qu&
837 $v_{41}(r)$ &
838 $\frac{3}{r^5} $ &
839 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
840 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
841 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
842 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
843 \\
844 % 2
845 $v_{42}(r)$ &
846 $- \frac{15}{r^5} $ &
847 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
848 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
849 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
850 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
851 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
852 \\
853 % 3
854 $v_{43}(r)$ &
855 $ \frac{105}{r^5} $ &
856 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
857 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
858 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
859 &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
860 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
861 \end{tabular}
862 \end{sidewaystable}
863 %
864 %
865 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
866 %
867
868 \begin{sidewaystable}
869 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
870 \begin{tabular}{|c|c|l|l|} \hline
871 Function&Definition&Taylor-Shifted&Gradient-Shifted
872 \\ \hline
873 %
874 %
875 %
876 $w_a(r)$&
877 $\frac{d v_{01}}{dr}$&
878 $g_0(r)$&
879 $g(r)-g(r_c)$ \\
880 %
881 %
882 $w_b(r)$ &
883 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
884 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
885 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
886 %
887 $w_c(r)$ &
888 $\frac{v_{11}(r)}{r}$ &
889 $\frac{g_1(r)}{r} $ &
890 $\frac{v_{11}(r)}{r}$\\
891 %
892 %
893 $w_d(r)$&
894 $\frac{d v_{21}}{dr}$&
895 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
896 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
897 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
898 %
899 $w_e(r)$ &
900 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
901 $\frac{v_{22}(r)}{r}$ &
902 $\frac{v_{22}(r)}{r}$ \\
903 %
904 %
905 $w_f(r)$&
906 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
907 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
908 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
909 &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
910 \right)-\frac{2v_{22}(r)}{r}$\\
911 %
912 $w_g(r)$&
913 $\frac{v_{31}(r)}{r}$&
914 $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
915 $\frac{v_{31}(r)}{r}$\\
916 %
917 $w_h(r)$ &
918 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
919 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
920 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
921 &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
922 % 2
923 $w_i(r)$ &
924 $\frac{v_{32}(r)}{r}$ &
925 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
926 $\frac{v_{32}(r)}{r}$\\
927 %
928 $w_j(r)$ &
929 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
930 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
931 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
932 &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
933 -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
934 %
935 $w_k(r)$ &
936 $\frac{d v_{41}}{dr} $ &
937 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
938 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
939 -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
940 %
941 $w_l(r)$ &
942 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
943 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
944 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
945 &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
946 -\frac{2v_{42}(r)}{r}$\\
947 %
948 $w_m(r)$ &
949 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
950 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
951 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
952 &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
953 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
954 &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
955 %
956 $w_n(r)$ &
957 $\frac{v_{42}(r)}{r}$ &
958 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
959 $\frac{v_{42}(r)}{r}$\\
960 %
961 $w_o(r)$ &
962 $\frac{v_{43}(r)}{r}$&
963 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
964 $\frac{v_{43}(r)}{r}$ \\ \hline
965 %
966
967 \end{tabular}
968 \end{sidewaystable}
969 %
970 %
971 %
972
973 \subsection{Forces}
974 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
975 $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
976 a simple charge-charge interaction, these forces will point along the
977 $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
978 \mathbf{r}_a $. Thus
979 %
980 \begin{equation}
981 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
982 \quad \text{and} \quad F_{\bf b \alpha}
983 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
984 \end{equation}
985 %
986 Obtaining the force from the interaction energy expressions is the
987 same for higher-order multipole interactions -- the trick is to make
988 sure that all $r$-dependent derivatives are considered. This is
989 straighforward if the interaction energies are written explicitly in
990 terms of $\hat{r}$ and the body axes ($\hat{a}_m$,
991 $\hat{b}_n$) :
992 %
993 \begin{equation}
994 U(r,\{\hat{a}_m \cdot \hat{r} \},
995 \{\hat{b}_n\cdot \hat{r} \},
996 \{\hat{a}_m \cdot \hat{b}_n \}) .
997 \label{ugeneral}
998 \end{equation}
999 %
1000 Allen and Germano,\cite{Allen:2006fk} showed that if the energy is
1001 written in this form, the forces come out relatively cleanly,
1002 %
1003 \begin{equation}
1004 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
1005 = \frac{\partial U}{\partial r} \hat{r}
1006 + \sum_m \left[
1007 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1008 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1009 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1010 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1011 \right] \label{forceequation}.
1012 \end{equation}
1013 %
1014 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
1015 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
1016 In simplifying the algebra, we have also used:
1017 %
1018 \begin{align}
1019 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
1020 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
1021 \right) \\
1022 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
1023 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
1024 \right) .
1025 \end{align}
1026 %
1027 We list below the force equations written in terms of lab-frame
1028 coordinates. The radial functions used in the two methods are listed
1029 in Table \ref{tab:tableFORCE}
1030 %
1031 %SPACE COORDINATES FORCE EQUATIONS
1032 %
1033 % **************************************************************************
1034 % f ca cb
1035 %
1036 \begin{align}
1037 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1038 C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1039 %
1040 %
1041 %
1042 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1043 C_{\bf a} \Bigl[
1044 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1045 w_b(r) \hat{r}
1046 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1047 %
1048 %
1049 %
1050 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1051 C_{\bf a } \Bigr[
1052 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1053 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1054 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1055 \right) w_f(r) \hat{r} \Bigr] \\
1056 %
1057 %
1058 %
1059 % \begin{equation}
1060 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1061 % -C_{\bf{b}} \Bigl[
1062 % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1063 % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1064 % \end{equation}
1065 %
1066 %
1067 %
1068 \begin{split}
1069 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1070 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1071 + \left( \mathbf{D}_{\mathbf {a}}
1072 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1073 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1074 % 2
1075 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1076 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1077 \end{split}\\
1078 %
1079 %
1080 %
1081 \begin{split}
1082 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1083 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1084 +2 \mathbf{D}_{\mathbf{a}} \cdot
1085 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1086 - \Bigl[
1087 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1088 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1089 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1090 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1091 % 3
1092 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1093 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1094 w_i(r)
1095 % 4
1096 -
1097 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1098 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1099 %
1100 %
1101 % \begin{equation}
1102 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1103 % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1104 % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1105 % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1106 % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1107 % \end{equation}
1108 % %
1109 % \begin{equation}
1110 % \begin{split}
1111 % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1112 % &\frac{1}{4\pi \epsilon_0} \Bigl[
1113 % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1114 % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1115 % % 2
1116 % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1117 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1118 % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1119 % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1120 % % 3
1121 % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1122 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1123 % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1124 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1125 % % 4
1126 % +\frac{1}{4\pi \epsilon_0}
1127 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1128 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1129 % \end{split}
1130 % \end{equation}
1131 %
1132 %
1133 %
1134 \begin{split}
1135 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1136 \Bigl[
1137 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r}
1138 + 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\
1139 % 2
1140 &+ \Bigl[
1141 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1142 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1143 % 3
1144 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1145 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1146 % 4
1147 &+ \Bigl[
1148 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1149 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1150 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1151 % 5
1152 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1153 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1154 %
1155 &+ \Bigl[
1156 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1157 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1158 %6
1159 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1160 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1161 % 7
1162 &+
1163 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1164 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1165 \end{align}
1166 Note that the forces for higher multipoles on site $\mathbf{a}$
1167 interacting with those of lower order on site $\mathbf{b}$ can be
1168 obtained by swapping indices in the expressions above.
1169
1170 %
1171 % Torques SECTION -----------------------------------------------------------------------------------------
1172 %
1173 \subsection{Torques}
1174 When energies are written in the form of Eq.~({\ref{ugeneral}), then
1175 torques can be found in a relatively straightforward
1176 manner,\cite{Allen:2006fk}
1177 %
1178 \begin{eqnarray}
1179 \mathbf{\tau}_{\bf a} =
1180 \sum_m
1181 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
1182 ( \hat{r} \times \hat{a}_m )
1183 -\sum_{mn}
1184 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1185 (\hat{a}_m \times \hat{b}_n) \\
1186 %
1187 \mathbf{\tau}_{\bf b} =
1188 \sum_m
1189 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
1190 ( \hat{r} \times \hat{b}_m)
1191 +\sum_{mn}
1192 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
1193 (\hat{a}_m \times \hat{b}_n) .
1194 \end{eqnarray}
1195 %
1196 %
1197 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1198 methods are given in space-frame coordinates:
1199 %
1200 %
1201 \begin{align}
1202 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1203 C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1204 %
1205 %
1206 %
1207 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1208 2C_{\bf a}
1209 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1210 %
1211 %
1212 %
1213 % \begin{equation}
1214 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1215 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1216 % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1217 % \end{equation}
1218 %
1219 %
1220 %
1221 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1222 \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1223 % 2
1224 -
1225 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1226 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1227 %
1228 %
1229 %
1230 % \begin{equation}
1231 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1232 % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1233 % % 2
1234 % +\frac{1}{4\pi \epsilon_0}
1235 % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1236 % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1237 % \end{equation}
1238 %
1239 %
1240 %
1241 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1242 \Bigl[
1243 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1244 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1245 +2 \mathbf{D}_{\mathbf{a}} \times
1246 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1247 \Bigr] v_{31}(r)
1248 % 3
1249 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1250 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1251 %
1252 %
1253 %
1254 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1255 \Bigl[
1256 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1257 \hat{r}
1258 -2 \mathbf{D}_{\mathbf{a}} \times
1259 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1260 \Bigr] v_{31}(r)
1261 % 2
1262 +
1263 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1264 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1265 %
1266 %
1267 %
1268 % \begin{equation}
1269 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1270 % \frac{1}{4\pi \epsilon_0} \Bigl[
1271 % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1272 % +2 \mathbf{D}_{\mathbf{b}} \times
1273 % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1274 % \Bigr] v_{31}(r)
1275 % % 3
1276 % - \frac{2}{4\pi \epsilon_0}
1277 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1278 % (\hat{r} \cdot \mathbf
1279 % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1280 % \end{equation}
1281 %
1282 %
1283 %
1284 % \begin{equation}
1285 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1286 % \frac{1}{4\pi \epsilon_0} \Bigl[
1287 % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1288 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1289 % +2 \mathbf{D}_{\mathbf{b}} \times
1290 % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1291 % % 2
1292 % +\frac{1}{4\pi \epsilon_0}
1293 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1294 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1295 % \end{equation}
1296 %
1297 %
1298 %
1299 \begin{split}
1300 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1301 -4
1302 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1303 v_{41}(r) \\
1304 % 2
1305 &+
1306 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1307 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1308 +4 \hat{r} \times
1309 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1310 % 3
1311 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1312 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1313 % 4
1314 &+ 2
1315 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1316 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1317 %
1318 %
1319 %
1320 \begin{split}
1321 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1322 &4
1323 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1324 % 2
1325 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1326 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1327 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1328 \mathbf{Q}_{{\mathbf b}} ) \times
1329 \hat{r}
1330 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1331 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1332 \Bigr] v_{42}(r) \\
1333 % 4
1334 &+2
1335 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1336 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1337 \end{align}
1338 %
1339 Here, we have defined the matrix cross product in an identical form
1340 as in Ref. \onlinecite{Smith98}:
1341 \begin{equation}
1342 \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1343 \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1344 -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1345 \right]
1346 \end{equation}
1347 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1348 permuations of the matrix indices.
1349
1350 All of the radial functions required for torques are identical with
1351 the radial functions previously computed for the interaction energies.
1352 These are tabulated for both shifted force methods in table
1353 \ref{tab:tableenergy}. The torques for higher multipoles on site
1354 $\mathbf{a}$ interacting with those of lower order on site
1355 $\mathbf{b}$ can be obtained by swapping indices in the expressions
1356 above.
1357
1358 \section{Comparison to known multipolar energies}
1359
1360 To understand how these new real-space multipole methods behave in
1361 computer simulations, it is vital to test against established methods
1362 for computing electrostatic interactions in periodic systems, and to
1363 evaluate the size and sources of any errors that arise from the
1364 real-space cutoffs. In this paper we test Taylor-shifted and
1365 Gradient-shifted electrostatics against analytical methods for
1366 computing the energies of ordered multipolar arrays. In the following
1367 paper, we test the new methods against the multipolar Ewald sum for
1368 computing the energies, forces and torques for a wide range of typical
1369 condensed-phase (disordered) systems.
1370
1371 Because long-range electrostatic effects can be significant in
1372 crystalline materials, ordered multipolar arrays present one of the
1373 biggest challenges for real-space cutoff methods. The dipolar
1374 analogues to the Madelung constants were first worked out by Sauer,
1375 who computed the energies of ordered dipole arrays of zero
1376 magnetization and obtained a number of these constants.\cite{Sauer}
1377 This theory was developed more completely by Luttinger and
1378 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1379 and other periodic structures. We have repeated the Luttinger \&
1380 Tisza series summations to much higher order and obtained the energy
1381 constants (converged to one part in $10^9$) in table \ref{tab:LT}.
1382
1383 \begin{table*}[h]
1384 \centering{
1385 \caption{Luttinger \& Tisza arrays and their associated
1386 energy constants. Type "A" arrays have nearest neighbor strings of
1387 antiparallel dipoles. Type "B" arrays have nearest neighbor
1388 strings of antiparallel dipoles if the dipoles are contained in a
1389 plane perpendicular to the dipole direction that passes through
1390 the dipole.}
1391 }
1392 \label{tab:LT}
1393 \begin{ruledtabular}
1394 \begin{tabular}{cccc}
1395 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1396 A & SC & 001 & -2.676788684 \\
1397 A & BCC & 001 & 0 \\
1398 A & BCC & 111 & -1.770078733 \\
1399 A & FCC & 001 & 2.166932835 \\
1400 A & FCC & 011 & -1.083466417 \\
1401 B & SC & 001 & -2.676788684 \\
1402 B & BCC & 001 & -1.338394342 \\
1403 B & BCC & 111 & -1.770078733 \\
1404 B & FCC & 001 & -1.083466417 \\
1405 B & FCC & 011 & -1.807573634 \\
1406 -- & BCC & minimum & -1.985920929 \\
1407 \end{tabular}
1408 \end{ruledtabular}
1409 \end{table*}
1410
1411 In addition to the A and B arrays, there is an additional minimum
1412 energy structure for the BCC lattice that was found by Luttinger \&
1413 Tisza. The total electrostatic energy for any of the arrays is given
1414 by:
1415 \begin{equation}
1416 E = C N^2 \mu^2
1417 \end{equation}
1418 where $C$ is the energy constant given in table \ref{tab:LT}, $N$ is
1419 the number of dipoles per unit volume, and $\mu$ is the strength of
1420 the dipole.
1421
1422 To test the new electrostatic methods, we have constructed very large,
1423 $N$ = 8,000~(sc), 16,000~(bcc), or 32,000~(fcc) arrays of dipoles in
1424 the orientations described in table \ref{tab:LT}. For the purposes of
1425 testing the energy expressions and the self-neutralization schemes,
1426 the primary quantity of interest is the analytic energy constant for
1427 the perfect arrays. Convergence to these constants are shown as a
1428 function of both the cutoff radius, $r_c$, and the damping parameter,
1429 $\alpha$ in Figs. \ref{fig:energyConstVsCutoff} and XXX. We have
1430 simultaneously tested a hard cutoff (where the kernel is simply
1431 truncated at the cutoff radius), as well as a shifted potential (SP)
1432 form which includes a potential-shifting and self-interaction term,
1433 but does not shift the forces and torques smoothly at the cutoff
1434 radius.
1435
1436 \begin{figure}
1437 \includegraphics[width=4.5in]{energyConstVsCutoff}
1438 \caption{Convergence to the analytic energy constants as a function of
1439 cutoff radius (normalized by the lattice constant) for the different
1440 real-space methods. The two crystals shown here are the ``B'' array
1441 for bcc crystals with the dipoles along the 001 direction (upper),
1442 as well as the minimum energy bcc lattice (lower). The analytic
1443 energy constants are shown as a grey dashed line. The left panel
1444 shows results for the undamped kernel ($1/r$), while the damped
1445 error function kernel, $B_0(r)$ was used in the right panel. }
1446 \label{fig:energyConstVsCutoff}
1447 \end{figure}
1448
1449 The Hard cutoff exhibits oscillations around the analytic energy
1450 constants, and converges to incorrect energies when the complementary
1451 error function damping kernel is used. The shifted potential (SP) and
1452 gradient-shifted force (GSF) approximations converge to the correct
1453 energy smoothly by $r_c / 6 a$ even for the undamped case. This
1454 indicates that the correction provided by the self term is required
1455 for obtaining accurate energies. The Taylor-shifted force (TSF)
1456 approximation appears to perturb the potential too much inside the
1457 cutoff region to provide accurate measures of the energy constants.
1458
1459
1460 {\it Quadrupolar} analogues to the Madelung constants were first
1461 worked out by Nagai and Nakamura who computed the energies of selected
1462 quadrupole arrays based on extensions to the Luttinger and Tisza
1463 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1464 energy constants for the lowest energy configurations for linear
1465 quadrupoles shown in table \ref{tab:NNQ}
1466
1467 \begin{table*}
1468 \centering{
1469 \caption{Nagai and Nakamura Quadurpolar arrays}}
1470 \label{tab:NNQ}
1471 \begin{ruledtabular}
1472 \begin{tabular}{ccc}
1473 Lattice & Quadrupole Direction & Energy constants \\ \hline
1474 SC & 111 & -8.3 \\
1475 BCC & 011 & -21.7 \\
1476 FCC & 111 & -80.5
1477 \end{tabular}
1478 \end{ruledtabular}
1479 \end{table*}
1480
1481 In analogy to the dipolar arrays, the total electrostatic energy for
1482 the quadrupolar arrays is:
1483 \begin{equation}
1484 E = C \frac{3}{4} N^2 Q^2
1485 \end{equation}
1486 where $Q$ is the quadrupole moment.
1487
1488 \section{Conclusion}
1489 We have presented two efficient real-space methods for computing the
1490 interactions between point multipoles. These methods have the benefit
1491 of smoothly truncating the energies, forces, and torques at the cutoff
1492 radius, making them attractive for both molecular dynamics (MD) and
1493 Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1494 (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1495 correct lattice energies for ordered dipolar and quadrupolar arrays,
1496 while the Taylor-Shifted Force (TSF) is too severe an approximation to
1497 provide accurate convergence to lattice energies.
1498
1499 In most cases, GSF can obtain nearly quantitative agreement with the
1500 lattice energy constants with reasonably small cutoff radii. The only
1501 exception we have observed is for crystals which exhibit a bulk
1502 macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1503 In this particular case, the multipole neutralization scheme can
1504 interfere with the correct computation of the energies. We note that
1505 the energies for these arrangements are typically much larger than for
1506 crystals with net-zero moments, so this is not expected to be an issue
1507 in most simulations.
1508
1509 In large systems, these new methods can be made to scale approximately
1510 linearly with system size, and detailed comparisons with the Ewald sum
1511 for a wide range of chemical environments follows in the second paper.
1512
1513 \begin{acknowledgments}
1514 JDG acknowledges helpful discussions with Christopher
1515 Fennell. Support for this project was provided by the National
1516 Science Foundation under grant CHE-0848243. Computational time was
1517 provided by the Center for Research Computing (CRC) at the
1518 University of Notre Dame.
1519 \end{acknowledgments}
1520
1521 \newpage
1522 \appendix
1523
1524 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1525 \label{SmithFunc}
1526 The following summarizes Smith's $B_l(r)$ functions and includes
1527 formulas given in his appendix.\cite{Smith98} The first function
1528 $B_0(r)$ is defined by
1529 %
1530 \begin{equation}
1531 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1532 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1533 \end{equation}
1534 %
1535 The first derivative of this function is
1536 %
1537 \begin{equation}
1538 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1539 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1540 \end{equation}
1541 %
1542 which can be used to define a function $B_1(r)$:
1543 %
1544 \begin{equation}
1545 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1546 \end{equation}
1547 %
1548 In general, the recurrence relation,
1549 \begin{equation}
1550 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1551 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1552 \text{e}^{-{\alpha}^2r^2}
1553 \right] ,
1554 \end{equation}
1555 is very useful for building up higher derivatives. Using these
1556 formulas, we find:
1557 %
1558 \begin{align}
1559 \frac{dB_0}{dr}=&-rB_1(r) \\
1560 \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1561 \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1562 \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1563 \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1564 \end{align}
1565 %
1566 As noted by Smith, it is possible to approximate the $B_l(r)$
1567 functions,
1568 %
1569 \begin{equation}
1570 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1571 +\text{O}(r) .
1572 \end{equation}
1573 \newpage
1574 \section{The $r$-dependent factors for TSF electrostatics}
1575
1576 Using the shifted damped functions $f_n(r)$ defined by:
1577 %
1578 \begin{equation}
1579 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1580 \end{equation}
1581 %
1582 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1583 this Appendix, we provide formulas for successive derivatives of this
1584 function. (If there is no damping, then $B_0(r)$ is replaced by
1585 $1/r$.) First, we find:
1586 %
1587 \begin{equation}
1588 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1589 \end{equation}
1590 %
1591 This formula clearly brings in derivatives of Smith's $B_0(r)$
1592 function, and we define higher-order derivatives as follows:
1593 %
1594 \begin{align}
1595 g_n(r)=& \frac{d f_n}{d r} =
1596 B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1597 h_n(r)=& \frac{d^2f_n}{d r^2} =
1598 B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1599 s_n(r)=& \frac{d^3f_n}{d r^3} =
1600 B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1601 t_n(r)=& \frac{d^4f_n}{d r^4} =
1602 B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1603 u_n(r)=& \frac{d^5f_n}{d r^5} =
1604 B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1605 \end{align}
1606 %
1607 We note that the last function needed (for quadrupole-quadrupole interactions) is
1608 %
1609 \begin{equation}
1610 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1611 \end{equation}
1612
1613 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1614 stored on a grid for values of $r$ from $0$ to $r_c$. The functions
1615 needed are listed schematically below:
1616 %
1617 \begin{eqnarray}
1618 f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1619 g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1620 h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1621 s_2 \quad s_3 \quad &s_4 \nonumber \\
1622 t_3 \quad &t_4 \nonumber \\
1623 &u_4 \nonumber .
1624 \end{eqnarray}
1625
1626 Using these functions, we find
1627 %
1628 \begin{align}
1629 \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1630 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1631 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1632 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} =&
1633 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1634 \delta_{ \beta \gamma} r_\alpha \right)
1635 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right)
1636 + r_\alpha r_\beta r_\gamma
1637 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1638 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} =&
1639 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1640 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1641 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1642 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1643 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1644 + \text{5 permutations}
1645 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1646 \right) \nonumber \\
1647 &+ r_\alpha r_\beta r_\gamma r_\delta
1648 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1649 + \frac{t_n}{r^4} \right)\\
1650 \frac{\partial^5 f_n}
1651 {\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} =&
1652 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1653 + \text{14 permutations} \right)
1654 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1655 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1656 + \text{9 permutations}
1657 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1658 \right) \nonumber \\
1659 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1660 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1661 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1662 \end{align}
1663 %
1664 %
1665 %
1666 \newpage
1667 \section{The $r$-dependent factors for GSF electrostatics}
1668
1669 In Gradient-shifted force electrostatics, the kernel is not expanded,
1670 rather the individual terms in the multipole interaction energies.
1671 For damped charges , this still brings into the algebra multiple
1672 derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1673 we generalize the notation of the previous appendix. For $f(r)=1/r$
1674 (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge)
1675 %
1676 \begin{align}
1677 g(r)=& \frac{df}{d r}\\
1678 h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1679 s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1680 t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1681 u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1682 \end{align}
1683 %
1684 For undamped charges, $f(r)=1/r$, Table I lists these derivatives
1685 under the column ``Bare Coulomb.'' Equations \ref{eq:b9} to
1686 \ref{eq:b13} are still correct for GSF electrostatics if the subscript
1687 $n$ is eliminated.
1688
1689 \newpage
1690
1691 \bibliography{multipole}
1692
1693 \end{document}
1694 %
1695 % ****** End of file multipole.tex ******