ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3989
Committed: Thu Jan 2 21:17:44 2014 UTC (10 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 65240 byte(s)
Log Message:
Updates

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38
39 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40 %\linenumbers\relax % Commence numbering lines
41
42 \begin{document}
43
44 %\preprint{AIP/123-QED}
45
46 \title{Real space alternatives to the Ewald
47 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48
49 \author{Madan Lamichhane}
50 \affiliation{Department of Physics, University
51 of Notre Dame, Notre Dame, IN 46556}
52
53 \author{J. Daniel Gezelter}
54 \email{gezelter@nd.edu.}
55 \affiliation{Department of Chemistry and Biochemistry, University
56 of Notre Dame, Notre Dame, IN 46556}
57
58 \author{Kathie E. Newman}
59 \affiliation{Department of Physics, University
60 of Notre Dame, Notre Dame, IN 46556}
61
62
63 \date{\today}% It is always \today, today,
64 % but any date may be explicitly specified
65
66 \begin{abstract}
67 We have extended the original damped-shifted force (DSF)
68 electrostatic kernel and have been able to derive two new
69 electrostatic potentials for higher-order multipoles that are based
70 on truncated Taylor expansions around the cutoff radius. For
71 multipole-multipole interactions, we find that each of the distinct
72 orientational contributions has a separate radial function to ensure
73 that the overall forces and torques vanish at the cutoff radius. In
74 this paper, we present energy, force, and torque expressions for the
75 new models, and compare these real-space interaction models to exact
76 results for ordered arrays of multipoles.
77 \end{abstract}
78
79 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80 % Classification Scheme.
81 %\keywords{Suggested keywords}%Use showkeys class option if keyword
82 %display desired
83 \maketitle
84
85 \section{Introduction}
86 There has been increasing interest in real-space methods for
87 calculating electrostatic interactions in computer simulations of
88 condensed molecular
89 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90 The simplest of these techniques was developed by Wolf {\it et al.}
91 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 For systems of point charges, Fennell and Gezelter showed that a
93 simple damped shifted force (DSF) modification to Wolf's method could
94 give nearly quantitative agreement with smooth particle mesh Ewald
95 (SPME)\cite{Essmann95} configurational energy differences as well as
96 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97
98 The computational efficiency and the accuracy of the DSF method are
99 surprisingly good, particularly for systems with uniform charge
100 density. Additionally, dielectric constants obtained using DSF and
101 similar methods where the force vanishes at $r_{c}$ are
102 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103 related methods have now been widely investigated,\cite{Hansen:2012uq}
104 and DSF is now used routinely in a diverse set of chemical
105 environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
106 DSF electrostatics provides a compromise between the computational
107 speed of real-space cutoffs and the accuracy of fully-periodic Ewald
108 treatments.
109
110 One common feature of many coarse-graining approaches, which treat
111 entire molecular subsystems as a single rigid body, is simplification
112 of the electrostatic interactions between these bodies so that fewer
113 site-site interactions are required to compute configurational
114 energies. To do this, the interactions between coarse-grained sites
115 are typically taken to be point
116 multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
117
118 Water, in particular, has been modeled recently with point multipoles
119 up to octupolar
120 order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
121 maximum efficiency, these models require the use of an approximate
122 multipole expansion as the exact multipole expansion can become quite
123 expensive (particularly when handled via the Ewald
124 sum).\cite{Ichiye:2006qy} Point multipoles and multipole
125 polarizability have also been utilized in the AMOEBA water model and
126 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
127
128 Higher-order multipoles present a peculiar issue for molecular
129 dynamics. Multipolar interactions are inherently short-ranged, and
130 should not need the relatively expensive Ewald treatment. However,
131 real-space cutoff methods are normally applied in an orientation-blind
132 fashion so multipoles which leave and then re-enter a cutoff sphere in
133 a different orientation can cause energy discontinuities.
134
135 This paper outlines an extension of the original DSF electrostatic
136 kernel to point multipoles. We describe two distinct real-space
137 interaction models for higher-order multipoles based on two truncated
138 Taylor expansions that are carried out at the cutoff radius. We are
139 calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
140 electrostatics. Because of differences in the initial assumptions,
141 the two methods yield related, but somewhat different expressions for
142 energies, forces, and torques.
143
144 In this paper we outline the new methodology and give functional forms
145 for the energies, forces, and torques up to quadrupole-quadrupole
146 order. We also compare the new methods to analytic energy constants
147 for periodic arrays of point multipoles. In the following paper, we
148 provide numerical comparisons to Ewald-based electrostatics in common
149 simulation enviornments.
150
151 \section{Methodology}
152 An efficient real-space electrostatic method involves the use of a
153 pair-wise functional form,
154 \begin{equation}
155 V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
156 \sum_i V_i^\mathrm{self}
157 \end{equation}
158 that is short-ranged and easily truncated at a cutoff radius,
159 \begin{equation}
160 V_\mathrm{pair}(r_{ij},\Omega_i, \Omega_j) = \left\{
161 \begin{array}{ll}
162 V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
163 0 & \quad r > r_c ,
164 \end{array}
165 \right.
166 \end{equation}
167 along with an easily computed self-interaction term ($\sum_i
168 V_i^\mathrm{self}$) which has linear-scaling with the number of
169 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
170 coordinates of the two sites. The computational efficiency, energy
171 conservation, and even some physical properties of a simulation can
172 depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173 the cutoff radius. The goal of any approximation method should be to
174 mimic the real behavior of the electrostatic interactions as closely
175 as possible without sacrificing the near-linear scaling of a cutoff
176 method.
177
178 \subsection{Self-neutralization, damping, and force-shifting}
179 The DSF and Wolf methods operate by neutralizing the total charge
180 contained within the cutoff sphere surrounding each particle. This is
181 accomplished by shifting the potential functions to generate image
182 charges on the surface of the cutoff sphere for each pair interaction
183 computed within $r_c$. Damping using a complementary error
184 function is applied to the potential to accelerate convergence. The
185 potential for the DSF method, where $\alpha$ is the adjustable damping
186 parameter, is given by
187 \begin{equation*}
188 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
189 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
190 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
191 + \frac{2\alpha}{\pi^{1/2}}
192 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
193 \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
194 \label{eq:DSFPot}
195 \end{equation*}
196 Note that in this potential and in all electrostatic quantities that
197 follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
198 clarity.
199
200 To insure net charge neutrality within each cutoff sphere, an
201 additional ``self'' term is added to the potential. This term is
202 constant (as long as the charges and cutoff radius do not change), and
203 exists outside the normal pair-loop for molecular simulations. It can
204 be thought of as a contribution from a charge opposite in sign, but
205 equal in magnitude, to the central charge, which has been spread out
206 over the surface of the cutoff sphere. A portion of the self term is
207 identical to the self term in the Ewald summation, and comes from the
208 utilization of the complimentary error function for electrostatic
209 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
210 extend the Wolf self-neutralization method to zero out the dipole and
211 higher order multipoles contained within the cutoff
212 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
213
214 In this work, we extend the idea of self-neutralization for the point
215 multipoles by insuring net charge-neutrality and net-zero moments
216 within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
217 central dipolar site $\mathbf{D}_i$ is interacting with point dipole
218 $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
219 self-neutralization scheme for point multipoles involves projecting
220 opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
221 sphere. There are also significant modifications made to make the
222 forces and torques go smoothly to zero at the cutoff distance.
223
224 \begin{figure}
225 \includegraphics[width=3in]{SM}
226 \caption{Reversed multipoles are projected onto the surface of the
227 cutoff sphere. The forces, torques, and potential are then smoothly
228 shifted to zero as the sites leave the cutoff region.}
229 \label{fig:shiftedMultipoles}
230 \end{figure}
231
232 As in the point-charge approach, there is an additional contribution
233 from self-neutralization of site $i$. The self term for multipoles is
234 described in section \ref{sec:selfTerm}.
235
236 \subsection{The multipole expansion}
237
238 Consider two discrete rigid collections of point charges, denoted as
239 $\bf a$ and $\bf b$. In the following, we assume that the two objects
240 interact via electrostatics only and describe those interactions in
241 terms of a standard multipole expansion. Putting the origin of the
242 coordinate system at the center of mass of $\bf a$, we use vectors
243 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
244 a$. Then the electrostatic potential of object $\bf a$ at
245 $\mathbf{r}$ is given by
246 \begin{equation}
247 V_a(\mathbf r) =
248 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
249 \end{equation}
250 The Taylor expansion in $r$ can be written using an implied summation
251 notation. Here Greek indices are used to indicate space coordinates
252 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
253 labelling specific charges in $\bf a$ and $\bf b$ respectively. The
254 Taylor expansion,
255 \begin{equation}
256 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
257 \left( 1
258 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
259 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
260 \right)
261 \frac{1}{r} ,
262 \end{equation}
263 can then be used to express the electrostatic potential on $\bf a$ in
264 terms of multipole operators,
265 \begin{equation}
266 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
267 \end{equation}
268 where
269 \begin{equation}
270 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
271 + Q_{{\bf a}\alpha\beta}
272 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
273 \end{equation}
274 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
275 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
276 a}\alpha\beta}$, respectively. These are the primitive multipoles
277 which can be expressed as a distribution of charges,
278 \begin{align}
279 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
280 D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
281 Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
282 \end{align}
283 Note that the definition of the primitive quadrupole here differs from
284 the standard traceless form, and contains an additional Taylor-series
285 based factor of $1/2$.
286
287 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
288 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
289 \begin{equation}
290 U_{\bf{ab}}(r)
291 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
292 \end{equation}
293 This can also be expanded as a Taylor series in $r$. Using a notation
294 similar to before to define the multipoles on object {\bf b},
295 \begin{equation}
296 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
297 + Q_{{\bf b}\alpha\beta}
298 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
299 \end{equation}
300 we arrive at the multipole expression for the total interaction energy.
301 \begin{equation}
302 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
303 \end{equation}
304 This form has the benefit of separating out the energies of
305 interaction into contributions from the charge, dipole, and quadrupole
306 of $\bf a$ interacting with the same multipoles on $\bf b$.
307
308 \subsection{Damped Coulomb interactions}
309 In the standard multipole expansion, one typically uses the bare
310 Coulomb potential, with radial dependence $1/r$, as shown in
311 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
312 interaction, which results from replacing point charges with Gaussian
313 distributions of charge with width $\alpha$. In damped multipole
314 electrostatics, the kernel ($1/r$) of the expansion is replaced with
315 the function:
316 \begin{equation}
317 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319 \end{equation}
320 We develop equations below using the function $f(r)$ to represent
321 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322 bare or damped Coulomb kernels (or any other function) as long as
323 derivatives of these functions are known. Smith's convenient
324 functions $B_l(r)$ are summarized in Appendix A.
325
326 The main goal of this work is to smoothly cut off the interaction
327 energy as well as forces and torques as $r\rightarrow r_c$. To
328 describe how this goal may be met, we use two examples, charge-charge
329 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
330 explain the idea.
331
332 \subsection{Shifted-force methods}
333 In the shifted-force approximation, the interaction energy for two
334 charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
335 written:
336 \begin{equation}
337 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
338 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
339 \right) .
340 \end{equation}
341 Two shifting terms appear in this equations, one from the
342 neutralization procedure ($-1/r_c$), and one that causes the first
343 derivative to vanish at the cutoff radius.
344
345 Since one derivative of the interaction energy is needed for the
346 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
347 interaction energy, that is:
348 \begin{equation}
349 \frac{d\,}{dr}
350 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
351 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
352 \right) .
353 \end{equation}
354 which clearly vanishes as the $r$ approaches the cutoff radius. There
355 are a number of ways to generalize this derivative shift for
356 higher-order multipoles. Below, we present two methods, one based on
357 higher-order Taylor series for $r$ near $r_c$, and the other based on
358 linear shift of the kernel gradients at the cutoff itself.
359
360 \subsection{Taylor-shifted force (TSF) electrostatics}
361 In the Taylor-shifted force (TSF) method, the procedure that we follow
362 is based on a Taylor expansion containing the same number of
363 derivatives required for each force term to vanish at the cutoff. For
364 example, the quadrupole-quadrupole interaction energy requires four
365 derivatives of the kernel, and the force requires one additional
366 derivative. For quadrupole-quadrupole interactions, we therefore
367 require shifted energy expressions that include up to $(r-r_c)^5$ so
368 that all energies, forces, and torques are zero as $r \rightarrow
369 r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
370 from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
371 derivatives to be taken when deriving a given multipole energy. We
372 choose a function with guaranteed smooth derivatives -- a truncated
373 Taylor series of the function $f(r)$, e.g.,
374 %
375 \begin{equation}
376 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
377 \end{equation}
378 %
379 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
380 Thus, for $f(r)=1/r$, we find
381 %
382 \begin{equation}
383 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
384 \end{equation}
385 %
386 Continuing with the example of a charge $\bf a$ interacting with a
387 dipole $\bf b$, we write
388 %
389 \begin{equation}
390 U_{C_{\bf a}D_{\bf b}}(r)=
391 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
392 = C_{\bf a} D_{{\bf b}\alpha}
393 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
394 \end{equation}
395 %
396 The force that dipole $\bf b$ exerts on charge $\bf a$ is
397 %
398 \begin{equation}
399 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
400 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
401 \frac{r_\alpha r_\beta}{r^2}
402 \left( -\frac{1}{r} \frac {\partial} {\partial r}
403 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
404 \end{equation}
405 %
406 For undamped coulombic interactions, $f(r)=1/r$, we find
407 %
408 \begin{equation}
409 F_{C_{\bf a}D_{\bf b}\beta} =
410 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
411 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
412 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
413 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
414 \end{equation}
415 %
416 This expansion shows the expected $1/r^3$ dependence of the force.
417
418 In general, we can write
419 %
420 \begin{equation}
421 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
422 \label{generic}
423 \end{equation}
424 %
425 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
426 charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
427 $n=4$ for quadrupole-quadrupole. For example, in
428 quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
429 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
430 $\partial^4/\partial r_\alpha \partial r_\beta \partial
431 r_\gamma \partial r_\delta$, with implied summation combining the
432 space indices.
433
434 In the formulas presented in the tables below, the placeholder
435 function $f(r)$ is used to represent the electrostatic kernel (either
436 damped or undamped). The main functions that go into the force and
437 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
438 successive derivatives of the shifted electrostatic kernel, $f_n(r)$
439 of the same index $n$. The algebra required to evaluate energies,
440 forces and torques is somewhat tedious, so only the final forms are
441 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
442
443 \subsection{Gradient-shifted force (GSF) electrostatics}
444 The second, and conceptually simpler approach to force-shifting
445 maintains only the linear $(r-r_c)$ term in the truncated Taylor
446 expansion, and has a similar interaction energy for all multipole
447 orders:
448 \begin{equation}
449 U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big
450 \lvert _{r_c} .
451 \label{generic2}
452 \end{equation}
453 Here the gradient for force shifting is evaluated for an image
454 multipole projected onto the surface of the cutoff sphere (see fig
455 \ref{fig:shiftedMultipoles}). No higher order terms $(r-r_c)^n$
456 appear. The primary difference between the TSF and GSF methods is the
457 stage at which the Taylor Series is applied; in the Taylor-shifted
458 approach, it is applied to the kernel itself. In the Gradient-shifted
459 approach, it is applied to individual radial interactions terms in the
460 multipole expansion. Energies from this method thus have the general
461 form:
462 \begin{equation}
463 U= \sum (\text{angular factor}) (\text{radial factor}).
464 \label{generic3}
465 \end{equation}
466
467 Functional forms for both methods (TSF and GSF) can both be summarized
468 using the form of Eq.~(\ref{generic3}). The basic forms for the
469 energy, force, and torque expressions are tabulated for both shifting
470 approaches below -- for each separate orientational contribution, only
471 the radial factors differ between the two methods.
472
473 \subsection{\label{sec:level2}Body and space axes}
474 Although objects $\bf a$ and $\bf b$ rotate during a molecular
475 dynamics (MD) simulation, their multipole tensors remain fixed in
476 body-frame coordinates. While deriving force and torque expressions,
477 it is therefore convenient to write the energies, forces, and torques
478 in intermediate forms involving the vectors of the rotation matrices.
479 We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
480 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
481 In a typical simulation , the initial axes are obtained by
482 diagonalizing the moment of inertia tensors for the objects. (N.B.,
483 the body axes are generally {\it not} the same as those for which the
484 quadrupole moment is diagonal.) The rotation matrices are then
485 propagated during the simulation.
486
487 The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
488 expressed using these unit vectors:
489 \begin{eqnarray}
490 \hat{\mathbf {a}} =
491 \begin{pmatrix}
492 \hat{a}_1 \\
493 \hat{a}_2 \\
494 \hat{a}_3
495 \end{pmatrix}, \qquad
496 \hat{\mathbf {b}} =
497 \begin{pmatrix}
498 \hat{b}_1 \\
499 \hat{b}_2 \\
500 \hat{b}_3
501 \end{pmatrix}
502 \end{eqnarray}
503 %
504 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
505 coordinates.
506
507 Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
508 {\em et al.},\cite{Price:1984fk} showed that if the interaction
509 energies are written explicitly in terms of $\hat{r}$ and the body
510 axes ($\hat{a}_m$, $\hat{b}_n$) :
511 %
512 \begin{equation}
513 U(r, \{\hat{a}_m \cdot \hat{r} \},
514 \{\hat{b}_n\cdot \hat{r} \},
515 \{\hat{a}_m \cdot \hat{b}_n \}) .
516 \label{ugeneral}
517 \end{equation}
518 %
519 the forces come out relatively cleanly,
520 %
521 \begin{equation}
522 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
523 = \frac{\partial U}{\partial r} \hat{r}
524 + \sum_m \left[
525 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
526 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
527 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
528 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
529 \right] \label{forceequation}.
530 \end{equation}
531
532 The torques can also be found in a relatively similar
533 manner,
534 %
535 \begin{eqnarray}
536 \mathbf{\tau}_{\bf a} =
537 \sum_m
538 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
539 ( \hat{r} \times \hat{a}_m )
540 -\sum_{mn}
541 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
542 (\hat{a}_m \times \hat{b}_n) \\
543 %
544 \mathbf{\tau}_{\bf b} =
545 \sum_m
546 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
547 ( \hat{r} \times \hat{b}_m)
548 +\sum_{mn}
549 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
550 (\hat{a}_m \times \hat{b}_n) .
551 \end{eqnarray}
552
553 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
554 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
555 We also made use of the identities,
556 %
557 \begin{align}
558 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
559 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
560 \right) \\
561 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
562 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
563 \right) .
564 \end{align}
565
566 Many of the multipole contractions required can be written in one of
567 three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
568 and $\hat{b}_n$. In the torque expressions, it is useful to have the
569 angular-dependent terms available in all three fashions, e.g. for the
570 dipole-dipole contraction:
571 %
572 \begin{equation}
573 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
574 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
575 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
576 \end{equation}
577 %
578 The first two forms are written using space coordinates. The first
579 form is standard in the chemistry literature, while the second is
580 expressed using implied summation notation. The third form shows
581 explicit sums over body indices and the dot products now indicate
582 contractions using space indices.
583
584 In computing our force and torque expressions, we carried out most of
585 the work in body coordinates, and have transformed the expressions
586 back to space-frame coordinates, which are reported below. Interested
587 readers may consult the supplemental information for this paper for
588 the intermediate body-frame expressions.
589
590 \subsection{The Self-Interaction \label{sec:selfTerm}}
591
592 In addition to cutoff-sphere neutralization, the Wolf
593 summation~\cite{Wolf99} and the damped shifted force (DSF)
594 extension~\cite{Fennell:2006zl} also included self-interactions that
595 are handled separately from the pairwise interactions between
596 sites. The self-term is normally calculated via a single loop over all
597 sites in the system, and is relatively cheap to evaluate. The
598 self-interaction has contributions from two sources.
599
600 First, the neutralization procedure within the cutoff radius requires
601 a contribution from a charge opposite in sign, but equal in magnitude,
602 to the central charge, which has been spread out over the surface of
603 the cutoff sphere. For a system of undamped charges, the total
604 self-term is
605 \begin{equation}
606 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
607 \label{eq:selfTerm}
608 \end{equation}
609
610 Second, charge damping with the complementary error function is a
611 partial analogy to the Ewald procedure which splits the interaction
612 into real and reciprocal space sums. The real space sum is retained
613 in the Wolf and DSF methods. The reciprocal space sum is first
614 minimized by folding the largest contribution (the self-interaction)
615 into the self-interaction from charge neutralization of the damped
616 potential. The remainder of the reciprocal space portion is then
617 discarded (as this contributes the largest computational cost and
618 complexity to the Ewald sum). For a system containing only damped
619 charges, the complete self-interaction can be written as
620 \begin{equation}
621 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
622 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
623 C_{\bf a}^{2}.
624 \label{eq:dampSelfTerm}
625 \end{equation}
626
627 The extension of DSF electrostatics to point multipoles requires
628 treatment of {\it both} the self-neutralization and reciprocal
629 contributions to the self-interaction for higher order multipoles. In
630 this section we give formulae for these interactions up to quadrupolar
631 order.
632
633 The self-neutralization term is computed by taking the {\it
634 non-shifted} kernel for each interaction, placing a multipole of
635 equal magnitude (but opposite in polarization) on the surface of the
636 cutoff sphere, and averaging over the surface of the cutoff sphere.
637 Because the self term is carried out as a single sum over sites, the
638 reciprocal-space portion is identical to half of the self-term
639 obtained by Smith and Aguado and Madden for the application of the
640 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
641 site which posesses a charge, dipole, and multipole, both types of
642 contribution are given in table \ref{tab:tableSelf}.
643
644 \begin{table*}
645 \caption{\label{tab:tableSelf} Self-interaction contributions for
646 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
647 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
648 \begin{ruledtabular}
649 \begin{tabular}{lccc}
650 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
651 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
652 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
653 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
654 Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
655 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
656 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
657 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
658 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
659 \end{tabular}
660 \end{ruledtabular}
661 \end{table*}
662
663 For sites which simultaneously contain charges and quadrupoles, the
664 self-interaction includes a cross-interaction between these two
665 multipole orders. Symmetry prevents the charge-dipole and
666 dipole-quadrupole interactions from contributing to the
667 self-interaction. The functions that go into the self-neutralization
668 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
669 derivatives of the electrostatic kernel, $f(r)$ (either the undamped
670 $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
671 have been evaluated at the cutoff distance. For undamped
672 interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
673 damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
674 on. Appendix \ref{SmithFunc} contains recursion relations that allow
675 rapid evaluation of these derivatives.
676
677 \section{Interaction energies, forces, and torques}
678 The main result of this paper is a set of expressions for the
679 energies, forces and torques (up to quadrupole-quadrupole order) that
680 work for both the Taylor-shifted and Gradient-shifted approximations.
681 These expressions were derived using a set of generic radial
682 functions. Without using the shifting approximations mentioned above,
683 some of these radial functions would be identical, and the expressions
684 coalesce into the familiar forms for unmodified multipole-multipole
685 interactions. Table \ref{tab:tableenergy} maps between the generic
686 functions and the radial functions derived for both the Taylor-shifted
687 and Gradient-shifted methods. The energy equations are written in
688 terms of lab-frame representations of the dipoles, quadrupoles, and
689 the unit vector connecting the two objects,
690
691 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
692 %
693 %
694 % u ca cb
695 %
696 \begin{align}
697 U_{C_{\bf a}C_{\bf b}}(r)=&
698 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
699 \\
700 %
701 % u ca db
702 %
703 U_{C_{\bf a}D_{\bf b}}(r)=&
704 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
705 \label{uchdip}
706 \\
707 %
708 % u ca qb
709 %
710 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
711 v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
712 \hat{r} \right) v_{22}(r) \Bigr]
713 \label{uchquad}
714 \\
715 %
716 % u da cb
717 %
718 %U_{D_{\bf a}C_{\bf b}}(r)=&
719 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
720 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
721 %\\
722 %
723 % u da db
724 %
725 U_{D_{\bf a}D_{\bf b}}(r)=&
726 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
727 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
728 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
729 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
730 v_{22}(r) \Bigr]
731 \label{udipdip}
732 \\
733 %
734 % u da qb
735 %
736 \begin{split}
737 % 1
738 U_{D_{\bf a}Q_{\bf b}}(r) =&
739 -\Bigl[
740 \text{Tr}\mathbf{Q}_{\mathbf{b}}
741 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
742 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
743 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
744 % 2
745 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
746 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
747 \label{udipquad}
748 \end{split}
749 \\
750 %
751 % u qa cb
752 %
753 %U_{Q_{\bf a}C_{\bf b}}(r)=&
754 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
755 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
756 %\label{uquadch}
757 %\\
758 %
759 % u qa db
760 %
761 %\begin{split}
762 %1
763 %U_{Q_{\bf a}D_{\bf b}}(r)=&
764 %\frac{1}{4\pi \epsilon_0} \Bigl[
765 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
766 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
767 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
768 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
769 % 2
770 %&+\frac{1}{4\pi \epsilon_0}
771 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
772 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
773 %\label{uquaddip}
774 %\end{split}
775 %\\
776 %
777 % u qa qb
778 %
779 \begin{split}
780 %1
781 U_{Q_{\bf a}Q_{\bf b}}(r)=&
782 \Bigl[
783 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
784 +2
785 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
786 \\
787 % 2
788 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
789 \left( \hat{r} \cdot
790 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
791 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
792 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
793 \cdot \hat{r} \right) +4 (\hat{r} \cdot
794 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
795 \Bigr] v_{42}(r)
796 \\
797 % 4
798 &+
799 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
800 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
801 \label{uquadquad}
802 \end{split}
803 \end{align}
804 %
805 Note that the energies of multipoles on site $\mathbf{b}$ interacting
806 with those on site $\mathbf{a}$ can be obtained by swapping indices
807 along with the sign of the intersite vector, $\hat{r}$.
808
809 %
810 %
811 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
812 %
813
814 \begin{sidewaystable}
815 \caption{\label{tab:tableenergy}Radial functions used in the energy
816 and torque equations. The $f, g, h, s, t, \mathrm{and} u$
817 functions used in this table are defined in Appendices B and C.}
818 \begin{tabular}{|c|c|l|l|} \hline
819 Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
820 \\ \hline
821 %
822 %
823 %
824 %Ch-Ch&
825 $v_{01}(r)$ &
826 $\frac{1}{r}$ &
827 $f_0(r)$ &
828 $f(r)-f(r_c)-(r-r_c)g(r_c)$
829 \\
830 %
831 %
832 %
833 %Ch-Di&
834 $v_{11}(r)$ &
835 $-\frac{1}{r^2}$ &
836 $g_1(r)$ &
837 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
838 %
839 %
840 %
841 %Ch-Qu/Di-Di&
842 $v_{21}(r)$ &
843 $-\frac{1}{r^3} $ &
844 $\frac{g_2(r)}{r} $ &
845 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
846 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
847 $v_{22}(r)$ &
848 $\frac{3}{r^3} $ &
849 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
850 $\left(-\frac{g(r)}{r}+h(r) \right)
851 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
852 &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
853 \\
854 %
855 %
856 %
857 %Di-Qu &
858 $v_{31}(r)$ &
859 $\frac{3}{r^4} $ &
860 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
861 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
862 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
863 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
864 \\
865 %
866 $v_{32}(r)$ &
867 $-\frac{15}{r^4} $ &
868 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
869 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
870 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
871 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
872 \\
873 %
874 %
875 %
876 %Qu-Qu&
877 $v_{41}(r)$ &
878 $\frac{3}{r^5} $ &
879 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
880 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
881 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
882 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
883 \\
884 % 2
885 $v_{42}(r)$ &
886 $- \frac{15}{r^5} $ &
887 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
888 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
889 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
890 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
891 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
892 \\
893 % 3
894 $v_{43}(r)$ &
895 $ \frac{105}{r^5} $ &
896 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
897 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
898 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
899 &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
900 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
901 \end{tabular}
902 \end{sidewaystable}
903 %
904 %
905 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
906 %
907
908 \begin{sidewaystable}
909 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
910 \begin{tabular}{|c|c|l|l|} \hline
911 Function&Definition&Taylor-Shifted&Gradient-Shifted
912 \\ \hline
913 %
914 %
915 %
916 $w_a(r)$&
917 $\frac{d v_{01}}{dr}$&
918 $g_0(r)$&
919 $g(r)-g(r_c)$ \\
920 %
921 %
922 $w_b(r)$ &
923 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
924 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
925 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
926 %
927 $w_c(r)$ &
928 $\frac{v_{11}(r)}{r}$ &
929 $\frac{g_1(r)}{r} $ &
930 $\frac{v_{11}(r)}{r}$\\
931 %
932 %
933 $w_d(r)$&
934 $\frac{d v_{21}}{dr}$&
935 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
936 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
937 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
938 %
939 $w_e(r)$ &
940 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
941 $\frac{v_{22}(r)}{r}$ &
942 $\frac{v_{22}(r)}{r}$ \\
943 %
944 %
945 $w_f(r)$&
946 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
947 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
948 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
949 &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
950 \right)-\frac{2v_{22}(r)}{r}$\\
951 %
952 $w_g(r)$&
953 $\frac{v_{31}(r)}{r}$&
954 $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
955 $\frac{v_{31}(r)}{r}$\\
956 %
957 $w_h(r)$ &
958 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
959 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
960 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
961 &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
962 % 2
963 $w_i(r)$ &
964 $\frac{v_{32}(r)}{r}$ &
965 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
966 $\frac{v_{32}(r)}{r}$\\
967 %
968 $w_j(r)$ &
969 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
970 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
971 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
972 &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
973 -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
974 %
975 $w_k(r)$ &
976 $\frac{d v_{41}}{dr} $ &
977 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
978 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
979 -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
980 %
981 $w_l(r)$ &
982 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
983 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
984 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
985 &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
986 -\frac{2v_{42}(r)}{r}$\\
987 %
988 $w_m(r)$ &
989 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
990 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
991 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
992 &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
993 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
994 &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
995 %
996 $w_n(r)$ &
997 $\frac{v_{42}(r)}{r}$ &
998 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
999 $\frac{v_{42}(r)}{r}$\\
1000 %
1001 $w_o(r)$ &
1002 $\frac{v_{43}(r)}{r}$&
1003 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1004 $\frac{v_{43}(r)}{r}$ \\ \hline
1005 %
1006
1007 \end{tabular}
1008 \end{sidewaystable}
1009 %
1010 %
1011 %
1012
1013 \subsection{Forces}
1014 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1015 $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1016 a simple charge-charge interaction, these forces will point along the
1017 $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1018 \mathbf{r}_a $. Thus
1019 %
1020 \begin{equation}
1021 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1022 \quad \text{and} \quad F_{\bf b \alpha}
1023 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
1024 \end{equation}
1025 %
1026 We list below the force equations written in terms of lab-frame
1027 coordinates. The radial functions used in the two methods are listed
1028 in Table \ref{tab:tableFORCE}
1029 %
1030 %SPACE COORDINATES FORCE EQUATIONS
1031 %
1032 % **************************************************************************
1033 % f ca cb
1034 %
1035 \begin{align}
1036 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1037 C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1038 %
1039 %
1040 %
1041 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1042 C_{\bf a} \Bigl[
1043 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1044 w_b(r) \hat{r}
1045 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1046 %
1047 %
1048 %
1049 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1050 C_{\bf a } \Bigr[
1051 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1052 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1053 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1054 \right) w_f(r) \hat{r} \Bigr] \\
1055 %
1056 %
1057 %
1058 % \begin{equation}
1059 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1060 % -C_{\bf{b}} \Bigl[
1061 % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1062 % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1063 % \end{equation}
1064 %
1065 %
1066 %
1067 \begin{split}
1068 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1069 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1070 + \left( \mathbf{D}_{\mathbf {a}}
1071 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1072 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1073 % 2
1074 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1075 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1076 \end{split}\\
1077 %
1078 %
1079 %
1080 \begin{split}
1081 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1082 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1083 +2 \mathbf{D}_{\mathbf{a}} \cdot
1084 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1085 - \Bigl[
1086 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1087 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1088 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1089 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1090 % 3
1091 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1092 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1093 w_i(r)
1094 % 4
1095 -
1096 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1097 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1098 %
1099 %
1100 % \begin{equation}
1101 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1102 % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1103 % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1104 % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1105 % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1106 % \end{equation}
1107 % %
1108 % \begin{equation}
1109 % \begin{split}
1110 % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1111 % &\frac{1}{4\pi \epsilon_0} \Bigl[
1112 % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1113 % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1114 % % 2
1115 % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1116 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1117 % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1118 % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1119 % % 3
1120 % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1121 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1122 % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1123 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1124 % % 4
1125 % +\frac{1}{4\pi \epsilon_0}
1126 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1127 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1128 % \end{split}
1129 % \end{equation}
1130 %
1131 %
1132 %
1133 \begin{split}
1134 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1135 \Bigl[
1136 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1137 + 2 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1138 % 2
1139 &+ \Bigl[
1140 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1141 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1142 % 3
1143 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1144 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1145 % 4
1146 &+ \Bigl[
1147 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1148 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1149 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1150 % 5
1151 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1152 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1153 %
1154 &+ \Bigl[
1155 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1156 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1157 %6
1158 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1159 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1160 % 7
1161 &+
1162 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1163 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1164 \end{align}
1165 Note that the forces for higher multipoles on site $\mathbf{a}$
1166 interacting with those of lower order on site $\mathbf{b}$ can be
1167 obtained by swapping indices in the expressions above.
1168
1169 %
1170 % Torques SECTION -----------------------------------------------------------------------------------------
1171 %
1172 \subsection{Torques}
1173
1174 %
1175 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1176 methods are given in space-frame coordinates:
1177 %
1178 %
1179 \begin{align}
1180 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1181 C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1182 %
1183 %
1184 %
1185 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1186 2C_{\bf a}
1187 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1188 %
1189 %
1190 %
1191 % \begin{equation}
1192 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1193 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1194 % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1195 % \end{equation}
1196 %
1197 %
1198 %
1199 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1200 \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1201 % 2
1202 -
1203 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1204 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1205 %
1206 %
1207 %
1208 % \begin{equation}
1209 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1210 % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1211 % % 2
1212 % +\frac{1}{4\pi \epsilon_0}
1213 % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1214 % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1215 % \end{equation}
1216 %
1217 %
1218 %
1219 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1220 \Bigl[
1221 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1222 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1223 +2 \mathbf{D}_{\mathbf{a}} \times
1224 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1225 \Bigr] v_{31}(r)
1226 % 3
1227 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1228 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1229 %
1230 %
1231 %
1232 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1233 \Bigl[
1234 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1235 \hat{r}
1236 -2 \mathbf{D}_{\mathbf{a}} \times
1237 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1238 \Bigr] v_{31}(r)
1239 % 2
1240 +
1241 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1242 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1243 %
1244 %
1245 %
1246 % \begin{equation}
1247 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1248 % \frac{1}{4\pi \epsilon_0} \Bigl[
1249 % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1250 % +2 \mathbf{D}_{\mathbf{b}} \times
1251 % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1252 % \Bigr] v_{31}(r)
1253 % % 3
1254 % - \frac{2}{4\pi \epsilon_0}
1255 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1256 % (\hat{r} \cdot \mathbf
1257 % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1258 % \end{equation}
1259 %
1260 %
1261 %
1262 % \begin{equation}
1263 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1264 % \frac{1}{4\pi \epsilon_0} \Bigl[
1265 % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1266 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1267 % +2 \mathbf{D}_{\mathbf{b}} \times
1268 % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1269 % % 2
1270 % +\frac{1}{4\pi \epsilon_0}
1271 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1272 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1273 % \end{equation}
1274 %
1275 %
1276 %
1277 \begin{split}
1278 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1279 -4
1280 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1281 v_{41}(r) \\
1282 % 2
1283 &+
1284 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1285 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1286 +4 \hat{r} \times
1287 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1288 % 3
1289 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1290 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1291 % 4
1292 &+ 2
1293 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1294 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1295 %
1296 %
1297 %
1298 \begin{split}
1299 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1300 &4
1301 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1302 % 2
1303 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1304 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1305 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1306 \mathbf{Q}_{{\mathbf b}} ) \times
1307 \hat{r}
1308 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1309 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1310 \Bigr] v_{42}(r) \\
1311 % 4
1312 &+2
1313 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1314 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1315 \end{align}
1316 %
1317 Here, we have defined the matrix cross product in an identical form
1318 as in Ref. \onlinecite{Smith98}:
1319 \begin{equation}
1320 \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1321 \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1322 -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1323 \right]
1324 \end{equation}
1325 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1326 permuations of the matrix indices.
1327
1328 All of the radial functions required for torques are identical with
1329 the radial functions previously computed for the interaction energies.
1330 These are tabulated for both shifted force methods in table
1331 \ref{tab:tableenergy}. The torques for higher multipoles on site
1332 $\mathbf{a}$ interacting with those of lower order on site
1333 $\mathbf{b}$ can be obtained by swapping indices in the expressions
1334 above.
1335
1336 \section{Comparison to known multipolar energies}
1337
1338 To understand how these new real-space multipole methods behave in
1339 computer simulations, it is vital to test against established methods
1340 for computing electrostatic interactions in periodic systems, and to
1341 evaluate the size and sources of any errors that arise from the
1342 real-space cutoffs. In this paper we test Taylor-shifted and
1343 Gradient-shifted electrostatics against analytical methods for
1344 computing the energies of ordered multipolar arrays. In the following
1345 paper, we test the new methods against the multipolar Ewald sum for
1346 computing the energies, forces and torques for a wide range of typical
1347 condensed-phase (disordered) systems.
1348
1349 Because long-range electrostatic effects can be significant in
1350 crystalline materials, ordered multipolar arrays present one of the
1351 biggest challenges for real-space cutoff methods. The dipolar
1352 analogues to the Madelung constants were first worked out by Sauer,
1353 who computed the energies of ordered dipole arrays of zero
1354 magnetization and obtained a number of these constants.\cite{Sauer}
1355 This theory was developed more completely by Luttinger and
1356 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1357 and other periodic structures. We have repeated the Luttinger \&
1358 Tisza series summations to much higher order and obtained the energy
1359 constants (converged to one part in $10^9$) in table \ref{tab:LT}.
1360
1361 \begin{table*}[h]
1362 \centering{
1363 \caption{Luttinger \& Tisza arrays and their associated
1364 energy constants. Type ``A'' arrays have nearest neighbor strings of
1365 antiparallel dipoles. Type ``B'' arrays have nearest neighbor
1366 strings of antiparallel dipoles if the dipoles are contained in a
1367 plane perpendicular to the dipole direction that passes through
1368 the dipole.}
1369 }
1370 \label{tab:LT}
1371 \begin{ruledtabular}
1372 \begin{tabular}{cccc}
1373 Array Type & Lattice & Dipole Direction & Energy constants \\ \hline
1374 A & SC & 001 & -2.676788684 \\
1375 A & BCC & 001 & 0 \\
1376 A & BCC & 111 & -1.770078733 \\
1377 A & FCC & 001 & 2.166932835 \\
1378 A & FCC & 011 & -1.083466417 \\
1379 B & SC & 001 & -2.676788684 \\
1380 B & BCC & 001 & -1.338394342 \\
1381 B & BCC & 111 & -1.770078733 \\
1382 B & FCC & 001 & -1.083466417 \\
1383 B & FCC & 011 & -1.807573634 \\
1384 -- & BCC & minimum & -1.985920929 \\
1385 \end{tabular}
1386 \end{ruledtabular}
1387 \end{table*}
1388
1389 In addition to the A and B arrays, there is an additional minimum
1390 energy structure for the BCC lattice that was found by Luttinger \&
1391 Tisza. The total electrostatic energy for any of the arrays is given
1392 by:
1393 \begin{equation}
1394 E = C N^2 \mu^2
1395 \end{equation}
1396 where $C$ is the energy constant given in table \ref{tab:LT}, $N$ is
1397 the number of dipoles per unit volume, and $\mu$ is the strength of
1398 the dipole.
1399
1400 To test the new electrostatic methods, we have constructed very large,
1401 $N$ = 8,000~(sc), 16,000~(bcc), or 32,000~(fcc) arrays of dipoles in
1402 the orientations described in table \ref{tab:LT}. For the purposes of
1403 testing the energy expressions and the self-neutralization schemes,
1404 the primary quantity of interest is the analytic energy constant for
1405 the perfect arrays. Convergence to these constants are shown as a
1406 function of both the cutoff radius, $r_c$, and the damping parameter,
1407 $\alpha$ in Figs. \ref{fig:energyConstVsCutoff} and XXX. We have
1408 simultaneously tested a hard cutoff (where the kernel is simply
1409 truncated at the cutoff radius), as well as a shifted potential (SP)
1410 form which includes a potential-shifting and self-interaction term,
1411 but does not shift the forces and torques smoothly at the cutoff
1412 radius. The SP method is essentially an extension of the original
1413 Wolf method for multipoles.
1414
1415 \begin{figure}[!htbp]
1416 \includegraphics[width=4.5in]{energyConstVsCutoff}
1417 \caption{Convergence to the analytic energy constants as a function of
1418 cutoff radius (normalized by the lattice constant) for the different
1419 real-space methods. The two crystals shown here are the ``B'' array
1420 for bcc crystals with the dipoles along the 001 direction (upper),
1421 as well as the minimum energy bcc lattice (lower). The analytic
1422 energy constants are shown as a grey dashed line. The left panel
1423 shows results for the undamped kernel ($1/r$), while the damped
1424 error function kernel, $B_0(r)$ was used in the right panel. }
1425 \label{fig:energyConstVsCutoff}
1426 \end{figure}
1427
1428 The Hard cutoff exhibits oscillations around the analytic energy
1429 constants, and converges to incorrect energies when the complementary
1430 error function damping kernel is used. The shifted potential (SP) and
1431 gradient-shifted force (GSF) approximations converge to the correct
1432 energy smoothly by $r_c / 6 a$ even for the undamped case. This
1433 indicates that the correction provided by the self term is required
1434 for obtaining accurate energies. The Taylor-shifted force (TSF)
1435 approximation appears to perturb the potential too much inside the
1436 cutoff region to provide accurate measures of the energy constants.
1437
1438
1439 {\it Quadrupolar} analogues to the Madelung constants were first
1440 worked out by Nagai and Nakamura who computed the energies of selected
1441 quadrupole arrays based on extensions to the Luttinger and Tisza
1442 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1443 energy constants for the lowest energy configurations for linear
1444 quadrupoles shown in table \ref{tab:NNQ}
1445
1446 \begin{table*}
1447 \centering{
1448 \caption{Nagai and Nakamura Quadurpolar arrays}}
1449 \label{tab:NNQ}
1450 \begin{ruledtabular}
1451 \begin{tabular}{ccc}
1452 Lattice & Quadrupole Direction & Energy constants \\ \hline
1453 SC & 111 & -8.3 \\
1454 BCC & 011 & -21.7 \\
1455 FCC & 111 & -80.5
1456 \end{tabular}
1457 \end{ruledtabular}
1458 \end{table*}
1459
1460 In analogy to the dipolar arrays, the total electrostatic energy for
1461 the quadrupolar arrays is:
1462 \begin{equation}
1463 E = C \frac{3}{4} N^2 Q^2
1464 \end{equation}
1465 where $Q$ is the quadrupole moment.
1466
1467 \section{Conclusion}
1468 We have presented two efficient real-space methods for computing the
1469 interactions between point multipoles. These methods have the benefit
1470 of smoothly truncating the energies, forces, and torques at the cutoff
1471 radius, making them attractive for both molecular dynamics (MD) and
1472 Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1473 (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1474 correct lattice energies for ordered dipolar and quadrupolar arrays,
1475 while the Taylor-Shifted Force (TSF) is too severe an approximation to
1476 provide accurate convergence to lattice energies.
1477
1478 In most cases, GSF can obtain nearly quantitative agreement with the
1479 lattice energy constants with reasonably small cutoff radii. The only
1480 exception we have observed is for crystals which exhibit a bulk
1481 macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1482 In this particular case, the multipole neutralization scheme can
1483 interfere with the correct computation of the energies. We note that
1484 the energies for these arrangements are typically much larger than for
1485 crystals with net-zero moments, so this is not expected to be an issue
1486 in most simulations.
1487
1488 In large systems, these new methods can be made to scale approximately
1489 linearly with system size, and detailed comparisons with the Ewald sum
1490 for a wide range of chemical environments follows in the second paper.
1491
1492 \begin{acknowledgments}
1493 JDG acknowledges helpful discussions with Christopher
1494 Fennell. Support for this project was provided by the National
1495 Science Foundation under grant CHE-0848243. Computational time was
1496 provided by the Center for Research Computing (CRC) at the
1497 University of Notre Dame.
1498 \end{acknowledgments}
1499
1500 \newpage
1501 \appendix
1502
1503 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1504 \label{SmithFunc}
1505 The following summarizes Smith's $B_l(r)$ functions and includes
1506 formulas given in his appendix.\cite{Smith98} The first function
1507 $B_0(r)$ is defined by
1508 %
1509 \begin{equation}
1510 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1511 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1512 \end{equation}
1513 %
1514 The first derivative of this function is
1515 %
1516 \begin{equation}
1517 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1518 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1519 \end{equation}
1520 %
1521 which can be used to define a function $B_1(r)$:
1522 %
1523 \begin{equation}
1524 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1525 \end{equation}
1526 %
1527 In general, the recurrence relation,
1528 \begin{equation}
1529 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1530 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1531 \text{e}^{-{\alpha}^2r^2}
1532 \right] ,
1533 \end{equation}
1534 is very useful for building up higher derivatives. Using these
1535 formulas, we find:
1536 %
1537 \begin{align}
1538 \frac{dB_0}{dr}=&-rB_1(r) \\
1539 \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1540 \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1541 \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1542 \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1543 \end{align}
1544 %
1545 As noted by Smith, it is possible to approximate the $B_l(r)$
1546 functions,
1547 %
1548 \begin{equation}
1549 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1550 +\text{O}(r) .
1551 \end{equation}
1552 \newpage
1553 \section{The $r$-dependent factors for TSF electrostatics}
1554
1555 Using the shifted damped functions $f_n(r)$ defined by:
1556 %
1557 \begin{equation}
1558 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1559 \end{equation}
1560 %
1561 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1562 this Appendix, we provide formulas for successive derivatives of this
1563 function. (If there is no damping, then $B_0(r)$ is replaced by
1564 $1/r$.) First, we find:
1565 %
1566 \begin{equation}
1567 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1568 \end{equation}
1569 %
1570 This formula clearly brings in derivatives of Smith's $B_0(r)$
1571 function, and we define higher-order derivatives as follows:
1572 %
1573 \begin{align}
1574 g_n(r)=& \frac{d f_n}{d r} =
1575 B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1576 h_n(r)=& \frac{d^2f_n}{d r^2} =
1577 B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1578 s_n(r)=& \frac{d^3f_n}{d r^3} =
1579 B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1580 t_n(r)=& \frac{d^4f_n}{d r^4} =
1581 B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1582 u_n(r)=& \frac{d^5f_n}{d r^5} =
1583 B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1584 \end{align}
1585 %
1586 We note that the last function needed (for quadrupole-quadrupole interactions) is
1587 %
1588 \begin{equation}
1589 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1590 \end{equation}
1591 % The functions
1592 % needed are listed schematically below:
1593 % %
1594 % \begin{eqnarray}
1595 % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1596 % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1597 % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1598 % s_2 \quad s_3 \quad &s_4 \nonumber \\
1599 % t_3 \quad &t_4 \nonumber \\
1600 % &u_4 \nonumber .
1601 % \end{eqnarray}
1602 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1603 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1604 functions, we find
1605 %
1606 \begin{align}
1607 \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1608 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1609 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1610 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1611 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1612 \delta_{ \beta \gamma} r_\alpha \right)
1613 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1614 & + r_\alpha r_\beta r_\gamma
1615 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1616 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1617 r_\gamma \partial r_\delta} =&
1618 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1619 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1620 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1621 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1622 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1623 + \text{5 permutations}
1624 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1625 \right) \nonumber \\
1626 &+ r_\alpha r_\beta r_\gamma r_\delta
1627 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1628 + \frac{t_n}{r^4} \right)\\
1629 \frac{\partial^5 f_n}
1630 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1631 r_\delta \partial r_\epsilon} =&
1632 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1633 + \text{14 permutations} \right)
1634 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1635 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1636 + \text{9 permutations}
1637 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1638 \right) \nonumber \\
1639 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1640 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1641 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1642 \end{align}
1643 %
1644 %
1645 %
1646 \newpage
1647 \section{The $r$-dependent factors for GSF electrostatics}
1648
1649 In Gradient-shifted force electrostatics, the kernel is not expanded,
1650 rather the individual terms in the multipole interaction energies.
1651 For damped charges , this still brings into the algebra multiple
1652 derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1653 we generalize the notation of the previous appendix. For either
1654 $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1655 %
1656 \begin{align}
1657 g(r)=& \frac{df}{d r}\\
1658 h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1659 s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1660 t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1661 u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1662 \end{align}
1663 %
1664 For undamped charges Table I lists these derivatives under the column
1665 ``Bare Coulomb.'' Equations \ref{eq:b9} to \ref{eq:b13} are still
1666 correct for GSF electrostatics if the subscript $n$ is eliminated.
1667
1668 \newpage
1669
1670 \bibliography{multipole}
1671
1672 \end{document}
1673 %
1674 % ****** End of file multipole.tex ******