ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 3990
Committed: Fri Jan 3 18:28:01 2014 UTC (10 years, 5 months ago) by gezelter
Content type: application/x-tex
File size: 64794 byte(s)
Log Message:
most recent edits

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38
39 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40 %\linenumbers\relax % Commence numbering lines
41
42 \begin{document}
43
44 %\preprint{AIP/123-QED}
45
46 \title{Real space alternatives to the Ewald
47 Sum. I. Taylor-shifted and Gradient-shifted electrostatics for multipoles}
48
49 \author{Madan Lamichhane}
50 \affiliation{Department of Physics, University
51 of Notre Dame, Notre Dame, IN 46556}
52
53 \author{J. Daniel Gezelter}
54 \email{gezelter@nd.edu.}
55 \affiliation{Department of Chemistry and Biochemistry, University
56 of Notre Dame, Notre Dame, IN 46556}
57
58 \author{Kathie E. Newman}
59 \affiliation{Department of Physics, University
60 of Notre Dame, Notre Dame, IN 46556}
61
62
63 \date{\today}% It is always \today, today,
64 % but any date may be explicitly specified
65
66 \begin{abstract}
67 We have extended the original damped-shifted force (DSF)
68 electrostatic kernel and have been able to derive two new
69 electrostatic potentials for higher-order multipoles that are based
70 on truncated Taylor expansions around the cutoff radius. For
71 multipole-multipole interactions, we find that each of the distinct
72 orientational contributions has a separate radial function to ensure
73 that the overall forces and torques vanish at the cutoff radius. In
74 this paper, we present energy, force, and torque expressions for the
75 new models, and compare these real-space interaction models to exact
76 results for ordered arrays of multipoles.
77 \end{abstract}
78
79 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
80 % Classification Scheme.
81 %\keywords{Suggested keywords}%Use showkeys class option if keyword
82 %display desired
83 \maketitle
84
85 \section{Introduction}
86 There has been increasing interest in real-space methods for
87 calculating electrostatic interactions in computer simulations of
88 condensed molecular
89 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
90 The simplest of these techniques was developed by Wolf {\it et al.}
91 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
92 For systems of point charges, Fennell and Gezelter showed that a
93 simple damped shifted force (DSF) modification to Wolf's method could
94 give nearly quantitative agreement with smooth particle mesh Ewald
95 (SPME)\cite{Essmann95} configurational energy differences as well as
96 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
97
98 The computational efficiency and the accuracy of the DSF method are
99 surprisingly good, particularly for systems with uniform charge
100 density. Additionally, dielectric constants obtained using DSF and
101 similar methods where the force vanishes at $r_{c}$ are
102 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
103 related methods have now been widely investigated,\cite{Hansen:2012uq}
104 and DSF is now used routinely in a diverse set of chemical
105 environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
106 DSF electrostatics provides a compromise between the computational
107 speed of real-space cutoffs and the accuracy of fully-periodic Ewald
108 treatments.
109
110 One common feature of many coarse-graining approaches, which treat
111 entire molecular subsystems as a single rigid body, is simplification
112 of the electrostatic interactions between these bodies so that fewer
113 site-site interactions are required to compute configurational
114 energies. To do this, the interactions between coarse-grained sites
115 are typically taken to be point
116 multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
117
118 Water, in particular, has been modeled recently with point multipoles
119 up to octupolar
120 order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
121 maximum efficiency, these models require the use of an approximate
122 multipole expansion as the exact multipole expansion can become quite
123 expensive (particularly when handled via the Ewald
124 sum).\cite{Ichiye:2006qy} Point multipoles and multipole
125 polarizability have also been utilized in the AMOEBA water model and
126 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
127
128 Higher-order multipoles present a peculiar issue for molecular
129 dynamics. Multipolar interactions are inherently short-ranged, and
130 should not need the relatively expensive Ewald treatment. However,
131 real-space cutoff methods are normally applied in an orientation-blind
132 fashion so multipoles which leave and then re-enter a cutoff sphere in
133 a different orientation can cause energy discontinuities.
134
135 This paper outlines an extension of the original DSF electrostatic
136 kernel to point multipoles. We describe two distinct real-space
137 interaction models for higher-order multipoles based on two truncated
138 Taylor expansions that are carried out at the cutoff radius. We are
139 calling these models {\bf Taylor-shifted} and {\bf Gradient-shifted}
140 electrostatics. Because of differences in the initial assumptions,
141 the two methods yield related, but somewhat different expressions for
142 energies, forces, and torques.
143
144 In this paper we outline the new methodology and give functional forms
145 for the energies, forces, and torques up to quadrupole-quadrupole
146 order. We also compare the new methods to analytic energy constants
147 for periodic arrays of point multipoles. In the following paper, we
148 provide numerical comparisons to Ewald-based electrostatics in common
149 simulation enviornments.
150
151 \section{Methodology}
152 An efficient real-space electrostatic method involves the use of a
153 pair-wise functional form,
154 \begin{equation}
155 V = \sum_i \sum_{j>i} V_\mathrm{pair}(r_{ij}, \Omega_i, \Omega_j) +
156 \sum_i V_i^\mathrm{self}
157 \end{equation}
158 that is short-ranged and easily truncated at a cutoff radius,
159 \begin{equation}
160 V_\mathrm{pair}(r_{ij},\Omega_i, \Omega_j) = \left\{
161 \begin{array}{ll}
162 V_\mathrm{approx} (r_{ij}, \Omega_i, \Omega_j) & \quad r \le r_c \\
163 0 & \quad r > r_c ,
164 \end{array}
165 \right.
166 \end{equation}
167 along with an easily computed self-interaction term ($\sum_i
168 V_i^\mathrm{self}$) which has linear-scaling with the number of
169 particles. Here $\Omega_i$ and $\Omega_j$ represent orientational
170 coordinates of the two sites. The computational efficiency, energy
171 conservation, and even some physical properties of a simulation can
172 depend dramatically on how the $V_\mathrm{approx}$ function behaves at
173 the cutoff radius. The goal of any approximation method should be to
174 mimic the real behavior of the electrostatic interactions as closely
175 as possible without sacrificing the near-linear scaling of a cutoff
176 method.
177
178 \subsection{Self-neutralization, damping, and force-shifting}
179 The DSF and Wolf methods operate by neutralizing the total charge
180 contained within the cutoff sphere surrounding each particle. This is
181 accomplished by shifting the potential functions to generate image
182 charges on the surface of the cutoff sphere for each pair interaction
183 computed within $r_c$. Damping using a complementary error
184 function is applied to the potential to accelerate convergence. The
185 potential for the DSF method, where $\alpha$ is the adjustable damping
186 parameter, is given by
187 \begin{equation*}
188 V_\mathrm{DSF}(r) = C_i C_j \Biggr{[}
189 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
190 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
191 + \frac{2\alpha}{\pi^{1/2}}
192 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
193 \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
194 \label{eq:DSFPot}
195 \end{equation*}
196 Note that in this potential and in all electrostatic quantities that
197 follow, the standard $1/4 \pi \epsilon_{0}$ has been omitted for
198 clarity.
199
200 To insure net charge neutrality within each cutoff sphere, an
201 additional ``self'' term is added to the potential. This term is
202 constant (as long as the charges and cutoff radius do not change), and
203 exists outside the normal pair-loop for molecular simulations. It can
204 be thought of as a contribution from a charge opposite in sign, but
205 equal in magnitude, to the central charge, which has been spread out
206 over the surface of the cutoff sphere. A portion of the self term is
207 identical to the self term in the Ewald summation, and comes from the
208 utilization of the complimentary error function for electrostatic
209 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
210 extend the Wolf self-neutralization method to zero out the dipole and
211 higher order multipoles contained within the cutoff
212 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
213
214 In this work, we extend the idea of self-neutralization for the point
215 multipoles by insuring net charge-neutrality and net-zero moments
216 within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, the
217 central dipolar site $\mathbf{D}_i$ is interacting with point dipole
218 $\mathbf{D}_j$ and point quadrupole, $\mathbf{Q}_k$. The
219 self-neutralization scheme for point multipoles involves projecting
220 opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
221 sphere. There are also significant modifications made to make the
222 forces and torques go smoothly to zero at the cutoff distance.
223
224 \begin{figure}
225 \includegraphics[width=3in]{SM}
226 \caption{Reversed multipoles are projected onto the surface of the
227 cutoff sphere. The forces, torques, and potential are then smoothly
228 shifted to zero as the sites leave the cutoff region.}
229 \label{fig:shiftedMultipoles}
230 \end{figure}
231
232 As in the point-charge approach, there is an additional contribution
233 from self-neutralization of site $i$. The self term for multipoles is
234 described in section \ref{sec:selfTerm}.
235
236 \subsection{The multipole expansion}
237
238 Consider two discrete rigid collections of point charges, denoted as
239 $\bf a$ and $\bf b$. In the following, we assume that the two objects
240 interact via electrostatics only and describe those interactions in
241 terms of a standard multipole expansion. Putting the origin of the
242 coordinate system at the center of mass of $\bf a$, we use vectors
243 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf
244 a$. Then the electrostatic potential of object $\bf a$ at
245 $\mathbf{r}$ is given by
246 \begin{equation}
247 V_a(\mathbf r) =
248 \sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
249 \end{equation}
250 The Taylor expansion in $r$ can be written using an implied summation
251 notation. Here Greek indices are used to indicate space coordinates
252 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
253 labelling specific charges in $\bf a$ and $\bf b$ respectively. The
254 Taylor expansion,
255 \begin{equation}
256 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
257 \left( 1
258 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
259 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
260 \right)
261 \frac{1}{r} ,
262 \end{equation}
263 can then be used to express the electrostatic potential on $\bf a$ in
264 terms of multipole operators,
265 \begin{equation}
266 V_{\bf a}(\mathbf{r}) =\hat{M}_{\bf a} \frac{1}{r}
267 \end{equation}
268 where
269 \begin{equation}
270 \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
271 + Q_{{\bf a}\alpha\beta}
272 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
273 \end{equation}
274 Here, the point charge, dipole, and quadrupole for object $\bf a$ are
275 given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
276 a}\alpha\beta}$, respectively. These are the primitive multipoles
277 which can be expressed as a distribution of charges,
278 \begin{align}
279 C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \\
280 D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha} ,\\
281 Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} .
282 \end{align}
283 Note that the definition of the primitive quadrupole here differs from
284 the standard traceless form, and contains an additional Taylor-series
285 based factor of $1/2$.
286
287 It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from
288 $\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by
289 \begin{equation}
290 U_{\bf{ab}}(r)
291 = \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} .
292 \end{equation}
293 This can also be expanded as a Taylor series in $r$. Using a notation
294 similar to before to define the multipoles on object {\bf b},
295 \begin{equation}
296 \hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}}
297 + Q_{{\bf b}\alpha\beta}
298 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
299 \end{equation}
300 we arrive at the multipole expression for the total interaction energy.
301 \begin{equation}
302 U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r} \label{kernel}.
303 \end{equation}
304 This form has the benefit of separating out the energies of
305 interaction into contributions from the charge, dipole, and quadrupole
306 of $\bf a$ interacting with the same multipoles on $\bf b$.
307
308 \subsection{Damped Coulomb interactions}
309 In the standard multipole expansion, one typically uses the bare
310 Coulomb potential, with radial dependence $1/r$, as shown in
311 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
312 interaction, which results from replacing point charges with Gaussian
313 distributions of charge with width $\alpha$. In damped multipole
314 electrostatics, the kernel ($1/r$) of the expansion is replaced with
315 the function:
316 \begin{equation}
317 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
318 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
319 \end{equation}
320 We develop equations below using the function $f(r)$ to represent
321 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
322 bare or damped Coulomb kernels (or any other function) as long as
323 derivatives of these functions are known. Smith's convenient
324 functions $B_l(r)$ are summarized in Appendix A.
325
326 The main goal of this work is to smoothly cut off the interaction
327 energy as well as forces and torques as $r\rightarrow r_c$. To
328 describe how this goal may be met, we use two examples, charge-charge
329 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
330 explain the idea.
331
332 \subsection{Shifted-force methods}
333 In the shifted-force approximation, the interaction energy for two
334 charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is
335 written:
336 \begin{equation}
337 U_{C_{\bf a}C_{\bf b}}(r)= C_{\bf a} C_{\bf b}
338 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
339 \right) .
340 \end{equation}
341 Two shifting terms appear in this equations, one from the
342 neutralization procedure ($-1/r_c$), and one that causes the first
343 derivative to vanish at the cutoff radius.
344
345 Since one derivative of the interaction energy is needed for the
346 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
347 interaction energy, that is:
348 \begin{equation}
349 \frac{d\,}{dr}
350 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
351 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
352 \right) .
353 \end{equation}
354 which clearly vanishes as the $r$ approaches the cutoff radius. There
355 are a number of ways to generalize this derivative shift for
356 higher-order multipoles. Below, we present two methods, one based on
357 higher-order Taylor series for $r$ near $r_c$, and the other based on
358 linear shift of the kernel gradients at the cutoff itself.
359
360 \subsection{Taylor-shifted force (TSF) electrostatics}
361 In the Taylor-shifted force (TSF) method, the procedure that we follow
362 is based on a Taylor expansion containing the same number of
363 derivatives required for each force term to vanish at the cutoff. For
364 example, the quadrupole-quadrupole interaction energy requires four
365 derivatives of the kernel, and the force requires one additional
366 derivative. For quadrupole-quadrupole interactions, we therefore
367 require shifted energy expressions that include up to $(r-r_c)^5$ so
368 that all energies, forces, and torques are zero as $r \rightarrow
369 r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
370 from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
371 derivatives to be taken when deriving a given multipole energy. We
372 choose a function with guaranteed smooth derivatives -- a truncated
373 Taylor series of the function $f(r)$, e.g.,
374 %
375 \begin{equation}
376 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
377 \end{equation}
378 %
379 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
380 Thus, for $f(r)=1/r$, we find
381 %
382 \begin{equation}
383 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
384 \end{equation}
385 %
386 Continuing with the example of a charge $\bf a$ interacting with a
387 dipole $\bf b$, we write
388 %
389 \begin{equation}
390 U_{C_{\bf a}D_{\bf b}}(r)=
391 C_{\bf a} D_{{\bf b}\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
392 = C_{\bf a} D_{{\bf b}\alpha}
393 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
394 \end{equation}
395 %
396 The force that dipole $\bf b$ exerts on charge $\bf a$ is
397 %
398 \begin{equation}
399 F_{C_{\bf a}D_{\bf b}\beta} = C_{\bf a} D_{{\bf b}\alpha}
400 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
401 \frac{r_\alpha r_\beta}{r^2}
402 \left( -\frac{1}{r} \frac {\partial} {\partial r}
403 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
404 \end{equation}
405 %
406 For undamped coulombic interactions, $f(r)=1/r$, we find
407 %
408 \begin{equation}
409 F_{C_{\bf a}D_{\bf b}\beta} =
410 \frac{C_{\bf a} D_{{\bf b}\beta}}{r}
411 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
412 +C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta
413 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
414 \end{equation}
415 %
416 This expansion shows the expected $1/r^3$ dependence of the force.
417
418 In general, we can write
419 %
420 \begin{equation}
421 U= (\text{prefactor}) (\text{derivatives}) f_n(r)
422 \label{generic}
423 \end{equation}
424 %
425 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
426 charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
427 $n=4$ for quadrupole-quadrupole. For example, in
428 quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
429 $Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$, the derivatives are
430 $\partial^4/\partial r_\alpha \partial r_\beta \partial
431 r_\gamma \partial r_\delta$, with implied summation combining the
432 space indices.
433
434 In the formulas presented in the tables below, the placeholder
435 function $f(r)$ is used to represent the electrostatic kernel (either
436 damped or undamped). The main functions that go into the force and
437 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
438 successive derivatives of the shifted electrostatic kernel, $f_n(r)$
439 of the same index $n$. The algebra required to evaluate energies,
440 forces and torques is somewhat tedious, so only the final forms are
441 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
442
443 \subsection{Gradient-shifted force (GSF) electrostatics}
444 The second, and conceptually simpler approach to force-shifting
445 maintains only the linear $(r-r_c)$ term in the truncated Taylor
446 expansion, and has a similar interaction energy for all multipole
447 orders:
448 \begin{equation}
449 U^{\text{GSF}} =
450 U(\mathbf{r}, \hat{\mathbf{a}}, \hat{\mathbf{b}}) -
451 U(\mathbf{r}_c,\hat{\mathbf{a}}, \hat{\mathbf{b}}) - (r-r_c) \hat{r}
452 \cdot \nabla U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) \Big \lvert _{r_c} .
453 \label{generic2}
454 \end{equation}
455 Both the potential and the gradient for force shifting are evaluated
456 for an image multipole projected onto the surface of the cutoff sphere
457 (see fig \ref{fig:shiftedMultipoles}). The image multipole retains
458 the orientation ($\hat{\mathbf{b}}$) of the interacting multipole. No
459 higher order terms $(r-r_c)^n$ appear. The primary difference between
460 the TSF and GSF methods is the stage at which the Taylor Series is
461 applied; in the Taylor-shifted approach, it is applied to the kernel
462 itself. In the Gradient-shifted approach, it is applied to individual
463 radial interactions terms in the multipole expansion. Energies from
464 this method thus have the general form:
465 \begin{equation}
466 U= \sum (\text{angular factor}) (\text{radial factor}).
467 \label{generic3}
468 \end{equation}
469
470 Functional forms for both methods (TSF and GSF) can both be summarized
471 using the form of Eq.~(\ref{generic3}). The basic forms for the
472 energy, force, and torque expressions are tabulated for both shifting
473 approaches below -- for each separate orientational contribution, only
474 the radial factors differ between the two methods.
475
476 \subsection{\label{sec:level2}Body and space axes}
477 Although objects $\bf a$ and $\bf b$ rotate during a molecular
478 dynamics (MD) simulation, their multipole tensors remain fixed in
479 body-frame coordinates. While deriving force and torque expressions,
480 it is therefore convenient to write the energies, forces, and torques
481 in intermediate forms involving the vectors of the rotation matrices.
482 We denote body axes for objects $\bf a$ and $\bf b$ using unit vectors
483 $\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$.
484 In a typical simulation , the initial axes are obtained by
485 diagonalizing the moment of inertia tensors for the objects. (N.B.,
486 the body axes are generally {\it not} the same as those for which the
487 quadrupole moment is diagonal.) The rotation matrices are then
488 propagated during the simulation.
489
490 The rotation matrices $\hat{\mathbf {a}}$ and $\hat{\mathbf {b}}$ can be
491 expressed using these unit vectors:
492 \begin{eqnarray}
493 \hat{\mathbf {a}} =
494 \begin{pmatrix}
495 \hat{a}_1 \\
496 \hat{a}_2 \\
497 \hat{a}_3
498 \end{pmatrix}, \qquad
499 \hat{\mathbf {b}} =
500 \begin{pmatrix}
501 \hat{b}_1 \\
502 \hat{b}_2 \\
503 \hat{b}_3
504 \end{pmatrix}
505 \end{eqnarray}
506 %
507 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
508 coordinates.
509
510 Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
511 {\em et al.},\cite{Price:1984fk} showed that if the interaction
512 energies are written explicitly in terms of $\hat{r}$ and the body
513 axes ($\hat{a}_m$, $\hat{b}_n$) :
514 %
515 \begin{equation}
516 U(r, \{\hat{a}_m \cdot \hat{r} \},
517 \{\hat{b}_n\cdot \hat{r} \},
518 \{\hat{a}_m \cdot \hat{b}_n \}) .
519 \label{ugeneral}
520 \end{equation}
521 %
522 the forces come out relatively cleanly,
523 %
524 \begin{equation}
525 \mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}}
526 = \frac{\partial U}{\partial r} \hat{r}
527 + \sum_m \left[
528 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
529 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
530 + \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
531 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
532 \right] \label{forceequation}.
533 \end{equation}
534
535 The torques can also be found in a relatively similar
536 manner,
537 %
538 \begin{eqnarray}
539 \mathbf{\tau}_{\bf a} =
540 \sum_m
541 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})}
542 ( \hat{r} \times \hat{a}_m )
543 -\sum_{mn}
544 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
545 (\hat{a}_m \times \hat{b}_n) \\
546 %
547 \mathbf{\tau}_{\bf b} =
548 \sum_m
549 \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})}
550 ( \hat{r} \times \hat{b}_m)
551 +\sum_{mn}
552 \frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)}
553 (\hat{a}_m \times \hat{b}_n) .
554 \end{eqnarray}
555
556 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $
557 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
558 We also made use of the identities,
559 %
560 \begin{align}
561 \frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}}
562 =& \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r}
563 \right) \\
564 \frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}}
565 =& \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r}
566 \right) .
567 \end{align}
568
569 Many of the multipole contractions required can be written in one of
570 three equivalent forms using the unit vectors $\hat{r}$, $\hat{a}_m$,
571 and $\hat{b}_n$. In the torque expressions, it is useful to have the
572 angular-dependent terms available in all three fashions, e.g. for the
573 dipole-dipole contraction:
574 %
575 \begin{equation}
576 \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}}
577 = D_{\bf {a}\alpha} D_{\bf {b}\alpha} =
578 \sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}}
579 \end{equation}
580 %
581 The first two forms are written using space coordinates. The first
582 form is standard in the chemistry literature, while the second is
583 expressed using implied summation notation. The third form shows
584 explicit sums over body indices and the dot products now indicate
585 contractions using space indices.
586
587 In computing our force and torque expressions, we carried out most of
588 the work in body coordinates, and have transformed the expressions
589 back to space-frame coordinates, which are reported below. Interested
590 readers may consult the supplemental information for this paper for
591 the intermediate body-frame expressions.
592
593 \subsection{The Self-Interaction \label{sec:selfTerm}}
594
595 In addition to cutoff-sphere neutralization, the Wolf
596 summation~\cite{Wolf99} and the damped shifted force (DSF)
597 extension~\cite{Fennell:2006zl} also included self-interactions that
598 are handled separately from the pairwise interactions between
599 sites. The self-term is normally calculated via a single loop over all
600 sites in the system, and is relatively cheap to evaluate. The
601 self-interaction has contributions from two sources.
602
603 First, the neutralization procedure within the cutoff radius requires
604 a contribution from a charge opposite in sign, but equal in magnitude,
605 to the central charge, which has been spread out over the surface of
606 the cutoff sphere. For a system of undamped charges, the total
607 self-term is
608 \begin{equation}
609 V_\textrm{self} = - \frac{1}{r_c} \sum_{{\bf a}=1}^N C_{\bf a}^{2}
610 \label{eq:selfTerm}
611 \end{equation}
612
613 Second, charge damping with the complementary error function is a
614 partial analogy to the Ewald procedure which splits the interaction
615 into real and reciprocal space sums. The real space sum is retained
616 in the Wolf and DSF methods. The reciprocal space sum is first
617 minimized by folding the largest contribution (the self-interaction)
618 into the self-interaction from charge neutralization of the damped
619 potential. The remainder of the reciprocal space portion is then
620 discarded (as this contributes the largest computational cost and
621 complexity to the Ewald sum). For a system containing only damped
622 charges, the complete self-interaction can be written as
623 \begin{equation}
624 V_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
625 \frac{\alpha}{\sqrt{\pi}} \right) \sum_{{\bf a}=1}^N
626 C_{\bf a}^{2}.
627 \label{eq:dampSelfTerm}
628 \end{equation}
629
630 The extension of DSF electrostatics to point multipoles requires
631 treatment of {\it both} the self-neutralization and reciprocal
632 contributions to the self-interaction for higher order multipoles. In
633 this section we give formulae for these interactions up to quadrupolar
634 order.
635
636 The self-neutralization term is computed by taking the {\it
637 non-shifted} kernel for each interaction, placing a multipole of
638 equal magnitude (but opposite in polarization) on the surface of the
639 cutoff sphere, and averaging over the surface of the cutoff sphere.
640 Because the self term is carried out as a single sum over sites, the
641 reciprocal-space portion is identical to half of the self-term
642 obtained by Smith and Aguado and Madden for the application of the
643 Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a given
644 site which posesses a charge, dipole, and multipole, both types of
645 contribution are given in table \ref{tab:tableSelf}.
646
647 \begin{table*}
648 \caption{\label{tab:tableSelf} Self-interaction contributions for
649 site ({\bf a}) that has a charge $(C_{\bf a})$, dipole
650 $(\mathbf{D}_{\bf a})$, and quadrupole $(\mathbf{Q}_{\bf a})$}
651 \begin{ruledtabular}
652 \begin{tabular}{lccc}
653 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
654 Charge & $C_{\bf a}^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
655 Dipole & $|\mathbf{D}_{\bf a}|^2$ & $\frac{1}{3} \left( h(r_c) +
656 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
657 Quadrupole & $2 \mathbf{Q}_{\bf a}:\mathbf{Q}_{\bf a} + \text{Tr}(\mathbf{Q}_{\bf a})^2$ &
658 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
659 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
660 Charge-Quadrupole & $-2 C_{\bf a} \text{Tr}(\mathbf{Q}_{\bf a})$ & $\frac{1}{3} \left(
661 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
662 \end{tabular}
663 \end{ruledtabular}
664 \end{table*}
665
666 For sites which simultaneously contain charges and quadrupoles, the
667 self-interaction includes a cross-interaction between these two
668 multipole orders. Symmetry prevents the charge-dipole and
669 dipole-quadrupole interactions from contributing to the
670 self-interaction. The functions that go into the self-neutralization
671 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
672 derivatives of the electrostatic kernel, $f(r)$ (either the undamped
673 $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
674 have been evaluated at the cutoff distance. For undamped
675 interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
676 damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
677 on. Appendix \ref{SmithFunc} contains recursion relations that allow
678 rapid evaluation of these derivatives.
679
680 \section{Interaction energies, forces, and torques}
681 The main result of this paper is a set of expressions for the
682 energies, forces and torques (up to quadrupole-quadrupole order) that
683 work for both the Taylor-shifted and Gradient-shifted approximations.
684 These expressions were derived using a set of generic radial
685 functions. Without using the shifting approximations mentioned above,
686 some of these radial functions would be identical, and the expressions
687 coalesce into the familiar forms for unmodified multipole-multipole
688 interactions. Table \ref{tab:tableenergy} maps between the generic
689 functions and the radial functions derived for both the Taylor-shifted
690 and Gradient-shifted methods. The energy equations are written in
691 terms of lab-frame representations of the dipoles, quadrupoles, and
692 the unit vector connecting the two objects,
693
694 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
695 %
696 %
697 % u ca cb
698 %
699 \begin{align}
700 U_{C_{\bf a}C_{\bf b}}(r)=&
701 C_{\bf a} C_{\bf b} v_{01}(r) \label{uchch}
702 \\
703 %
704 % u ca db
705 %
706 U_{C_{\bf a}D_{\bf b}}(r)=&
707 C_{\bf a} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r)
708 \label{uchdip}
709 \\
710 %
711 % u ca qb
712 %
713 U_{C_{\bf a}Q_{\bf b}}(r)=& C_{\bf a } \Bigl[ \text{Tr}Q_{\bf b}
714 v_{21}(r) + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot
715 \hat{r} \right) v_{22}(r) \Bigr]
716 \label{uchquad}
717 \\
718 %
719 % u da cb
720 %
721 %U_{D_{\bf a}C_{\bf b}}(r)=&
722 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
723 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
724 %\\
725 %
726 % u da db
727 %
728 U_{D_{\bf a}D_{\bf b}}(r)=&
729 -\Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot
730 \mathbf{D}_{\mathbf{b}} \right) v_{21}(r)
731 +\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right)
732 \left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right)
733 v_{22}(r) \Bigr]
734 \label{udipdip}
735 \\
736 %
737 % u da qb
738 %
739 \begin{split}
740 % 1
741 U_{D_{\bf a}Q_{\bf b}}(r) =&
742 -\Bigl[
743 \text{Tr}\mathbf{Q}_{\mathbf{b}}
744 \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
745 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
746 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\
747 % 2
748 &- \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right)
749 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r)
750 \label{udipquad}
751 \end{split}
752 \\
753 %
754 % u qa cb
755 %
756 %U_{Q_{\bf a}C_{\bf b}}(r)=&
757 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
758 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
759 %\label{uquadch}
760 %\\
761 %
762 % u qa db
763 %
764 %\begin{split}
765 %1
766 %U_{Q_{\bf a}D_{\bf b}}(r)=&
767 %\frac{1}{4\pi \epsilon_0} \Bigl[
768 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
769 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
770 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
771 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
772 % 2
773 %&+\frac{1}{4\pi \epsilon_0}
774 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
775 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
776 %\label{uquaddip}
777 %\end{split}
778 %\\
779 %
780 % u qa qb
781 %
782 \begin{split}
783 %1
784 U_{Q_{\bf a}Q_{\bf b}}(r)=&
785 \Bigl[
786 \text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}}
787 +2
788 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] v_{41}(r)
789 \\
790 % 2
791 &+\Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
792 \left( \hat{r} \cdot
793 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)
794 +\text{Tr}\mathbf{Q}_{\mathbf{b}}
795 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}}
796 \cdot \hat{r} \right) +4 (\hat{r} \cdot
797 \mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
798 \Bigr] v_{42}(r)
799 \\
800 % 4
801 &+
802 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right)
803 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r).
804 \label{uquadquad}
805 \end{split}
806 \end{align}
807 %
808 Note that the energies of multipoles on site $\mathbf{b}$ interacting
809 with those on site $\mathbf{a}$ can be obtained by swapping indices
810 along with the sign of the intersite vector, $\hat{r}$.
811
812 %
813 %
814 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
815 %
816
817 \begin{sidewaystable}
818 \caption{\label{tab:tableenergy}Radial functions used in the energy
819 and torque equations. The $f, g, h, s, t, \mathrm{and} u$
820 functions used in this table are defined in Appendices B and C.}
821 \begin{tabular}{|c|c|l|l|} \hline
822 Generic&Bare Coulomb&Taylor-Shifted&Gradient-Shifted
823 \\ \hline
824 %
825 %
826 %
827 %Ch-Ch&
828 $v_{01}(r)$ &
829 $\frac{1}{r}$ &
830 $f_0(r)$ &
831 $f(r)-f(r_c)-(r-r_c)g(r_c)$
832 \\
833 %
834 %
835 %
836 %Ch-Di&
837 $v_{11}(r)$ &
838 $-\frac{1}{r^2}$ &
839 $g_1(r)$ &
840 $g(r)-g(r_c)-(r-r_c)h(r_c)$ \\
841 %
842 %
843 %
844 %Ch-Qu/Di-Di&
845 $v_{21}(r)$ &
846 $-\frac{1}{r^3} $ &
847 $\frac{g_2(r)}{r} $ &
848 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c)
849 \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
850 $v_{22}(r)$ &
851 $\frac{3}{r^3} $ &
852 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
853 $\left(-\frac{g(r)}{r}+h(r) \right)
854 -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$ \\
855 &&& $ ~~~-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$
856 \\
857 %
858 %
859 %
860 %Di-Qu &
861 $v_{31}(r)$ &
862 $\frac{3}{r^4} $ &
863 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
864 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right)
865 -\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\
866 &&&$ ~~~ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$
867 \\
868 %
869 $v_{32}(r)$ &
870 $-\frac{15}{r^4} $ &
871 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
872 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)
873 - \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\
874 &&&$ ~~~ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$
875 \\
876 %
877 %
878 %
879 %Qu-Qu&
880 $v_{41}(r)$ &
881 $\frac{3}{r^5} $ &
882 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
883 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)
884 - \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\
885 &&&$ ~~~ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
886 \\
887 % 2
888 $v_{42}(r)$ &
889 $- \frac{15}{r^5} $ &
890 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
891 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)
892 -\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
893 &&&$ ~~~ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}
894 -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$
895 \\
896 % 3
897 $v_{43}(r)$ &
898 $ \frac{105}{r^5} $ &
899 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
900 $\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\
901 &&&$~~~ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\
902 &&&$~~~ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2}
903 -\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ \hline
904 \end{tabular}
905 \end{sidewaystable}
906 %
907 %
908 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
909 %
910
911 \begin{sidewaystable}
912 \caption{\label{tab:tableFORCE}Radial functions used in the force equations.}
913 \begin{tabular}{|c|c|l|l|} \hline
914 Function&Definition&Taylor-Shifted&Gradient-Shifted
915 \\ \hline
916 %
917 %
918 %
919 $w_a(r)$&
920 $\frac{d v_{01}}{dr}$&
921 $g_0(r)$&
922 $g(r)-g(r_c)$ \\
923 %
924 %
925 $w_b(r)$ &
926 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
927 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
928 $h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\
929 %
930 $w_c(r)$ &
931 $\frac{v_{11}(r)}{r}$ &
932 $\frac{g_1(r)}{r} $ &
933 $\frac{v_{11}(r)}{r}$\\
934 %
935 %
936 $w_d(r)$&
937 $\frac{d v_{21}}{dr}$&
938 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
939 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)
940 -\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
941 %
942 $w_e(r)$ &
943 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
944 $\frac{v_{22}(r)}{r}$ &
945 $\frac{v_{22}(r)}{r}$ \\
946 %
947 %
948 $w_f(r)$&
949 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
950 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
951 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) $ \\
952 &&& $ ~~~- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c)
953 \right)-\frac{2v_{22}(r)}{r}$\\
954 %
955 $w_g(r)$&
956 $\frac{v_{31}(r)}{r}$&
957 $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
958 $\frac{v_{31}(r)}{r}$\\
959 %
960 $w_h(r)$ &
961 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
962 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
963 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
964 &&& $ ~~~ -\frac{v_{31}(r)}{r}$ \\
965 % 2
966 $w_i(r)$ &
967 $\frac{v_{32}(r)}{r}$ &
968 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
969 $\frac{v_{32}(r)}{r}$\\
970 %
971 $w_j(r)$ &
972 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
973 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
974 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right)$ \\
975 &&& $~~~-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
976 -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\
977 %
978 $w_k(r)$ &
979 $\frac{d v_{41}}{dr} $ &
980 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
981 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)
982 -\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
983 %
984 $w_l(r)$ &
985 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
986 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
987 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\
988 &&& $~~~ -\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)
989 -\frac{2v_{42}(r)}{r}$\\
990 %
991 $w_m(r)$ &
992 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
993 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ &
994 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$\\
995 &&& $~~~- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}
996 +\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
997 &&& $~~~-\frac{4v_{43}(r)}{r}$ \\
998 %
999 $w_n(r)$ &
1000 $\frac{v_{42}(r)}{r}$ &
1001 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1002 $\frac{v_{42}(r)}{r}$\\
1003 %
1004 $w_o(r)$ &
1005 $\frac{v_{43}(r)}{r}$&
1006 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1007 $\frac{v_{43}(r)}{r}$ \\ \hline
1008 %
1009
1010 \end{tabular}
1011 \end{sidewaystable}
1012 %
1013 %
1014 %
1015
1016 \subsection{Forces}
1017 The force on object $\bf{a}$, $\mathbf{F}_{\bf a}$, due to object
1018 $\bf{b}$ is the negative of the force on $\bf{b}$ due to $\bf{a}$. For
1019 a simple charge-charge interaction, these forces will point along the
1020 $\pm \hat{r}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1021 \mathbf{r}_a $. Thus
1022 %
1023 \begin{equation}
1024 F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r}
1025 \quad \text{and} \quad F_{\bf b \alpha}
1026 = - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} .
1027 \end{equation}
1028 %
1029 We list below the force equations written in terms of lab-frame
1030 coordinates. The radial functions used in the two methods are listed
1031 in Table \ref{tab:tableFORCE}
1032 %
1033 %SPACE COORDINATES FORCE EQUATIONS
1034 %
1035 % **************************************************************************
1036 % f ca cb
1037 %
1038 \begin{align}
1039 \mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} =&
1040 C_{\bf a} C_{\bf b} w_a(r) \hat{r} \\
1041 %
1042 %
1043 %
1044 \mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} =&
1045 C_{\bf a} \Bigl[
1046 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right)
1047 w_b(r) \hat{r}
1048 + \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] \\
1049 %
1050 %
1051 %
1052 \mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} =&
1053 C_{\bf a } \Bigr[
1054 \text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r}
1055 + 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r)
1056 + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}
1057 \right) w_f(r) \hat{r} \Bigr] \\
1058 %
1059 %
1060 %
1061 % \begin{equation}
1062 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1063 % -C_{\bf{b}} \Bigl[
1064 % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1065 % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1066 % \end{equation}
1067 %
1068 %
1069 %
1070 \begin{split}
1071 \mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1072 - \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r}
1073 + \left( \mathbf{D}_{\mathbf {a}}
1074 \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
1075 + \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r)\\
1076 % 2
1077 & - \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right)
1078 \left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r}
1079 \end{split}\\
1080 %
1081 %
1082 %
1083 \begin{split}
1084 \mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} =& - \Bigl[
1085 \text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}}
1086 +2 \mathbf{D}_{\mathbf{a}} \cdot
1087 \mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r)
1088 - \Bigl[
1089 \text{Tr}\mathbf{Q}_{\mathbf{b}}
1090 \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right)
1091 +2 ( \mathbf{D}_{\mathbf{a}} \cdot
1092 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1093 % 3
1094 & - \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1095 +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr]
1096 w_i(r)
1097 % 4
1098 -
1099 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} )
1100 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} \end{split} \\
1101 %
1102 %
1103 % \begin{equation}
1104 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1105 % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1106 % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1107 % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1108 % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1109 % \end{equation}
1110 % %
1111 % \begin{equation}
1112 % \begin{split}
1113 % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1114 % &\frac{1}{4\pi \epsilon_0} \Bigl[
1115 % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1116 % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1117 % % 2
1118 % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1119 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1120 % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1121 % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1122 % % 3
1123 % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1124 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1125 % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1126 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1127 % % 4
1128 % +\frac{1}{4\pi \epsilon_0}
1129 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1130 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1131 % \end{split}
1132 % \end{equation}
1133 %
1134 %
1135 %
1136 \begin{split}
1137 \mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1138 \Bigl[
1139 \text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}}
1140 + 2 \mathbf{Q}_{\mathbf{a}} : \mathbf{Q}_{\mathbf{b}} \Bigr] w_k(r) \hat{r} \\
1141 % 2
1142 &+ \Bigl[
1143 2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1144 + 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} )
1145 % 3
1146 +4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1147 + 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\
1148 % 4
1149 &+ \Bigl[
1150 \text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1151 + \text{Tr}\mathbf{Q}_{\mathbf{b}}
1152 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1153 % 5
1154 +4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot
1155 \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\
1156 %
1157 &+ \Bigl[
1158 + 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} )
1159 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1160 %6
1161 +2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1162 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\
1163 % 7
1164 &+
1165 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1166 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} \end{split}
1167 \end{align}
1168 Note that the forces for higher multipoles on site $\mathbf{a}$
1169 interacting with those of lower order on site $\mathbf{b}$ can be
1170 obtained by swapping indices in the expressions above.
1171
1172 %
1173 % Torques SECTION -----------------------------------------------------------------------------------------
1174 %
1175 \subsection{Torques}
1176
1177 %
1178 The torques for both the Taylor-Shifted as well as Gradient-Shifted
1179 methods are given in space-frame coordinates:
1180 %
1181 %
1182 \begin{align}
1183 \mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} =&
1184 C_{\bf a} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) \\
1185 %
1186 %
1187 %
1188 \mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} =&
1189 2C_{\bf a}
1190 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) \\
1191 %
1192 %
1193 %
1194 % \begin{equation}
1195 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1196 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1197 % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1198 % \end{equation}
1199 %
1200 %
1201 %
1202 \mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} =&
1203 \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1204 % 2
1205 -
1206 (\hat{r} \times \mathbf{D}_{\mathbf {a}} )
1207 (\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r)\\
1208 %
1209 %
1210 %
1211 % \begin{equation}
1212 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1213 % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1214 % % 2
1215 % +\frac{1}{4\pi \epsilon_0}
1216 % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1217 % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1218 % \end{equation}
1219 %
1220 %
1221 %
1222 \mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} =&
1223 \Bigl[
1224 -\text{Tr}\mathbf{Q}_{\mathbf{b}}
1225 (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1226 +2 \mathbf{D}_{\mathbf{a}} \times
1227 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1228 \Bigr] v_{31}(r)
1229 % 3
1230 - (\hat{r} \times \mathbf{D}_{\mathbf{a}} )
1231 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r)\\
1232 %
1233 %
1234 %
1235 \mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} =&
1236 \Bigl[
1237 +2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times
1238 \hat{r}
1239 -2 \mathbf{D}_{\mathbf{a}} \times
1240 (\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})
1241 \Bigr] v_{31}(r)
1242 % 2
1243 +
1244 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}})
1245 (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r)\\
1246 %
1247 %
1248 %
1249 % \begin{equation}
1250 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1251 % \frac{1}{4\pi \epsilon_0} \Bigl[
1252 % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1253 % +2 \mathbf{D}_{\mathbf{b}} \times
1254 % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1255 % \Bigr] v_{31}(r)
1256 % % 3
1257 % - \frac{2}{4\pi \epsilon_0}
1258 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1259 % (\hat{r} \cdot \mathbf
1260 % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1261 % \end{equation}
1262 %
1263 %
1264 %
1265 % \begin{equation}
1266 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1267 % \frac{1}{4\pi \epsilon_0} \Bigl[
1268 % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1269 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1270 % +2 \mathbf{D}_{\mathbf{b}} \times
1271 % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1272 % % 2
1273 % +\frac{1}{4\pi \epsilon_0}
1274 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1275 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1276 % \end{equation}
1277 %
1278 %
1279 %
1280 \begin{split}
1281 \mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} =&
1282 -4
1283 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}}
1284 v_{41}(r) \\
1285 % 2
1286 &+
1287 \Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}}
1288 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r}
1289 +4 \hat{r} \times
1290 ( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1291 % 3
1292 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times
1293 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\
1294 % 4
1295 &+ 2
1296 \hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1297 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) \end{split}\\
1298 %
1299 %
1300 %
1301 \begin{split}
1302 \mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} =
1303 &4
1304 \mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\
1305 % 2
1306 &+ \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}}
1307 (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r}
1308 -4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot
1309 \mathbf{Q}_{{\mathbf b}} ) \times
1310 \hat{r}
1311 +4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times
1312 ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r})
1313 \Bigr] v_{42}(r) \\
1314 % 4
1315 &+2
1316 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1317 \hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r)\end{split}
1318 \end{align}
1319 %
1320 Here, we have defined the matrix cross product in an identical form
1321 as in Ref. \onlinecite{Smith98}:
1322 \begin{equation}
1323 \left[\mathbf{A} \times \mathbf{B}\right]_\alpha = \sum_\beta
1324 \left[\mathbf{A}_{\alpha+1,\beta} \mathbf{B}_{\alpha+2,\beta}
1325 -\mathbf{A}_{\alpha+2,\beta} \mathbf{B}_{\alpha+2,\beta}
1326 \right]
1327 \end{equation}
1328 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1329 permuations of the matrix indices.
1330
1331 All of the radial functions required for torques are identical with
1332 the radial functions previously computed for the interaction energies.
1333 These are tabulated for both shifted force methods in table
1334 \ref{tab:tableenergy}. The torques for higher multipoles on site
1335 $\mathbf{a}$ interacting with those of lower order on site
1336 $\mathbf{b}$ can be obtained by swapping indices in the expressions
1337 above.
1338
1339 \section{Related real-space methods}
1340 One can also formulate a shifted potential,
1341 \begin{equation}
1342 U^{\text{SP}} = U(\mathbf{r},\hat{\mathbf{a}}, \hat{\mathbf{b}}) -
1343 U(\mathbf{r}_c, \hat{\mathbf{a}}, \hat{\mathbf{b}}),
1344 \label{eq:SP}
1345 \end{equation}
1346 obtained by projecting the image multipole onto the surface of the
1347 cutoff sphere. The shifted potential (SP) can be thought of as a
1348 simple extension to the original Wolf method. The energies and
1349 torques for the SP can be easily obtained by zeroing out the $(r-r_c)$
1350 terms in the final column of table \ref{tab:tableenergy}. SP forces
1351 (which retain discontinuities at the cutoff sphere) can be obtained by
1352 eliminating all functions that depend on $r_c$ in the last column of
1353 table \ref{tab:tableFORCE}. The self-energy contributions to the SP
1354 potential are identical to both the GSF and TSF methods.
1355
1356 \section{Comparison to known multipolar energies}
1357
1358 To understand how these new real-space multipole methods behave in
1359 computer simulations, it is vital to test against established methods
1360 for computing electrostatic interactions in periodic systems, and to
1361 evaluate the size and sources of any errors that arise from the
1362 real-space cutoffs. In this paper we test both TSF and GSF
1363 electrostatics against analytical methods for computing the energies
1364 of ordered multipolar arrays. In the following paper, we test the new
1365 methods against the multipolar Ewald sum for computing the energies,
1366 forces and torques for a wide range of typical condensed-phase
1367 (disordered) systems.
1368
1369 Because long-range electrostatic effects can be significant in
1370 crystalline materials, ordered multipolar arrays present one of the
1371 biggest challenges for real-space cutoff methods. The dipolar
1372 analogues to the Madelung constants were first worked out by Sauer,
1373 who computed the energies of ordered dipole arrays of zero
1374 magnetization and obtained a number of these constants.\cite{Sauer}
1375 This theory was developed more completely by Luttinger and
1376 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1377 and other periodic structures.
1378
1379 To test the new electrostatic methods, we have constructed very large,
1380 $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1381 Ref. \onlinecite{LT}. These structures include ``A'' lattices with
1382 nearest neighbor chains of antiparallel dipoles, as well as ``B''
1383 lattices with nearest neighbor strings of antiparallel dipoles if the
1384 dipoles are contained in a plane perpendicular to the dipole direction
1385 that passes through the dipole. We have also studied the minimum
1386 energy structure for the BCC lattice that was found by Luttinger \&
1387 Tisza. The total electrostatic energy for any of the arrays is given
1388 by:
1389 \begin{equation}
1390 E = C N^2 \mu^2
1391 \end{equation}
1392 where $C$ is the energy constant (equivalent to the Madelung
1393 constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1394 the strength of the dipole. Energy constants (converged to 1 part in
1395 $10^9$) are given in the supplemental information.
1396
1397 For the purposes of testing the energy expressions and the
1398 self-neutralization schemes, the primary quantity of interest is the
1399 analytic energy constant for the perfect arrays. Convergence to these
1400 constants are shown as a function of both the cutoff radius, $r_c$,
1401 and the damping parameter, $\alpha$ in Figs.
1402 \ref{fig:energyConstVsCutoff} and XXX. We have simultaneously tested a
1403 hard cutoff (where the kernel is simply truncated at the cutoff
1404 radius), as well as a shifted potential (SP) form which includes a
1405 potential-shifting and self-interaction term, but does not shift the
1406 forces and torques smoothly at the cutoff radius. The SP method is
1407 essentially an extension of the original Wolf method for multipoles.
1408
1409 \begin{figure}[!htbp]
1410 \includegraphics[width=4.5in]{energyConstVsCutoff}
1411 \caption{Convergence to the analytic energy constants as a function of
1412 cutoff radius (normalized by the lattice constant) for the different
1413 real-space methods. The two crystals shown here are the ``B'' array
1414 for bcc crystals with the dipoles along the 001 direction (upper),
1415 as well as the minimum energy bcc lattice (lower). The analytic
1416 energy constants are shown as a grey dashed line. The left panel
1417 shows results for the undamped kernel ($1/r$), while the damped
1418 error function kernel, $B_0(r)$ was used in the right panel. }
1419 \label{fig:energyConstVsCutoff}
1420 \end{figure}
1421
1422 The Hard cutoff exhibits oscillations around the analytic energy
1423 constants, and converges to incorrect energies when the complementary
1424 error function damping kernel is used. The shifted potential (SP) and
1425 gradient-shifted force (GSF) approximations converge to the correct
1426 energy smoothly by $r_c / 6 a$ even for the undamped case. This
1427 indicates that the correction provided by the self term is required
1428 for obtaining accurate energies. The Taylor-shifted force (TSF)
1429 approximation appears to perturb the potential too much inside the
1430 cutoff region to provide accurate measures of the energy constants.
1431
1432 {\it Quadrupolar} analogues to the Madelung constants were first
1433 worked out by Nagai and Nakamura who computed the energies of selected
1434 quadrupole arrays based on extensions to the Luttinger and Tisza
1435 approach.\cite{Nagai01081960,Nagai01091963} We have compared the
1436 energy constants for the lowest energy configurations for linear
1437 quadrupoles.
1438
1439 In analogy to the dipolar arrays, the total electrostatic energy for
1440 the quadrupolar arrays is:
1441 \begin{equation}
1442 E = C \frac{3}{4} N^2 Q^2
1443 \end{equation}
1444 where $Q$ is the quadrupole moment. The lowest energy
1445
1446 \section{Conclusion}
1447 We have presented two efficient real-space methods for computing the
1448 interactions between point multipoles. These methods have the benefit
1449 of smoothly truncating the energies, forces, and torques at the cutoff
1450 radius, making them attractive for both molecular dynamics (MD) and
1451 Monte Carlo (MC) simulations. We find that the Gradient-Shifted Force
1452 (GSF) and the Shifted-Potential (SP) methods converge rapidly to the
1453 correct lattice energies for ordered dipolar and quadrupolar arrays,
1454 while the Taylor-Shifted Force (TSF) is too severe an approximation to
1455 provide accurate convergence to lattice energies.
1456
1457 In most cases, GSF can obtain nearly quantitative agreement with the
1458 lattice energy constants with reasonably small cutoff radii. The only
1459 exception we have observed is for crystals which exhibit a bulk
1460 macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1461 In this particular case, the multipole neutralization scheme can
1462 interfere with the correct computation of the energies. We note that
1463 the energies for these arrangements are typically much larger than for
1464 crystals with net-zero moments, so this is not expected to be an issue
1465 in most simulations.
1466
1467 In large systems, these new methods can be made to scale approximately
1468 linearly with system size, and detailed comparisons with the Ewald sum
1469 for a wide range of chemical environments follows in the second paper.
1470
1471 \begin{acknowledgments}
1472 JDG acknowledges helpful discussions with Christopher
1473 Fennell. Support for this project was provided by the National
1474 Science Foundation under grant CHE-0848243. Computational time was
1475 provided by the Center for Research Computing (CRC) at the
1476 University of Notre Dame.
1477 \end{acknowledgments}
1478
1479 \newpage
1480 \appendix
1481
1482 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1483 \label{SmithFunc}
1484 The following summarizes Smith's $B_l(r)$ functions and includes
1485 formulas given in his appendix.\cite{Smith98} The first function
1486 $B_0(r)$ is defined by
1487 %
1488 \begin{equation}
1489 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}=
1490 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1491 \end{equation}
1492 %
1493 The first derivative of this function is
1494 %
1495 \begin{equation}
1496 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1497 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1498 \end{equation}
1499 %
1500 which can be used to define a function $B_1(r)$:
1501 %
1502 \begin{equation}
1503 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1504 \end{equation}
1505 %
1506 In general, the recurrence relation,
1507 \begin{equation}
1508 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1509 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1510 \text{e}^{-{\alpha}^2r^2}
1511 \right] ,
1512 \end{equation}
1513 is very useful for building up higher derivatives. Using these
1514 formulas, we find:
1515 %
1516 \begin{align}
1517 \frac{dB_0}{dr}=&-rB_1(r) \\
1518 \frac{d^2B_0}{dr^2}=& - B_1(r) + r^2 B_2(r) \\
1519 \frac{d^3B_0}{dr^3}=& 3 r B_2(r) - r^3 B_3(r) \\
1520 \frac{d^4B_0}{dr^4}=& 3 B_2(r) - 6 r^2 B_3(r) + r^4 B_4(r) \\
1521 \frac{d^5B_0}{dr^5}=& - 15 r B_3(r) + 10 r^3 B_4(r) - r^5 B_5(r) .
1522 \end{align}
1523 %
1524 As noted by Smith, it is possible to approximate the $B_l(r)$
1525 functions,
1526 %
1527 \begin{equation}
1528 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1529 +\text{O}(r) .
1530 \end{equation}
1531 \newpage
1532 \section{The $r$-dependent factors for TSF electrostatics}
1533
1534 Using the shifted damped functions $f_n(r)$ defined by:
1535 %
1536 \begin{equation}
1537 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1538 \end{equation}
1539 %
1540 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1541 this Appendix, we provide formulas for successive derivatives of this
1542 function. (If there is no damping, then $B_0(r)$ is replaced by
1543 $1/r$.) First, we find:
1544 %
1545 \begin{equation}
1546 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1547 \end{equation}
1548 %
1549 This formula clearly brings in derivatives of Smith's $B_0(r)$
1550 function, and we define higher-order derivatives as follows:
1551 %
1552 \begin{align}
1553 g_n(r)=& \frac{d f_n}{d r} =
1554 B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1555 h_n(r)=& \frac{d^2f_n}{d r^2} =
1556 B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1557 s_n(r)=& \frac{d^3f_n}{d r^3} =
1558 B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1559 t_n(r)=& \frac{d^4f_n}{d r^4} =
1560 B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1561 u_n(r)=& \frac{d^5f_n}{d r^5} =
1562 B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1563 \end{align}
1564 %
1565 We note that the last function needed (for quadrupole-quadrupole interactions) is
1566 %
1567 \begin{equation}
1568 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1569 \end{equation}
1570 % The functions
1571 % needed are listed schematically below:
1572 % %
1573 % \begin{eqnarray}
1574 % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1575 % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1576 % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1577 % s_2 \quad s_3 \quad &s_4 \nonumber \\
1578 % t_3 \quad &t_4 \nonumber \\
1579 % &u_4 \nonumber .
1580 % \end{eqnarray}
1581 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1582 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1583 functions, we find
1584 %
1585 \begin{align}
1586 \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1587 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1588 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1589 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1590 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1591 \delta_{ \beta \gamma} r_\alpha \right)
1592 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1593 & + r_\alpha r_\beta r_\gamma
1594 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1595 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1596 r_\gamma \partial r_\delta} =&
1597 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1598 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1599 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1600 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1601 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1602 + \text{5 permutations}
1603 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1604 \right) \nonumber \\
1605 &+ r_\alpha r_\beta r_\gamma r_\delta
1606 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1607 + \frac{t_n}{r^4} \right)\\
1608 \frac{\partial^5 f_n}
1609 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1610 r_\delta \partial r_\epsilon} =&
1611 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1612 + \text{14 permutations} \right)
1613 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1614 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1615 + \text{9 permutations}
1616 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1617 \right) \nonumber \\
1618 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1619 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1620 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1621 \end{align}
1622 %
1623 %
1624 %
1625 \newpage
1626 \section{The $r$-dependent factors for GSF electrostatics}
1627
1628 In Gradient-shifted force electrostatics, the kernel is not expanded,
1629 rather the individual terms in the multipole interaction energies.
1630 For damped charges , this still brings into the algebra multiple
1631 derivatives of the Smith's $B_0(r)$ function. To denote these terms,
1632 we generalize the notation of the previous appendix. For either
1633 $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$ (damped),
1634 %
1635 \begin{align}
1636 g(r)=& \frac{df}{d r}\\
1637 h(r)=& \frac{dg}{d r} = \frac{d^2f}{d r^2} \\
1638 s(r)=& \frac{dh}{d r} = \frac{d^3f}{d r^3} \\
1639 t(r)=& \frac{ds}{d r} = \frac{d^4f}{d r^4} \\
1640 u(r)=& \frac{dt}{d r} = \frac{d^5f}{d r^5} .
1641 \end{align}
1642 %
1643 For undamped charges Table I lists these derivatives under the column
1644 ``Bare Coulomb.'' Equations \ref{eq:b9} to \ref{eq:b13} are still
1645 correct for GSF electrostatics if the subscript $n$ is eliminated.
1646
1647 \newpage
1648
1649 \bibliography{multipole}
1650
1651 \end{document}
1652 %
1653 % ****** End of file multipole.tex ******