ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole1.tex
Revision: 4198
Committed: Wed Jul 23 17:10:59 2014 UTC (10 years, 9 months ago) by gezelter
Content type: application/x-tex
File size: 71800 byte(s)
Log Message:
Latest version

File Contents

# Content
1 % ****** Start of file aipsamp.tex ******
2 %
3 % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4 % Version 4.1 of REVTeX, October 2009
5 %
6 % Copyright (c) 2009 American Institute of Physics.
7 %
8 % See the AIP README file for restrictions and more information.
9 %
10 % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11 % as well as the rest of the prerequisites for REVTeX 4.1
12 %
13 % It also requires running BibTeX. The commands are as follows:
14 %
15 % 1) latex aipsamp
16 % 2) bibtex aipsamp
17 % 3) latex aipsamp
18 % 4) latex aipsamp
19 %
20 % Use this file as a source of example code for your aip document.
21 % Use the file aiptemplate.tex as a template for your document.
22 \documentclass[%
23 aip,jcp,
24 amsmath,amssymb,
25 preprint,%
26 % reprint,%
27 %author-year,%
28 %author-numerical,%
29 jcp]{revtex4-1}
30
31 \usepackage{graphicx}% Include figure files
32 \usepackage{dcolumn}% Align table columns on decimal point
33 %\usepackage{bm}% bold math
34 \usepackage{times}
35 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36 \usepackage{url}
37 \usepackage{rotating}
38
39 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
40 %\linenumbers\relax % Commence numbering lines
41
42 \begin{document}
43
44 %\preprint{AIP/123-QED}
45
46 \title{Real space electrostatics for multipoles. I. Development of methods}
47
48 \author{Madan Lamichhane}
49 \affiliation{Department of Physics, University
50 of Notre Dame, Notre Dame, IN 46556}
51
52 \author{J. Daniel Gezelter}
53 \email{gezelter@nd.edu.}
54 \affiliation{Department of Chemistry and Biochemistry, University
55 of Notre Dame, Notre Dame, IN 46556}
56
57 \author{Kathie E. Newman}
58 \affiliation{Department of Physics, University
59 of Notre Dame, Notre Dame, IN 46556}
60
61
62 \date{\today}% It is always \today, today,
63 % but any date may be explicitly specified
64
65 \begin{abstract}
66 We have extended the original damped-shifted force (DSF)
67 electrostatic kernel and have been able to derive three new
68 electrostatic potentials for higher-order multipoles that are based
69 on truncated Taylor expansions around the cutoff radius. These
70 include a shifted potential (SP) that generalizes the Wolf method
71 for point multipoles, and Taylor-shifted force (TSF) and
72 gradient-shifted force (GSF) potentials that are both
73 generalizations of DSF electrostatics for multipoles. We find that
74 each of the distinct orientational contributions requires a separate
75 radial function to ensure that pairwise energies, forces and torques
76 all vanish at the cutoff radius. In this paper, we present energy,
77 force, and torque expressions for the new models, and compare these
78 real-space interaction models to exact results for ordered arrays of
79 multipoles. We find that the GSF and SP methods converge rapidly to
80 the correct lattice energies for ordered dipolar and quadrupolar
81 arrays, while the Taylor-Shifted Force (TSF) is too severe an
82 approximation to provide accurate convergence to lattice energies.
83 Because real-space methods can be made to scale linearly with system
84 size, SP and GSF are attractive options for large Monte
85 Carlo and molecular dynamics simulations, respectively.
86 \end{abstract}
87
88 %\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
89 % Classification Scheme.
90 %\keywords{Suggested keywords}%Use showkeys class option if keyword
91 %display desired
92 \maketitle
93
94 \section{Introduction}
95 There has been increasing interest in real-space methods for
96 calculating electrostatic interactions in computer simulations of
97 condensed molecular
98 systems.\cite{Wolf99,Zahn02,Kast03,BeckD.A.C._bi0486381,Ma05,Fennell:2006zl,Chen:2004du,Chen:2006ii,Rodgers:2006nw,Denesyuk:2008ez,Izvekov:2008wo}
99 The simplest of these techniques was developed by Wolf {\it et al.}
100 in their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
101 For systems of point charges, Fennell and Gezelter showed that a
102 simple damped shifted force (DSF) modification to Wolf's method could
103 give nearly quantitative agreement with smooth particle mesh Ewald
104 (SPME)\cite{Essmann95} configurational energy differences as well as
105 atomic force and molecular torque vectors.\cite{Fennell:2006zl}
106
107 The computational efficiency and the accuracy of the DSF method are
108 surprisingly good, particularly for systems with uniform charge
109 density. Additionally, dielectric constants obtained using DSF and
110 similar methods where the force vanishes at $r_{c}$ are
111 essentially quantitative.\cite{Izvekov:2008wo} The DSF and other
112 related methods have now been widely investigated,\cite{Hansen:2012uq}
113 and DSF is now used routinely in a diverse set of chemical
114 environments.\cite{doi:10.1021/la400226g,McCann:2013fk,kannam:094701,Forrest:2012ly,English:2008kx,Louden:2013ve,Tokumasu:2013zr}
115 DSF electrostatics provides a compromise between the computational
116 speed of real-space cutoffs and the accuracy of fully-periodic Ewald
117 treatments.
118
119 One common feature of many coarse-graining approaches, which treat
120 entire molecular subsystems as a single rigid body, is simplification
121 of the electrostatic interactions between these bodies so that fewer
122 site-site interactions are required to compute configurational
123 energies. To do this, the interactions between coarse-grained sites
124 are typically taken to be point
125 multipoles.\cite{Golubkov06,ISI:000276097500009,ISI:000298664400012}
126
127 Water, in particular, has been modeled recently with point multipoles
128 up to octupolar
129 order.\cite{Chowdhuri:2006lr,Te:2010rt,Te:2010ys,Te:2010vn} For
130 maximum efficiency, these models require the use of an approximate
131 multipole expansion as the exact multipole expansion can become quite
132 expensive (particularly when handled via the Ewald
133 sum).\cite{Ichiye:2006qy} Point multipoles and multipole
134 polarizability have also been utilized in the AMOEBA water model and
135 related force fields.\cite{Ponder:2010fk,schnieders:124114,Ren:2011uq}
136
137 Higher-order multipoles present a peculiar issue for molecular
138 dynamics. Multipolar interactions are inherently short-ranged, and
139 should not need the relatively expensive Ewald treatment. However,
140 real-space cutoff methods are normally applied in an orientation-blind
141 fashion so multipoles which leave and then re-enter a cutoff sphere in
142 a different orientation can cause energy discontinuities.
143
144 This paper outlines an extension of the original DSF electrostatic
145 kernel to point multipoles. We describe three distinct real-space
146 interaction models for higher-order multipoles based on truncated
147 Taylor expansions that are carried out at the cutoff radius. We are
148 calling these models {\bf Taylor-shifted} (TSF), {\bf
149 gradient-shifted} (GSF) and {\bf shifted potential} (SP)
150 electrostatics. Because of differences in the initial assumptions,
151 the two methods yield related, but distinct expressions for energies,
152 forces, and torques.
153
154 In this paper we outline the new methodology and give functional forms
155 for the energies, forces, and torques up to quadrupole-quadrupole
156 order. We also compare the new methods to analytic energy constants
157 for periodic arrays of point multipoles. In the following paper, we
158 provide numerical comparisons to Ewald-based electrostatics in common
159 simulation enviornments.
160
161 \section{Methodology}
162 An efficient real-space electrostatic method involves the use of a
163 pair-wise functional form,
164 \begin{equation}
165 U = \sum_i \sum_{j>i} U_\mathrm{pair}(\mathbf{r}_{ij}, \mathsf{A}_i, \mathsf{B}_j) +
166 \sum_i U_i^\mathrm{self}
167 \end{equation}
168 that is short-ranged and easily truncated at a cutoff radius,
169 \begin{equation}
170 U_\mathrm{pair}(\mathbf{r}_{ij},\mathsf{A}_i, \mathsf{B}_j) = \left\{
171 \begin{array}{ll}
172 U_\mathrm{approx} (\mathbf{r}_{ij}, \mathsf{A}_i, \mathsf{B}_j) & \quad \left| \mathbf{r}_{ij} \right| \le r_c \\
173 0 & \quad \left| \mathbf{r}_{ij} \right| > r_c ,
174 \end{array}
175 \right.
176 \end{equation}
177 along with an easily computed self-interaction term ($\sum_i
178 U_i^\mathrm{self}$) which scales linearly with the number of
179 particles. Here $\mathsf{A}_i$ and $\mathsf{B}_j$ represent orientational
180 coordinates of the two sites (expressed as rotation matrices), and $\mathbf{r}_{ij}$ is the vector
181 between the two sites. The computational efficiency, energy
182 conservation, and even some physical properties of a simulation can
183 depend dramatically on how the $U_\mathrm{approx}$ function behaves at
184 the cutoff radius. The goal of any approximation method should be to
185 mimic the real behavior of the electrostatic interactions as closely
186 as possible without sacrificing the near-linear scaling of a cutoff
187 method.
188
189 \subsection{Self-neutralization, damping, and force-shifting}
190 The DSF and Wolf methods operate by neutralizing the total charge
191 contained within the cutoff sphere surrounding each particle. This is
192 accomplished by shifting the potential functions to generate image
193 charges on the surface of the cutoff sphere for each pair interaction
194 computed within $r_c$. Damping using a complementary error function is
195 applied to the potential to accelerate convergence. The interaction
196 for a pair of charges ($C_i$ and $C_j$) in the DSF method,
197 \begin{equation*}
198 U_\mathrm{DSF}(r_{ij}) = C_i C_j \Biggr{[}
199 \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}}
200 - \frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c} + \left(\frac{\mathrm{erfc}\left(\alpha r_c\right)}{r_c^2}
201 + \frac{2\alpha}{\pi^{1/2}}
202 \frac{\exp\left(-\alpha^2r_c^2\right)}{r_c}
203 \right)\left(r_{ij}-r_c\right)\ \Biggr{]}
204 \label{eq:DSFPot}
205 \end{equation*}
206 where $\alpha$ is the adjustable damping parameter. Note that in this
207 potential and in all electrostatic quantities that follow, the
208 standard $1/4 \pi \epsilon_{0}$ has been omitted for clarity.
209
210 To insure net charge neutrality within each cutoff sphere, an
211 additional ``self'' term is added to the potential. This term is
212 constant (as long as the charges and cutoff radius do not change), and
213 exists outside the normal pair-loop for molecular simulations. It can
214 be thought of as a contribution from a charge opposite in sign, but
215 equal in magnitude, to the central charge, which has been spread out
216 over the surface of the cutoff sphere. A portion of the self term is
217 identical to the self term in the Ewald summation, and comes from the
218 utilization of the complimentary error function for electrostatic
219 damping.\cite{deLeeuw80,Wolf99} There have also been recent efforts to
220 extend the Wolf self-neutralization method to zero out the dipole and
221 higher order multipoles contained within the cutoff
222 sphere.\cite{Fukuda:2011jk,Fukuda:2012yu,Fukuda:2013qv}
223
224 In this work, we extend the idea of self-neutralization for the point
225 multipoles by insuring net charge-neutrality and net-zero moments
226 within each cutoff sphere. In Figure \ref{fig:shiftedMultipoles}, point dipole
227 $\mathbf{D}_i$ at the center site $i$ is interacting with point dipole
228 $\mathbf{D}_j$ and point quadrupole $\mathsf{Q}_k$. The
229 self-neutralization scheme for point multipoles involves projecting
230 opposing multipoles for sites $j$ and $k$ on the surface of the cutoff
231 sphere. There are also significant modifications made to make the
232 forces and torques go smoothly to zero at the cutoff distance.
233
234 \begin{figure}
235 \includegraphics[width=3in]{SM.eps}
236 \caption{Reversed multipoles are projected onto the surface of the
237 cutoff sphere. The forces, torques, and potential are then smoothly
238 shifted to zero as the sites leave the cutoff region.}
239 \label{fig:shiftedMultipoles}
240 \end{figure}
241
242 As in the point-charge approach, there is an additional contribution
243 from self-neutralization of site $i$. The self term for multipoles is
244 described in section \ref{sec:selfTerm}.
245
246 \subsection{The multipole expansion}
247
248 Consider two discrete rigid collections of point charges, denoted as objects
249 $a$ and $b$. In the following, we assume that the two objects
250 interact via electrostatics only and describe those interactions in
251 terms of a standard multipole expansion. Putting the origin of the
252 coordinate system at the center of mass of $a$, we use vectors
253 $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in
254 $a$. Then the electrostatic potential of object $a$ at
255 $\mathbf{r}$ is given by
256 \begin{equation}
257 \phi_a(\mathbf r) =
258 \sum_{k \, \text{in } a} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}.
259 \end{equation}
260 The Taylor expansion in $r$ can be written using an implied summation
261 notation. Here Greek indices are used to indicate space coordinates
262 ($x$, $y$, $z$) and the subscripts $k$ and $j$ are reserved for
263 labeling specific sites for charges in $a$ and $b$ respectively. The
264 Taylor expansion,
265 \begin{equation}
266 \frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} =
267 \left( 1
268 - r_{k\alpha} \frac{\partial}{\partial r_{\alpha}}
269 + \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots
270 \right)
271 \frac{1}{r} ,
272 \end{equation}
273 can then be used to express the electrostatic potential on $a$ in
274 terms of multipole operators,
275 \begin{equation}
276 \phi_a(\mathbf{r}) =M_a \frac{1}{r}
277 \end{equation}
278 where
279 \begin{equation}
280 M_a = C_a - D_{a\alpha} \frac{\partial}{\partial r_{\alpha}}
281 + Q_{a\alpha\beta}
282 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
283 \end{equation}
284 Here, the point charge, dipole, and quadrupole for object $a$ are
285 given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively. These are the primitive multipoles
286 which can be expressed as a distribution of charges,
287 \begin{align}
288 C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
289 D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
290 Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
291 r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
292 \end{align}
293 Note that the definition of the primitive quadrupole here differs from
294 the standard traceless form, and contains an additional Taylor-series
295 based factor of $1/2$. We are essentially treating the mass
296 distribution with higher priority; the moment of inertia tensor,
297 $\mathsf I$, is diagonalized to obtain body-fixed
298 axes, and the charge distribution may result in a quadrupole tensor
299 that is not necessarily diagonal in the body frame. Additional
300 reasons for utilizing the primitive quadrupole are discussed in
301 section \ref{sec:damped}.
302
303 It is convenient to locate charges $q_j$ relative to the center of mass of $b$. Then with $\bf{r}$ pointing from
304 the center of mass of $a$ to the center of mass of $b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $), the interaction energy is given by
305 \begin{equation}
306 U_{ab}(r)
307 = M_a \sum_{j \, \text{in } b} \frac {q_j}{\vert \mathbf{r}+\mathbf{r}_j \vert} .
308 \end{equation}
309 This can also be expanded as a Taylor series in $r$. Using a notation
310 similar to before to define the multipoles in object $b$,
311 \begin{equation}
312 M_b = C_b + D_{b\alpha} \frac{\partial}{\partial r_{\alpha}}
313 + Q_{b\alpha\beta}
314 \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
315 \end{equation}
316 we arrive at the multipole expression for the total interaction energy.
317 \begin{equation}
318 U_{ab}(r)=M_a M_b \frac{1}{r} \label{kernel}.
319 \end{equation}
320 This form has the benefit of separating out the energies of
321 interaction into contributions from the charge, dipole, and quadrupole
322 of $a$ interacting with the same types of multipoles in $b$.
323
324 \subsection{Damped Coulomb interactions}
325 \label{sec:damped}
326 In the standard multipole expansion, one typically uses the bare
327 Coulomb potential, with radial dependence $1/r$, as shown in
328 Eq.~(\ref{kernel}). It is also quite common to use a damped Coulomb
329 interaction, which results from replacing point charges with Gaussian
330 distributions of charge with width $\alpha$. In damped multipole
331 electrostatics, the kernel ($1/r$) of the expansion is replaced with
332 the function:
333 \begin{equation}
334 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
335 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
336 \end{equation}
337 We develop equations below using the function $f(r)$ to represent
338 either $1/r$ or $B_0(r)$, and all of the techniques can be applied to
339 bare or damped Coulomb kernels (or any other function) as long as
340 derivatives of these functions are known. Smith's convenient
341 functions $B_l(r)$, which are used for derivatives of the damped
342 kernel, are summarized in Appendix A. (N.B. there is one important
343 distinction between the two kernels, which is the behavior of
344 $\nabla^2 \frac{1}{r}$ compared with $\nabla^2 B_0(r)$. The former is
345 zero everywhere except for a delta function evaluated at the origin.
346 The latter also has delta function behavior, but is non-zero for $r
347 \neq 0$. Thus the standard justification for using a traceless
348 quadrupole tensor fails for the damped case.)
349
350 The main goal of this work is to smoothly cut off the interaction
351 energy as well as forces and torques as $r\rightarrow r_c$. To
352 describe how this goal may be met, we use two examples, charge-charge
353 and charge-dipole, using the bare Coulomb kernel, $f(r)=1/r$, to
354 explain the idea.
355
356 \subsection{Shifted-force methods}
357 In the shifted-force approximation, the interaction energy for two
358 charges $C_a$ and $C_b$ separated by a distance $r$ is
359 written:
360 \begin{equation}
361 U_{C_aC_b}(r)= C_a C_b
362 \left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
363 \right) .
364 \end{equation}
365 Two shifting terms appear in this equations, one from the
366 neutralization procedure ($-1/r_c$), and one that causes the first
367 derivative to vanish at the cutoff radius.
368
369 Since one derivative of the interaction energy is needed for the
370 force, the minimal perturbation is a term linear in $(r-r_c)$ in the
371 interaction energy, that is:
372 \begin{equation}
373 \frac{d\,}{dr}
374 \left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} }
375 \right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2}
376 \right) .
377 \end{equation}
378 which clearly vanishes as the $r$ approaches the cutoff radius. There
379 are a number of ways to generalize this derivative shift for
380 higher-order multipoles. Below, we present two methods, one based on
381 higher-order Taylor series for $r$ near $r_c$, and the other based on
382 linear shift of the kernel gradients at the cutoff itself.
383
384 \subsection{Taylor-shifted force (TSF) electrostatics}
385 In the Taylor-shifted force (TSF) method, the procedure that we follow
386 is based on a Taylor expansion containing the same number of
387 derivatives required for each force term to vanish at the cutoff. For
388 example, the quadrupole-quadrupole interaction energy requires four
389 derivatives of the kernel, and the force requires one additional
390 derivative. For quadrupole-quadrupole interactions, we therefore
391 require shifted energy expressions that include up to $(r-r_c)^5$ so
392 that all energies, forces, and torques are zero as $r \rightarrow
393 r_c$. In each case, we subtract off a function $f_n^{\text{shift}}(r)$
394 from the kernel $f(r)=1/r$. The subscript $n$ indicates the number of
395 derivatives to be taken when deriving a given multipole energy. We
396 choose a function with guaranteed smooth derivatives -- a truncated
397 Taylor series of the function $f(r)$, e.g.,
398 %
399 \begin{equation}
400 f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)}(r_c) .
401 \end{equation}
402 %
403 The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$.
404 Thus, for $f(r)=1/r$, we find
405 %
406 \begin{equation}
407 f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} .
408 \end{equation}
409 %
410 Continuing with the example of a charge $a$ interacting with a
411 dipole $b$, we write
412 %
413 \begin{equation}
414 U_{C_a\mathbf{D}_b}(r)=
415 C_a D_{b\alpha} \frac {\partial f_1(r) }{\partial r_\alpha}
416 = C_a D_{b\alpha}
417 \frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} .
418 \end{equation}
419 %
420 The force that dipole $ b$ exerts on charge $a$ is
421 %
422 \begin{equation}
423 F_{C_a \mathbf{D}_b \beta} = C_a D_{b \alpha}
424 \left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} +
425 \frac{r_\alpha r_\beta}{r^2}
426 \left( -\frac{1}{r} \frac {\partial} {\partial r}
427 + \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) .
428 \end{equation}
429 %
430 For undamped coulombic interactions, $f(r)=1/r$, we find
431 %
432 \begin{equation}
433 F_{C_a \mathbf{D}_b \beta} =
434 \frac{C_a D_{b\beta}}{r}
435 \left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right]
436 +C_a D_{b \alpha}r_\alpha r_\beta
437 \left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] .
438 \end{equation}
439 %
440 This expansion shows the expected $1/r^3$ dependence of the force.
441
442 In general, we can write
443 %
444 \begin{equation}
445 U^{\text{TSF}}= (\text{prefactor}) (\text{derivatives}) f_n(r)
446 \label{generic}
447 \end{equation}
448 %
449 with $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for
450 charge-quadrupole and dipole-dipole, $n=3$ for dipole-quadrupole, and
451 $n=4$ for quadrupole-quadrupole. For example, in
452 quadrupole-quadrupole interactions for which the $\text{prefactor}$ is
453 $Q_{a \alpha\beta}Q_{b \gamma\delta}$, the derivatives are
454 $\partial^4/\partial r_\alpha \partial r_\beta \partial
455 r_\gamma \partial r_\delta$, with implied summation combining the
456 space indices. Appendix \ref{radialTSF} contains details on the
457 radial functions.
458
459 In the formulas presented in the tables below, the placeholder
460 function $f(r)$ is used to represent the electrostatic kernel (either
461 damped or undamped). The main functions that go into the force and
462 torque terms, $g_n(r), h_n(r), s_n(r), \mathrm{~and~} t_n(r)$ are
463 successive derivatives of the shifted electrostatic kernel, $f_n(r)$
464 of the same index $n$. The algebra required to evaluate energies,
465 forces and torques is somewhat tedious, so only the final forms are
466 presented in tables \ref{tab:tableenergy} and \ref{tab:tableFORCE}.
467 One of the principal findings of our work is that the individual
468 orientational contributions to the various multipole-multipole
469 interactions must be treated with distinct radial functions, but each
470 of these contributions is independently force shifted at the cutoff
471 radius.
472
473 \subsection{Gradient-shifted force (GSF) electrostatics}
474 The second, and conceptually simpler approach to force-shifting
475 maintains only the linear $(r-r_c)$ term in the truncated Taylor
476 expansion, and has a similar interaction energy for all multipole
477 orders:
478 \begin{equation}
479 U^{\text{GSF}} = \sum \left[ U(\mathbf{r}, \mathsf{A}, \mathsf{B}) -
480 U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) - (r-r_c)
481 \hat{\mathbf{r}} \cdot \nabla U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) \right]
482 \label{generic2}
483 \end{equation}
484 where $\hat{\mathbf{r}}$ is the unit vector pointing between the two
485 multipoles, and the sum describes a separate force-shifting that is
486 applied to each orientational contribution to the energy. Both the
487 potential and the gradient for force shifting are evaluated for an
488 image multipole projected onto the surface of the cutoff sphere (see
489 fig \ref{fig:shiftedMultipoles}). The image multipole retains the
490 orientation (rotation matrix $\mathsf{B}$) of the interacting multipole. No
491 higher order terms $(r-r_c)^n$ appear. The primary difference between
492 the TSF and GSF methods is the stage at which the Taylor Series is
493 applied; in the Taylor-shifted approach, it is applied to the kernel
494 itself. In the Gradient-shifted approach, it is applied to individual
495 radial interaction terms in the multipole expansion. Energies from
496 this method thus have the general form:
497 \begin{equation}
498 U= \sum (\text{angular factor}) (\text{radial factor}).
499 \label{generic3}
500 \end{equation}
501
502 Functional forms for both methods (TSF and GSF) can both be summarized
503 using the form of Eq.~\ref{generic3}). The basic forms for the
504 energy, force, and torque expressions are tabulated for both shifting
505 approaches below -- for each separate orientational contribution, only
506 the radial factors differ between the two methods.
507
508 \subsection{Generalization of the Wolf shifted potential (SP)}
509 It is also possible to formulate an extension of the Wolf approach for
510 multipoles by simply projecting the image multipole onto the surface
511 of the cutoff sphere, and including the interactions with the central
512 multipole and the image. This effectively shifts the pair potential
513 to zero at the cutoff radius,
514 \begin{equation}
515 U^{\text{SP}} = \sum \left[ U(\mathbf{r}, \mathsf{A}, \mathsf{B}) -
516 U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) \right]
517 \label{eq:SP}
518 \end{equation}
519 independent of the orientations of the two multipoles. The sum again
520 describes separate potential shifting that is applied to each
521 orientational contribution to the energy.
522
523 The shifted potential (SP) method is a simple truncation of the GSF
524 method for each orientational contribution, leaving out the $(r-r_c)$
525 terms that multiply the gradient. Functional forms for the
526 shifted-potential (SP) method can also be summarized using the form of
527 Eq.~\ref{generic3}. The energy, force, and torque expressions are
528 tabulated below for all three methods. As in the GSF and TSF methods,
529 for each separate orientational contribution, only the radial factors
530 differ between the SP, GSF, and TSF methods.
531
532
533 \subsection{\label{sec:level2}Body and space axes}
534 Although objects $a$ and $b$ rotate during a molecular
535 dynamics (MD) simulation, their multipole tensors remain fixed in
536 body-frame coordinates. While deriving force and torque expressions,
537 it is therefore convenient to write the energies, forces, and torques
538 in intermediate forms involving the vectors of the rotation matrices.
539 We denote body axes for objects $a$ and $b$ using unit vectors
540 $\hat{\mathbf{A}}_m$ and $\hat{\mathbf{B}}_m$, respectively, with the index $m=(123)$.
541 In a typical simulation, the initial axes are obtained by
542 diagonalizing the moment of inertia tensors for the objects. (N.B.,
543 the body axes are generally {\it not} the same as those for which the
544 quadrupole moment is diagonal.) The rotation matrices are then
545 propagated during the simulation.
546
547 The rotation matrices $\mathsf {A}$ and $\mathsf {B}$ can be
548 expressed using these unit vectors:
549 \begin{eqnarray}
550 \mathsf {A} =
551 \begin{pmatrix}
552 \hat{\mathbf{A}}_1 \\
553 \hat{\mathbf{A}}_2 \\
554 \hat{\mathbf{A}}_3
555 \end{pmatrix}, \qquad
556 \mathsf {B} =
557 \begin{pmatrix}
558 \hat{\mathbf{B}}_1 \\
559 \hat{\mathbf{B}}_2 \\
560 \hat{\mathbf{B}}_3
561 \end{pmatrix}
562 \end{eqnarray}
563 %
564 These matrices convert from space-fixed $(xyz)$ to body-fixed $(123)$
565 coordinates.
566
567 Allen and Germano,\cite{Allen:2006fk} following earlier work by Price
568 {\em et al.},\cite{Price:1984fk} showed that if the interaction
569 energies are written explicitly in terms of $\hat{\mathbf{r}}$ and the body
570 axes ($\hat{\mathbf{A}}_m$, $\hat{\mathbf{B}}_n$) :
571 %
572 \begin{equation}
573 U(r, \{\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}} \},
574 \{\hat{\mathbf{B}}_n\cdot \hat{\mathbf{r}} \},
575 \{\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n \}) .
576 \label{ugeneral}
577 \end{equation}
578 %
579 the forces come out relatively cleanly,
580 %
581 \begin{equation}
582 \mathbf{F}_a=-\mathbf{F}_b = \nabla U =
583 \frac{\partial U}{\partial \mathbf{r}}
584 = \frac{\partial U}{\partial r} \hat{\mathbf{r}}
585 + \sum_m \left[
586 \frac{\partial U}{\partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})}
587 \frac { \partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})}{\partial \mathbf{r}}
588 + \frac{\partial U}{\partial (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})}
589 \frac { \partial (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})}{\partial \mathbf{r}}
590 \right] \label{forceequation}.
591 \end{equation}
592
593 The torques can also be found in a relatively similar
594 manner,
595 %
596 \begin{eqnarray}
597 \mathbf{\tau}_a =
598 \sum_m
599 \frac{\partial U}{\partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})}
600 ( \hat{\mathbf{r}} \times \hat{\mathbf{A}}_m )
601 -\sum_{mn}
602 \frac{\partial U}{\partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)}
603 (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) \\
604 %
605 \mathbf{\tau}_b =
606 \sum_m
607 \frac{\partial U}{\partial (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})}
608 ( \hat{\mathbf{r}} \times \hat{\mathbf{B}}_m)
609 +\sum_{mn}
610 \frac{\partial U}{\partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n)}
611 (\hat{\mathbf{A}}_m \times \hat{\mathbf{B}}_n) .
612 \end{eqnarray}
613
614 Note that our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $
615 is opposite in sign to that of Allen and Germano.\cite{Allen:2006fk}
616 We also made use of the identities,
617 %
618 \begin{align}
619 \frac { \partial (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})}{\partial \mathbf{r}}
620 =& \frac{1}{r} \left( \hat{\mathbf{A}}_m - (\hat{\mathbf{A}}_m \cdot \hat{\mathbf{r}})\hat{\mathbf{r}}
621 \right) \\
622 \frac { \partial (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})}{\partial \mathbf{r}}
623 =& \frac{1}{r} \left( \hat{\mathbf{B}}_m - (\hat{\mathbf{B}}_m \cdot \hat{\mathbf{r}})\hat{\mathbf{r}}
624 \right).
625 \end{align}
626
627 Many of the multipole contractions required can be written in one of
628 three equivalent forms using the unit vectors $\hat{\mathbf{r}}$, $\hat{\mathbf{A}}_m$,
629 and $\hat{\mathbf{B}}_n$. In the torque expressions, it is useful to have the
630 angular-dependent terms available in all three fashions, e.g. for the
631 dipole-dipole contraction:
632 %
633 \begin{equation}
634 \mathbf{D}_a \cdot \mathbf{D}_b
635 = D_{a \alpha} D_{b \alpha} =
636 \sum_{mn} D_{am} \hat{\mathbf{A}}_m \cdot \hat{\mathbf{B}}_n D_{bn}.
637 \end{equation}
638 %
639 The first two forms are written using space coordinates. The first
640 form is standard in the chemistry literature, while the second is
641 expressed using implied summation notation. The third form shows
642 explicit sums over body indices and the dot products now indicate
643 contractions using space indices.
644
645 In computing our force and torque expressions, we carried out most of
646 the work in body coordinates, and have transformed the expressions
647 back to space-frame coordinates, which are reported below. Interested
648 readers may consult the supplemental information for this paper for
649 the intermediate body-frame expressions.
650
651 \subsection{The Self-Interaction \label{sec:selfTerm}}
652
653 In addition to cutoff-sphere neutralization, the Wolf
654 summation~\cite{Wolf99} and the damped shifted force (DSF)
655 extension~\cite{Fennell:2006zl} also include self-interactions that
656 are handled separately from the pairwise interactions between
657 sites. The self-term is normally calculated via a single loop over all
658 sites in the system, and is relatively cheap to evaluate. The
659 self-interaction has contributions from two sources.
660
661 First, the neutralization procedure within the cutoff radius requires
662 a contribution from a charge opposite in sign, but equal in magnitude,
663 to the central charge, which has been spread out over the surface of
664 the cutoff sphere. For a system of undamped charges, the total
665 self-term is
666 \begin{equation}
667 U_\textrm{self} = - \frac{1}{r_c} \sum_{a=1}^N C_a^{2}.
668 \label{eq:selfTerm}
669 \end{equation}
670
671 Second, charge damping with the complementary error function is a
672 partial analogy to the Ewald procedure which splits the interaction
673 into real and reciprocal space sums. The real space sum is retained
674 in the Wolf and DSF methods. The reciprocal space sum is first
675 minimized by folding the largest contribution (the self-interaction)
676 into the self-interaction from charge neutralization of the damped
677 potential. The remainder of the reciprocal space portion is then
678 discarded (as this contributes the largest computational cost and
679 complexity to the Ewald sum). For a system containing only damped
680 charges, the complete self-interaction can be written as
681 \begin{equation}
682 U_\textrm{self} = - \left(\frac{\textrm{erfc}(\alpha r_c)}{r_c} +
683 \frac{\alpha}{\sqrt{\pi}} \right)
684 \sum_{a=1}^N
685 C_a^{2}.
686 \label{eq:dampSelfTerm}
687 \end{equation}
688
689 The extension of DSF electrostatics to point multipoles requires
690 treatment of the self-neutralization \textit{and} reciprocal
691 contributions to the self-interaction for higher order multipoles. In
692 this section we give formulae for these interactions up to quadrupolar
693 order.
694
695 The self-neutralization term is computed by taking the {\it
696 non-shifted} kernel for each interaction, placing a multipole of
697 equal magnitude (but opposite in polarization) on the surface of the
698 cutoff sphere, and averaging over the surface of the cutoff sphere.
699 Because the self term is carried out as a single sum over sites, the
700 reciprocal-space portion is identical to half of the self-term
701 obtained by Smith, and also by Aguado and Madden for the application
702 of the Ewald sum to multipoles.\cite{Smith82,Smith98,Aguado03} For a
703 given site which posesses a charge, dipole, and quadrupole, both types
704 of contribution are given in table \ref{tab:tableSelf}.
705
706 \begin{table*}
707 \caption{\label{tab:tableSelf} Self-interaction contributions for
708 site ($a$) that has a charge $(C_a)$, dipole
709 $(\mathbf{D}_a)$, and quadrupole $(\mathsf{Q}_a)$}.
710 \begin{ruledtabular}
711 \begin{tabular}{lccc}
712 Multipole order & Summed Quantity & Self-neutralization & Reciprocal \\ \hline
713 Charge & $C_a^2$ & $-f(r_c)$ & $-\frac{\alpha}{\sqrt{\pi}}$ \\
714 Dipole & $|\mathbf{D}_a|^2$ & $\frac{1}{3} \left( h(r_c) +
715 \frac{2 g(r_c)}{r_c} \right)$ & $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$\\
716 Quadrupole & $2 \mathsf{Q}_a:\mathsf{Q}_a + \text{Tr}(\mathsf{Q}_a)^2$ &
717 $- \frac{1}{15} \left( t(r_c)+ \frac{4 s(r_c)}{r_c} \right)$ &
718 $-\frac{4 \alpha^5}{5 \sqrt{\pi}}$ \\
719 Charge-Quadrupole & $-2 C_a \text{Tr}(\mathsf{Q}_a)$ & $\frac{1}{3} \left(
720 h(r_c) + \frac{2 g(r_c)}{r_c} \right)$& $-\frac{2 \alpha^3}{3 \sqrt{\pi}}$ \\
721 \end{tabular}
722 \end{ruledtabular}
723 \end{table*}
724
725 For sites which simultaneously contain charges and quadrupoles, the
726 self-interaction includes a cross-interaction between these two
727 multipole orders. Symmetry prevents the charge-dipole and
728 dipole-quadrupole interactions from contributing to the
729 self-interaction. The functions that go into the self-neutralization
730 terms, $g(r), h(r), s(r), \mathrm{~and~} t(r)$ are successive
731 derivatives of the electrostatic kernel, $f(r)$ (either the undamped
732 $1/r$ or the damped $B_0(r)=\mathrm{erfc}(\alpha r)/r$ function) that
733 have been evaluated at the cutoff distance. For undamped
734 interactions, $f(r_c) = 1/r_c$, $g(r_c) = -1/r_c^{2}$, and so on. For
735 damped interactions, $f(r_c) = B_0(r_c)$, $g(r_c) = B_0'(r_c)$, and so
736 on. Appendix \ref{SmithFunc} contains recursion relations that allow
737 rapid evaluation of these derivatives.
738
739 \section{Interaction energies, forces, and torques}
740 The main result of this paper is a set of expressions for the
741 energies, forces and torques (up to quadrupole-quadrupole order) that
742 work for the Taylor-shifted, gradient-shifted, and shifted potential
743 approximations. These expressions were derived using a set of generic
744 radial functions. Without using the shifting approximations mentioned
745 above, some of these radial functions would be identical, and the
746 expressions coalesce into the familiar forms for unmodified
747 multipole-multipole interactions. Table \ref{tab:tableenergy} maps
748 between the generic functions and the radial functions derived for the
749 three methods. The energy equations are written in terms of lab-frame
750 representations of the dipoles, quadrupoles, and the unit vector
751 connecting the two objects,
752
753 % Energy in space coordinate form ----------------------------------------------------------------------------------------------
754 %
755 %
756 % u ca cb
757 %
758 \begin{align}
759 U_{C_a C_b}(r)=&
760 C_a C_b v_{01}(r) \label{uchch}
761 \\
762 %
763 % u ca db
764 %
765 U_{C_a \mathbf{D}_b}(r)=&
766 C_a \left( \mathbf{D}_b \cdot \hat{\mathbf{r}} \right) v_{11}(r)
767 \label{uchdip}
768 \\
769 %
770 % u ca qb
771 %
772 U_{C_a \mathsf{Q}_b}(r)=& C_a \Bigl[ \text{Tr}\mathsf{Q}_b
773 v_{21}(r) + \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot
774 \hat{\mathbf{r}} \right) v_{22}(r) \Bigr]
775 \label{uchquad}
776 \\
777 %
778 % u da cb
779 %
780 %U_{D_{\bf a}C_{\bf b}}(r)=&
781 %-\frac{C_{\bf b}}{4\pi \epsilon_0}
782 %\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch}
783 %\\
784 %
785 % u da db
786 %
787 U_{\mathbf{D}_a \mathbf{D}_b}(r)=&
788 -\Bigr[ \left( \mathbf{D}_a \cdot
789 \mathbf{D}_b \right) v_{21}(r)
790 +\left( \mathbf{D}_a \cdot \hat{\mathbf{r}} \right)
791 \left( \mathbf{D}_b \cdot \hat{\mathbf{r}} \right)
792 v_{22}(r) \Bigr]
793 \label{udipdip}
794 \\
795 %
796 % u da qb
797 %
798 \begin{split}
799 % 1
800 U_{\mathbf{D}_a \mathsf{Q}_b}(r) =&
801 -\Bigl[
802 \text{Tr}\mathsf{Q}_b
803 \left( \mathbf{D}_a \cdot \hat{\mathbf{r}} \right)
804 +2 ( \mathbf{D}_a \cdot
805 \mathsf{Q}_b \cdot \hat{\mathbf{r}} ) \Bigr] v_{31}(r) \\
806 % 2
807 &- \left( \mathbf{D}_a \cdot \hat{\mathbf{r}} \right)
808 \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}} \right) v_{32}(r)
809 \label{udipquad}
810 \end{split}
811 \\
812 %
813 % u qa cb
814 %
815 %U_{Q_{\bf a}C_{\bf b}}(r)=&
816 %\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r)
817 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr]
818 %\label{uquadch}
819 %\\
820 %
821 % u qa db
822 %
823 %\begin{split}
824 %1
825 %U_{Q_{\bf a}D_{\bf b}}(r)=&
826 %\frac{1}{4\pi \epsilon_0} \Bigl[
827 %\text{Tr}\mathbf{Q}_{\mathbf{a}}
828 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
829 %+2 ( \mathbf{D}_{\mathbf{b}} \cdot
830 %\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)\\
831 % 2
832 %&+\frac{1}{4\pi \epsilon_0}
833 %\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right)
834 %\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r)
835 %\label{uquaddip}
836 %\end{split}
837 %\\
838 %
839 % u qa qb
840 %
841 \begin{split}
842 %1
843 U_{\mathsf{Q}_a \mathsf{Q}_b}(r)=&
844 \Bigl[
845 \text{Tr} \mathsf{Q}_a \text{Tr} \mathsf{Q}_b
846 +2
847 \mathsf{Q}_a : \mathsf{Q}_b \Bigr] v_{41}(r)
848 \\
849 % 2
850 &+\Bigl[ \text{Tr}\mathsf{Q}_a
851 \left( \hat{\mathbf{r}} \cdot
852 \mathsf{Q}_b \cdot \hat{\mathbf{r}} \right)
853 +\text{Tr}\mathsf{Q}_b
854 \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_a
855 \cdot \hat{\mathbf{r}} \right) +4 (\hat{\mathbf{r}} \cdot
856 \mathsf{Q}_a \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
857 \Bigr] v_{42}(r)
858 \\
859 % 4
860 &+
861 \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}} \right)
862 \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}} \right) v_{43}(r).
863 \label{uquadquad}
864 \end{split}
865 \end{align}
866 %
867 Note that the energies of multipoles on site $b$ interacting
868 with those on site $a$ can be obtained by swapping indices
869 along with the sign of the intersite vector, $\hat{\mathbf{r}}$.
870
871 %
872 %
873 % TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
874 %
875
876 \begin{sidewaystable}
877 \caption{\label{tab:tableenergy}Radial functions used in the energy
878 and torque equations. The $f, g, h, s, t, \mathrm{and~} u$
879 functions used in this table are defined in Appendices
880 \ref{radialTSF} and \ref{radialGSF}. The gradient shifted (GSF)
881 functions include the shifted potential (SP)
882 contributions (\textit{cf.} Eqs. \ref{generic2} and
883 \ref{eq:SP}).}
884 \begin{tabular}{|c|c|l|l|l|} \hline
885 Generic&Bare Coulomb&Taylor-Shifted (TSF)&Shifted Potential (SP)&Gradient-Shifted (GSF)
886 \\ \hline
887 %
888 %
889 %
890 %Ch-Ch&
891 $v_{01}(r)$ &
892 $\frac{1}{r}$ &
893 $f_0(r)$ &
894 $f(r)-f(r_c)$ &
895 SP $-(r-r_c)g(r_c)$
896 \\
897 %
898 %
899 %
900 %Ch-Di&
901 $v_{11}(r)$ &
902 $-\frac{1}{r^2}$ &
903 $g_1(r)$ &
904 $g(r)-g(r_c)$ &
905 SP $-(r-r_c)h(r_c)$ \\
906 %
907 %
908 %
909 %Ch-Qu/Di-Di&
910 $v_{21}(r)$ &
911 $-\frac{1}{r^3} $ &
912 $\frac{g_2(r)}{r} $ &
913 $\frac{g(r)}{r}-\frac{g(r_c)}{r_c}$ &
914 SP $-(r-r_c) \left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\
915 %
916 %
917 %
918 $v_{22}(r)$ &
919 $\frac{3}{r^3} $ &
920 $\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ &
921 $\left(-\frac{g(r)}{r}+h(r) \right) -\left(-\frac{g(r_c)}{r_c}+h(r_c) \right)$
922 & SP $-(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
923 %
924 %
925 %
926 %Di-Qu &
927 $v_{31}(r)$ &
928 $\frac{3}{r^4} $ &
929 $\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ &
930 $\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r}\right)-\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right)$
931 & SP $-(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\
932 %
933 %
934 %
935 $v_{32}(r)$ &
936 $-\frac{15}{r^4} $ &
937 $\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ &
938 $\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right)$&
939 SP $-(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}\right.$ \\
940 &&& $~~~-\left(\frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c)\right)$ &
941 $\phantom{SP-(r-r_c)}\left.-\frac{3s(r_c)}{r_c}+t(r_c) \right)$\\
942 %
943 %
944 %
945 %Qu-Qu&
946 $v_{41}(r)$ &
947 $\frac{3}{r^5} $ &
948 $\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ &
949 $\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right)- \left(-\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ &
950 SP $-(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$
951 \\
952 % 2
953 $v_{42}(r)$ &
954 $- \frac{15}{r^5} $ &
955 $\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ &
956 $\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right)$ &
957 SP$-(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3}\right.$ \\
958 &&& $~~~-\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ &
959 $\phantom{SP-(r-r_c)}\left. -\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$\\
960 % 3
961 %
962 %
963 $v_{43}(r)$ &
964 $ \frac{105}{r^5} $ &
965 $\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ &
966 $ \left(-\frac{15g(r)}{r^3} +\frac{15h(r)}{r^2}-\frac{6s(r)}{r}+t(r)\right) $ &
967 SP $-(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}\right.$\\
968 &&& $~~~-\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c}+ t(r_c)\right)$ &
969 $\phantom{SP-(r-r_c)}\left.+\frac{21s(r_c)}{r_c^2}-\frac{6t(r_c)}{r_c}+u(r_c) \right)$\\
970 \hline
971 \end{tabular}
972 \end{sidewaystable}
973 %
974 %
975 % FORCE TABLE of radial functions ----------------------------------------------------------------------------------------------------------------
976 %
977
978 \begin{sidewaystable}
979 \caption{\label{tab:tableFORCE}Radial functions used in the force
980 equations. Gradient shifted (GSF) functions are constructed using the shifted
981 potential (SP) functions. Some of these functions are simple
982 modifications of the functions found in table \ref{tab:tableenergy}}
983 \begin{tabular}{|c|c|l|l|l|} \hline
984 Function&Definition&Taylor-Shifted (TSF)& Shifted Potential (SP)
985 &Gradient-Shifted (GSF)
986 \\ \hline
987 %
988 %
989 %
990 $w_a(r)$&
991 $\frac{d v_{01}}{dr}$&
992 $g_0(r)$&
993 $g(r)$&
994 SP $-g(r_c)$ \\
995 %
996 %
997 $w_b(r)$ &
998 $\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $&
999 $\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ &
1000 $h(r) - \frac{v_{11}(r)}{r} $ &
1001 SP $- h(r_c)$ \\
1002 %
1003 $w_c(r)$ &
1004 $\frac{v_{11}(r)}{r}$ &
1005 $\frac{g_1(r)}{r} $ &
1006 $\frac{v_{11}(r)}{r}$&
1007 $\frac{v_{11}(r)}{r}$\\
1008 %
1009 %
1010 $w_d(r)$&
1011 $\frac{d v_{21}}{dr}$&
1012 $\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ &
1013 $\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right)$ &
1014 SP $-\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $ \\
1015 %
1016 $w_e(r)$ &
1017 $\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ &
1018 $\frac{v_{22}(r)}{r}$ &
1019 $\frac{v_{22}(r)}{r}$ &
1020 $\frac{v_{22}(r)}{r}$ \\
1021 %
1022 %
1023 $w_f(r)$&
1024 $\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$&
1025 $\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ &
1026 $ \left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) -\frac{2v_{22}(r)}{r}$&
1027 SP $- \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$\\
1028 %
1029 $w_g(r)$&
1030 $\frac{v_{31}(r)}{r}$&
1031 $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$&
1032 $\frac{v_{31}(r)}{r}$&
1033 $\frac{v_{31}(r)}{r}$\\
1034 %
1035 $w_h(r)$ &
1036 $\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$&
1037 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1038 $ \left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) -\frac{v_{31}(r)}{r}$ &
1039 SP $ - \left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\
1040 % 2
1041 $w_i(r)$ &
1042 $\frac{v_{32}(r)}{r}$ &
1043 $\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ &
1044 $\frac{v_{32}(r)}{r}$&
1045 $\frac{v_{32}(r)}{r}$\\
1046 %
1047 $w_j(r)$ &
1048 $\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$&
1049 $\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ &
1050 $\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) -\frac{3v_{32}}{r}$ &
1051 SP $-\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2}
1052 -\frac{3s(r_c)}{r_c} +t(r_c) \right)$ \\
1053 %
1054 $w_k(r)$ &
1055 $\frac{d v_{41}}{dr} $ &
1056 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1057 $\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2}
1058 \right)$ &
1059 SP $-\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\
1060 %
1061 $w_l(r)$ &
1062 $\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ &
1063 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1064 $\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2}
1065 +\frac{t(r)}{r} \right) -\frac{2v_{42}(r)}{r}$&
1066 SP$-\left(-\frac{9g(r_c)}{r_c^4} +\frac{9h(r_c)}{r_c^3} -\frac{4s(r_c)}{r_c^2} +\frac{t(r_c)}{r_c} \right)$\\
1067 %
1068 $w_m(r)$ &
1069 $\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$&
1070 $\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} \right.$ &
1071 $\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2}\right.$ &
1072 SP $- \left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3}\right.$ \\
1073 && $~~~\left.+ \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$
1074 & $~~~\left. -\frac{6t(r)}{r} +u(r) \right) -\frac{4v_{43}(r)}{r}$ &
1075 $\phantom{SP-} \left.+\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $\\
1076 %
1077 $w_n(r)$ &
1078 $\frac{v_{42}(r)}{r}$ &
1079 $\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ &
1080 $\frac{v_{42}(r)}{r}$&
1081 $\frac{v_{42}(r)}{r}$\\
1082 %
1083 $w_o(r)$ &
1084 $\frac{v_{43}(r)}{r}$&
1085 $\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ &
1086 $\frac{v_{43}(r)}{r}$&
1087 $\frac{v_{43}(r)}{r}$ \\ \hline
1088 %
1089
1090 \end{tabular}
1091 \end{sidewaystable}
1092 %
1093 %
1094 %
1095
1096 \subsection{Forces}
1097 The force on object $a$, $\mathbf{F}_a$, due to object
1098 $b$ is the negative of the force on $b$ due to $a$. For
1099 a simple charge-charge interaction, these forces will point along the
1100 $\pm \hat{\mathbf{r}}$ directions, where $\mathbf{r}=\mathbf{r}_b -
1101 \mathbf{r}_a $. Thus
1102 %
1103 \begin{equation}
1104 F_{a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_a C_b}}{\partial r}
1105 \quad \text{and} \quad F_{b \alpha}
1106 = - \hat{r}_\alpha \frac{\partial U_{C_a C_b}} {\partial r} .
1107 \end{equation}
1108 %
1109 We list below the force equations written in terms of lab-frame
1110 coordinates. The radial functions used in the three methods are listed
1111 in Table \ref{tab:tableFORCE}
1112 %
1113 %SPACE COORDINATES FORCE EQUATIONS
1114 %
1115 % **************************************************************************
1116 % f ca cb
1117 %
1118 \begin{align}
1119 \mathbf{F}_{a {C_a} {C_b}} =&
1120 C_a C_b w_a(r) \hat{\mathbf{r}} \\
1121 %
1122 %
1123 %
1124 \mathbf{F}_{a {C_a} {\mathbf{D}_b} } =&
1125 C_a \Bigl[
1126 \left( \hat{\mathbf{r}} \cdot \mathbf{D}_b \right)
1127 w_b(r) \hat{\mathbf{r}}
1128 + \mathbf{D}_b w_c(r) \Bigr] \\
1129 %
1130 %
1131 %
1132 \mathbf{F}_{a {C_a} {\mathsf{Q}_b}} =&
1133 C_a \Bigr[
1134 \text{Tr}\mathsf{Q}_b w_d(r) \hat{\mathbf{r}}
1135 + 2 \mathsf{Q}_b \cdot \hat{\mathbf{r}} w_e(r)
1136 + \left( \hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}
1137 \right) w_f(r) \hat{\mathbf{r}} \Bigr] \\
1138 %
1139 %
1140 %
1141 % \begin{equation}
1142 % \mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} =
1143 % -C_{\bf{b}} \Bigl[
1144 % \left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r}
1145 % + \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr]
1146 % \end{equation}
1147 %
1148 %
1149 %
1150 \begin{split}
1151 \mathbf{F}_{a \mathbf{D}_a \mathbf{D}_b} =&
1152 - \mathbf{D}_a \cdot \mathbf{D}_b w_d(r) \hat{\mathbf{r}}
1153 + \left( \mathbf{D}_a
1154 \left( \mathbf{D}_b \cdot \hat{\mathbf{r}} \right)
1155 + \mathbf{D}_b \left( \mathbf{D}_a \cdot \hat{\mathbf{r}} \right) \right) w_e(r)\\
1156 % 2
1157 & - \left( \hat{\mathbf{r}} \cdot \mathbf{D}_a \right)
1158 \left( \hat{\mathbf{r}} \cdot \mathbf{D}_b \right) w_f(r) \hat{\mathbf{r}}
1159 \end{split}\\
1160 %
1161 %
1162 %
1163 \begin{split}
1164 \mathbf{F}_{a \mathbf{D}_a \mathsf{Q}_b} =& - \Bigl[
1165 \text{Tr}\mathsf{Q}_b \mathbf{ D}_a
1166 +2 \mathbf{D}_a \cdot
1167 \mathsf{Q}_b \Bigr] w_g(r)
1168 - \Bigl[
1169 \text{Tr}\mathsf{Q}_b
1170 \left( \hat{\mathbf{r}} \cdot \mathbf{D}_a \right)
1171 +2 ( \mathbf{D}_a \cdot
1172 \mathsf{Q}_b \cdot \hat{\mathbf{r}}) \Bigr] w_h(r) \hat{\mathbf{r}} \\
1173 % 3
1174 & - \Bigl[\mathbf{ D}_a (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1175 +2 (\hat{\mathbf{r}} \cdot \mathbf{D}_a ) (\hat{\mathbf{r}} \cdot \mathsf{Q}_b ) \Bigr]
1176 w_i(r)
1177 % 4
1178 -
1179 (\hat{\mathbf{r}} \cdot \mathbf{D}_a )
1180 (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}) w_j(r) \hat{\mathbf{r}} \end{split} \\
1181 %
1182 %
1183 % \begin{equation}
1184 % \mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} =
1185 % \frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[
1186 % \text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r}
1187 % + 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r)
1188 % + \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr]
1189 % \end{equation}
1190 % %
1191 % \begin{equation}
1192 % \begin{split}
1193 % \mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1194 % &\frac{1}{4\pi \epsilon_0} \Bigl[
1195 % \text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}}
1196 % +2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r)
1197 % % 2
1198 % + \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}}
1199 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1200 % +2 (\mathbf{D}_{\mathbf{b}} \cdot
1201 % \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\
1202 % % 3
1203 % &+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}}
1204 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r})
1205 % +2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1206 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r)
1207 % % 4
1208 % +\frac{1}{4\pi \epsilon_0}
1209 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}})
1210 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r}
1211 % \end{split}
1212 % \end{equation}
1213 %
1214 %
1215 %
1216 \begin{split}
1217 \mathbf{F}_{a \mathsf{Q}_a \mathsf{Q}_b} =&
1218 \Bigl[
1219 \text{Tr}\mathsf{Q}_a \text{Tr}\mathsf{Q}_b
1220 + 2 \mathsf{Q}_a : \mathsf{Q}_b \Bigr] w_k(r) \hat{\mathbf{r}} \\
1221 % 2
1222 &+ \Bigl[
1223 2\text{Tr}\mathsf{Q}_b (\hat{\mathbf{r}} \cdot \mathsf{Q}_a )
1224 + 2\text{Tr}\mathsf{Q}_a (\hat{\mathbf{r}} \cdot \mathsf{Q}_b )
1225 % 3
1226 +4 (\mathsf{Q}_a \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1227 + 4(\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \mathsf{Q}_b) \Bigr] w_n(r) \\
1228 % 4
1229 &+ \Bigl[
1230 \text{Tr}\mathsf{Q}_a (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1231 + \text{Tr}\mathsf{Q}_b
1232 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1233 % 5
1234 +4 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot
1235 \mathsf{Q}_b \cdot \hat{\mathbf{r}}) \Bigr] w_l(r) \hat{\mathbf{r}} \\
1236 %
1237 &+ \Bigl[
1238 + 2 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a )
1239 (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1240 %6
1241 +2 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1242 (\hat{\mathbf{r}} \cdot \mathsf{Q}_b ) \Bigr] w_o(r) \\
1243 % 7
1244 &+
1245 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1246 (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}) w_m(r) \hat{\mathbf{r}} \end{split}
1247 \end{align}
1248 Note that the forces for higher multipoles on site $a$
1249 interacting with those of lower order on site $b$ can be
1250 obtained by swapping indices in the expressions above.
1251
1252 %
1253 % Torques SECTION -----------------------------------------------------------------------------------------
1254 %
1255 \subsection{Torques}
1256
1257 %
1258 The torques for the three methods are given in space-frame
1259 coordinates:
1260 %
1261 %
1262 \begin{align}
1263 \mathbf{\tau}_{b C_a \mathbf{D}_b} =&
1264 C_a (\hat{\mathbf{r}} \times \mathbf{D}_b) v_{11}(r) \\
1265 %
1266 %
1267 %
1268 \mathbf{\tau}_{b C_a \mathsf{Q}_b} =&
1269 2C_a
1270 \hat{\mathbf{r}} \times ( \mathsf{Q}_b \cdot \hat{\mathbf{r}}) v_{22}(r) \\
1271 %
1272 %
1273 %
1274 % \begin{equation}
1275 % \mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} =
1276 % -\frac{C_{\bf b}}{4\pi \epsilon_0}
1277 % (\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r)
1278 % \end{equation}
1279 %
1280 %
1281 %
1282 \mathbf{\tau}_{a \mathbf{D}_a \mathbf{D}_b} =&
1283 \mathbf{D}_a \times \mathbf{D}_b v_{21}(r)
1284 % 2
1285 -
1286 (\hat{\mathbf{r}} \times \mathbf{D}_a )
1287 (\hat{\mathbf{r}} \cdot \mathbf{D}_b ) v_{22}(r)\\
1288 %
1289 %
1290 %
1291 % \begin{equation}
1292 % \mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} =
1293 % -\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r)
1294 % % 2
1295 % +\frac{1}{4\pi \epsilon_0}
1296 % (\hat{r} \cdot \mathbf{D}_{\mathbf {a}} )
1297 % (\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r)
1298 % \end{equation}
1299 %
1300 %
1301 %
1302 \mathbf{\tau}_{a \mathbf{D}_a \mathsf{Q}_b} =&
1303 \Bigl[
1304 -\text{Tr}\mathsf{Q}_b
1305 (\hat{\mathbf{r}} \times \mathbf{D}_a )
1306 +2 \mathbf{D}_a \times
1307 (\mathsf{Q}_b \cdot \hat{\mathbf{r}})
1308 \Bigr] v_{31}(r)
1309 % 3
1310 - (\hat{\mathbf{r}} \times \mathbf{D}_a )
1311 (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}) v_{32}(r)\\
1312 %
1313 %
1314 %
1315 \mathbf{\tau}_{b \mathbf{D}_a \mathsf{Q}_b} =&
1316 \Bigl[
1317 +2 ( \mathbf{D}_a \cdot \mathsf{Q}_b ) \times
1318 \hat{\mathbf{r}}
1319 -2 \mathbf{D}_a \times
1320 (\mathsf{Q}_b \cdot \hat{\mathbf{r}})
1321 \Bigr] v_{31}(r)
1322 % 2
1323 +
1324 (\hat{\mathbf{r}} \cdot \mathbf{D}_a)
1325 (\hat{\mathbf{r}} \cdot \mathsf{Q}_b) \times \hat{\mathbf{r}} v_{32}(r)\\
1326 %
1327 %
1328 %
1329 % \begin{equation}
1330 % \mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} =
1331 % \frac{1}{4\pi \epsilon_0} \Bigl[
1332 % -2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r}
1333 % +2 \mathbf{D}_{\mathbf{b}} \times
1334 % (\mathbf{Q}_{\mathbf{a}} \cdot \hat{r})
1335 % \Bigr] v_{31}(r)
1336 % % 3
1337 % - \frac{2}{4\pi \epsilon_0}
1338 % (\hat{r} \cdot \mathbf{D}_{\mathbf{b}} )
1339 % (\hat{r} \cdot \mathbf
1340 % {Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r)
1341 % \end{equation}
1342 %
1343 %
1344 %
1345 % \begin{equation}
1346 % \mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} =
1347 % \frac{1}{4\pi \epsilon_0} \Bigl[
1348 % \text{Tr}\mathbf{Q}_{\mathbf{a}}
1349 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1350 % +2 \mathbf{D}_{\mathbf{b}} \times
1351 % ( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r)
1352 % % 2
1353 % +\frac{1}{4\pi \epsilon_0}
1354 % (\hat{r} \times \mathbf{D}_{\mathbf{b}} )
1355 % (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r)
1356 % \end{equation}
1357 %
1358 %
1359 %
1360 \begin{split}
1361 \mathbf{\tau}_{a \mathsf{Q}_a \mathsf{Q}_b} =&
1362 -4
1363 \mathsf{Q}_a \times \mathsf{Q}_b
1364 v_{41}(r) \\
1365 % 2
1366 &+
1367 \Bigl[-2\text{Tr}\mathsf{Q}_b
1368 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a ) \times \hat{\mathbf{r}}
1369 +4 \hat{\mathbf{r}} \times
1370 ( \mathsf{Q}_a \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1371 % 3
1372 -4 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a )\times
1373 ( \mathsf{Q}_b \cdot \hat{\mathbf{r}} ) \Bigr] v_{42}(r) \\
1374 % 4
1375 &+ 2
1376 \hat{\mathbf{r}} \times ( \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1377 (\hat{\mathbf{r}} \cdot \mathsf{Q}_b \cdot \hat{\mathbf{r}}) v_{43}(r) \end{split}\\
1378 %
1379 %
1380 %
1381 \begin{split}
1382 \mathbf{\tau}_{b \mathsf{Q}_a \mathsf{Q}_b} =
1383 &4
1384 \mathsf{Q}_a \times \mathsf{Q}_b v_{41}(r) \\
1385 % 2
1386 &+ \Bigl[- 2\text{Tr}\mathsf{Q}_a
1387 (\hat{\mathbf{r}} \cdot \mathsf{Q}_b ) \times \hat{\mathbf{r}}
1388 -4 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot
1389 \mathsf{Q}_b ) \times
1390 \hat{\mathbf{r}}
1391 +4 ( \hat{\mathbf{r}} \cdot \mathsf{Q}_a ) \times
1392 ( \mathsf{Q}_b \cdot \hat{\mathbf{r}})
1393 \Bigr] v_{42}(r) \\
1394 % 4
1395 &+2
1396 (\hat{\mathbf{r}} \cdot \mathsf{Q}_a \cdot \hat{\mathbf{r}})
1397 \hat{\mathbf{r}} \times ( \mathsf{Q}_b \cdot \hat{\mathbf{r}}) v_{43}(r)\end{split}
1398 \end{align}
1399 %
1400 Here, we have defined the matrix cross product in an identical form
1401 as in Ref. \onlinecite{Smith98}:
1402 \begin{equation}
1403 \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
1404 \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
1405 -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
1406 \right]
1407 \label{eq:matrixCross}
1408 \end{equation}
1409 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic
1410 permuations of the matrix indices.
1411
1412 All of the radial functions required for torques are identical with
1413 the radial functions previously computed for the interaction energies.
1414 These are tabulated for all three methods in table
1415 \ref{tab:tableenergy}. The torques for higher multipoles on site
1416 $a$ interacting with those of lower order on site
1417 $b$ can be obtained by swapping indices in the expressions
1418 above.
1419
1420 \section{Comparison to known multipolar energies}
1421
1422 To understand how these new real-space multipole methods behave in
1423 computer simulations, it is vital to test against established methods
1424 for computing electrostatic interactions in periodic systems, and to
1425 evaluate the size and sources of any errors that arise from the
1426 real-space cutoffs. In this paper we test SP, TSF, and GSF
1427 electrostatics against analytical methods for computing the energies
1428 of ordered multipolar arrays. In the following paper, we test the new
1429 methods against the multipolar Ewald sum for computing the energies,
1430 forces and torques for a wide range of typical condensed-phase
1431 (disordered) systems.
1432
1433 Because long-range electrostatic effects can be significant in
1434 crystalline materials, ordered multipolar arrays present one of the
1435 biggest challenges for real-space cutoff methods. The dipolar
1436 analogues to the Madelung constants were first worked out by Sauer,
1437 who computed the energies of ordered dipole arrays of zero
1438 magnetization and obtained a number of these constants.\cite{Sauer}
1439 This theory was developed more completely by Luttinger and
1440 Tisza\cite{LT,LT2} who tabulated energy constants for the Sauer arrays
1441 and other periodic structures.
1442
1443 To test the new electrostatic methods, we have constructed very large,
1444 $N=$ 16,000~(bcc) arrays of dipoles in the orientations described in
1445 Ref. \onlinecite{LT}. These structures include ``A'' lattices with
1446 nearest neighbor chains of antiparallel dipoles, as well as ``B''
1447 lattices with nearest neighbor strings of antiparallel dipoles if the
1448 dipoles are contained in a plane perpendicular to the dipole direction
1449 that passes through the dipole. We have also studied the minimum
1450 energy structure for the BCC lattice that was found by Luttinger \&
1451 Tisza. The total electrostatic energy density for any of the arrays
1452 is given by:
1453 \begin{equation}
1454 E = C N^2 \mu^2
1455 \end{equation}
1456 where $C$ is the energy constant (equivalent to the Madelung
1457 constant), $N$ is the number of dipoles per unit volume, and $\mu$ is
1458 the strength of the dipole. Energy constants (converged to 1 part in
1459 $10^9$) are given in the supplemental information.
1460
1461 \begin{figure}
1462 \includegraphics[width=\linewidth]{Dipoles_rcut_threeAlpha.eps}
1463 \caption{Convergence of the lattice energy constants as a function of
1464 cutoff radius (normalized by the lattice constant, $a$) for the new
1465 real-space methods. Three dipolar crystal structures were sampled,
1466 and the analytic energy constants for the three lattices are
1467 indicated with grey dashed lines. The left panel shows results for
1468 the undamped kernel ($1/r$), while the damped kernel, $B_0(r)$ was
1469 used in the center and right panels.}
1470 \label{fig:Dipoles_rCut}
1471 \end{figure}
1472
1473 For the purposes of testing the energy expressions and the
1474 self-neutralization schemes, the primary quantity of interest is the
1475 analytic energy constant for the perfect arrays. Convergence to these
1476 constants are shown as a function of the cutoff radius, $r_c$, for
1477 three different values of the damping coefficient, $\alpha$ in
1478 Fig.\ref{fig:Dipoles_rCut}. We have simultaneously tested a hard
1479 cutoff (where the kernel is simply truncated at the cutoff radius) in
1480 addition to the three new methods.
1481
1482 The hard cutoff exhibits oscillations around the analytic energy
1483 constants, and converges to incorrect energies when the complementary
1484 error function damping kernel is used. The shifted potential (SP)
1485 converges to the correct energy smoothly by $r_c = 4.5 a$ even for the
1486 undamped case. This indicates that the shifting and the correction
1487 provided by the self term are required for obtaining accurate
1488 energies. The Taylor-shifted force (TSF) approximation appears to
1489 perturb the potential too much inside the cutoff region to provide
1490 accurate measures of the energy constants. GSF is a compromise,
1491 converging to the correct energies within $r_c = 6 a$.
1492
1493 {\it Quadrupolar} analogues to the Madelung constants were first
1494 worked out by Nagai and Nakamura who computed the energies of selected
1495 quadrupole arrays based on extensions to the Luttinger and Tisza
1496 approach.\cite{Nagai01081960,Nagai01091963}
1497
1498 In analogy to the dipolar arrays, the total electrostatic energy for
1499 the quadrupolar arrays is:
1500 \begin{equation}
1501 E = C N \frac{3\bar{Q}^2}{4a^5}
1502 \end{equation}
1503 where $a$ is the lattice parameter, and $\bar{Q}$ is the effective
1504 quadrupole moment,
1505 \begin{equation}
1506 \bar{Q}^2 = 2 \left(3 \mathsf{Q} : \mathsf{Q} - (\text{Tr} \mathsf{Q})^2 \right)
1507 \end{equation}
1508 for the primitive quadrupole as defined in Eq. \ref{eq:quadrupole}.
1509 (For the traceless quadrupole tensor, $\mathsf{\Theta} = 3 \mathsf{Q} - \text{Tr} \mathsf{Q}$,
1510 the effective moment, $\bar{Q}^2 = \frac{2}{3} \mathsf{\Theta} : \mathsf{\Theta}$.)
1511
1512 To test the new electrostatic methods for quadrupoles, we have
1513 constructed very large, $N=$ 8,000~(sc), 16,000~(bcc), and
1514 32,000~(fcc) arrays of linear quadrupoles in the orientations
1515 described in Ref. \onlinecite{Nagai01081960}. We have compared the
1516 energy constants for these low-energy configurations for linear
1517 quadrupoles. Convergence to these constants are shown as a function of
1518 the cutoff radius, $r_c$, for three different values of the damping
1519 parameter, $\alpha$ in Fig.~\ref{fig:Quadrupoles_rCut}.
1520
1521 \begin{figure}
1522 \includegraphics[width=\linewidth]{Quadrupoles_rcut_threeAlpha.eps}
1523 \caption{Convergence of the lattice energy constants as a function of
1524 cutoff radius (normalized by the lattice constant, $a$) for the new
1525 real-space methods. Three quadrupolar crystal structures were
1526 sampled, and the analytic energy constants for the three lattices
1527 are indicated with grey dashed lines. The left panel shows results
1528 for the undamped kernel ($1/r$), while the damped kernel, $B_0(r)$
1529 was used in the center and right panels. Note that for quadrupoles,
1530 $\alpha^* = 0.4$ overdamps contributions from repulsive orientations
1531 in the perfect crystal.}
1532 \label{fig:Quadrupoles_rCut}
1533 \end{figure}
1534
1535 Again, we find that the hard cutoff exhibits oscillations around the
1536 analytic energy constants. The shifted potential (SP) approximation
1537 converges to the correct energy smoothly by $r_c = 3 a$ even for the
1538 undamped case. The Taylor-shifted force (TSF) approximation again
1539 appears to perturb the potential too much inside the cutoff region to
1540 provide accurate measures of the energy constants. GSF again provides
1541 a compromise between the two methods -- energies are converged by $r_c
1542 = 4.5 a$, and the approximation is not as perturbative at short range
1543 as TSF.
1544
1545 It is also useful to understand the behavior of the lattice energy
1546 constants for different values of the reduced damping parameter
1547 ($\alpha^* = \alpha a$) for the real-space methods. All of the methods
1548 (except for TSF) have excellent behavior for the undamped or
1549 weakly-damped cases. For the quadrupoles in particular, overdamping
1550 can cause problems in perfect crystals ({\it cf.} the right panel in
1551 Fig. \ref{fig:Quadrupoles_rCut}). In the perfect crystals, only a few
1552 orientations are sampled, and the damping alters the radial function
1553 for the direct quadrupolar contraction ($v_{41}(r)$) differently than
1554 the radial functions for the terms involving the product of the
1555 separation vector with the quadrupoles ($v_{42}(r)$ and $v_{43}(r)$).
1556 Because these terms are altered by different amounts by the
1557 complementary error function damping, the balance between attractive
1558 and repulsive interactions in the crystal can be altered significantly
1559 in overdamped situations.
1560
1561 In the second paper in the series, we discuss how large values of
1562 $\alpha$ can perturb the force and torque vectors, but weakly-damped
1563 electrostatics appear to generate reasonable values for the total
1564 electrostatic energies under both the SP and GSF approximations. We
1565 also discuss the effects that $\alpha$ can have on convergence to the
1566 average electrostatic energies in liquids (which sample a much wider
1567 range of local orientations).
1568
1569 \section{Conclusion}
1570 We have presented three efficient real-space methods for computing the
1571 interactions between point multipoles. One of these (SP) is a
1572 multipolar generalization of Wolf's method that smoothly shifts
1573 electrostatic energies to zero at the cutoff radius. Two of these
1574 methods (GSF and TSF) also smoothly truncate the forces and torques
1575 (in addition to the energies) at the cutoff radius, making them
1576 attractive for both molecular dynamics and Monte Carlo simulations. We
1577 find that the Gradient-Shifted Force (GSF) and the Shifted-Potential
1578 (SP) methods converge rapidly to the correct lattice energies for
1579 ordered dipolar and quadrupolar arrays, while the Taylor-Shifted Force
1580 (TSF) is too severe an approximation to provide accurate convergence
1581 to lattice energies.
1582
1583 Although the TSF method appears to be
1584
1585
1586 In most cases, GSF can obtain nearly quantitative agreement with the
1587 lattice energy constants with reasonably small cutoff radii. The only
1588 exception we have observed is for crystals which exhibit a bulk
1589 macroscopic dipole moment (e.g. Luttinger \& Tisza's $Z_1$ lattice).
1590 In this particular case, the multipole neutralization scheme can
1591 interfere with the correct computation of the energies. We note that
1592 the energies for these arrangements are typically much larger than for
1593 crystals with net-zero moments, so this is not expected to be an issue
1594 in most simulations.
1595
1596 The techniques used here to derive the force, torque and energy
1597 expressions can be extended to higher order multipoles, although some
1598 of the objects (e.g. the matrix cross product in
1599 Eq. \ref{eq:matrixCross}) will need to be generalized for higher-rank
1600 tensors. We also note that the definitions of the multipoles used
1601 here are in a primitive form, and these need some care when comparing
1602 with experiment or other computational techniques.
1603
1604 In large systems, these new methods can be made to scale approximately
1605 linearly with system size, and detailed comparisons with the Ewald sum
1606 for a wide range of chemical environments follows in the second paper.
1607
1608 \begin{acknowledgments}
1609 JDG acknowledges helpful discussions with Christopher
1610 Fennell. Support for this project was provided by the National
1611 Science Foundation under grant CHE-1362211. Computational time was
1612 provided by the Center for Research Computing (CRC) at the
1613 University of Notre Dame.
1614 \end{acknowledgments}
1615
1616 \newpage
1617 \appendix
1618
1619 \section{Smith's $B_l(r)$ functions for damped-charge distributions}
1620 \label{SmithFunc}
1621 The following summarizes Smith's $B_l(r)$ functions and includes
1622 formulas given in his appendix.\cite{Smith98} The first function
1623 $B_0(r)$ is defined by
1624 %
1625 \begin{equation}
1626 B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}
1627 \int_{\alpha r}^{\infty} \text{e}^{-s^2} ds .
1628 \end{equation}
1629 %
1630 The first derivative of this function is
1631 %
1632 \begin{equation}
1633 \frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r)
1634 -\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2}
1635 \end{equation}
1636 %
1637 which can be used to define a function $B_1(r)$:
1638 %
1639 \begin{equation}
1640 B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr}
1641 \end{equation}
1642 %
1643 In general, the recurrence relation,
1644 \begin{equation}
1645 B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr}
1646 = \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}}
1647 \text{e}^{-{\alpha}^2r^2}
1648 \right] ,
1649 \end{equation}
1650 is very useful for building up higher derivatives. As noted by Smith,
1651 it is possible to approximate the $B_l(r)$ functions,
1652 %
1653 \begin{equation}
1654 B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}}
1655 +\text{O}(r) .
1656 \end{equation}
1657 \newpage
1658 \section{The $r$-dependent factors for TSF electrostatics}
1659 \label{radialTSF}
1660
1661 Using the shifted damped functions $f_n(r)$ defined by:
1662 %
1663 \begin{equation}
1664 f_n(r)= B_0(r) -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)}(r_c) ,
1665 \end{equation}
1666 %
1667 where the superscript $(m)$ denotes the $m^\mathrm{th}$ derivative. In
1668 this Appendix, we provide formulas for successive derivatives of this
1669 function. (If there is no damping, then $B_0(r)$ is replaced by
1670 $1/r$.) First, we find:
1671 %
1672 \begin{equation}
1673 \frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} .
1674 \end{equation}
1675 %
1676 This formula clearly brings in derivatives of Smith's $B_0(r)$
1677 function, and we define higher-order derivatives as follows:
1678 %
1679 \begin{align}
1680 g_n(r)=& \frac{d f_n}{d r} =
1681 B_0^{(1)}(r) -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)}(r_c) \\
1682 h_n(r)=& \frac{d^2f_n}{d r^2} =
1683 B_0^{(2)}(r) -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)}(r_c) \\
1684 s_n(r)=& \frac{d^3f_n}{d r^3} =
1685 B_0^{(3)}(r) -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)}(r_c) \\
1686 t_n(r)=& \frac{d^4f_n}{d r^4} =
1687 B_0^{(4)}(r) -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)}(r_c) \\
1688 u_n(r)=& \frac{d^5f_n}{d r^5} =
1689 B_0^{(5)}(r) -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)}(r_c) .
1690 \end{align}
1691 %
1692 We note that the last function needed (for quadrupole-quadrupole interactions) is
1693 %
1694 \begin{equation}
1695 u_4(r)=B_0^{(5)}(r) - B_0^{(5)}(r_c) .
1696 \end{equation}
1697 % The functions
1698 % needed are listed schematically below:
1699 % %
1700 % \begin{eqnarray}
1701 % f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\
1702 % g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\
1703 % h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\
1704 % s_2 \quad s_3 \quad &s_4 \nonumber \\
1705 % t_3 \quad &t_4 \nonumber \\
1706 % &u_4 \nonumber .
1707 % \end{eqnarray}
1708 The functions $f_n(r)$ to $u_n(r)$ can be computed recursively and
1709 stored on a grid for values of $r$ from $0$ to $r_c$. Using these
1710 functions, we find
1711 %
1712 \begin{align}
1713 \frac{\partial f_n}{\partial r_\alpha} =&r_\alpha \frac {g_n}{r} \label{eq:b9}\\
1714 \frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =&\delta_{\alpha \beta}\frac {g_n}{r}
1715 +r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) \\
1716 \frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta \partial r_\gamma} =&
1717 \left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta +
1718 \delta_{ \beta \gamma} r_\alpha \right)
1719 \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) \nonumber \\
1720 & + r_\alpha r_\beta r_\gamma
1721 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \\
1722 \frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta \partial
1723 r_\gamma \partial r_\delta} =&
1724 \left( \delta_{\alpha \beta} \delta_{\gamma \delta}
1725 + \delta_{\alpha \gamma} \delta_{\beta \delta}
1726 +\delta_{ \beta \gamma} \delta_{\alpha \delta} \right)
1727 \left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\
1728 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta
1729 + \text{5 permutations}
1730 \right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3}
1731 \right) \nonumber \\
1732 &+ r_\alpha r_\beta r_\gamma r_\delta
1733 \left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5}
1734 + \frac{t_n}{r^4} \right)\\
1735 \frac{\partial^5 f_n}
1736 {\partial r_\alpha \partial r_\beta \partial r_\gamma \partial
1737 r_\delta \partial r_\epsilon} =&
1738 \left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon
1739 + \text{14 permutations} \right)
1740 \left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\
1741 &+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon
1742 + \text{9 permutations}
1743 \right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4}
1744 \right) \nonumber \\
1745 &+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon
1746 \left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7}
1747 - \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) \label{eq:b13}
1748 \end{align}
1749 %
1750 %
1751 %
1752 \newpage
1753 \section{The $r$-dependent factors for GSF electrostatics}
1754 \label{radialGSF}
1755
1756 In Gradient-shifted force electrostatics, the kernel is not expanded,
1757 and the expansion is carried out on the individual terms in the
1758 multipole interaction energies. For damped charges, this still brings
1759 multiple derivatives of the Smith's $B_0(r)$ function into the
1760 algebra. To denote these terms, we generalize the notation of the
1761 previous appendix. For either $f(r)=1/r$ (undamped) or $f(r)=B_0(r)$
1762 (damped),
1763 %
1764 \begin{align}
1765 g(r) &= \frac{df}{d r} && &&=-\frac{1}{r^2}
1766 &&\mathrm{or~~~} -rB_1(r) \\
1767 h(r) &= \frac{dg}{d r} &&= \frac{d^2f}{d r^2} &&= \frac{2}{r^3} &&\mathrm{or~~~}-B_1(r) + r^2 B_2(r) \\
1768 s(r) &= \frac{dh}{d r} &&= \frac{d^3f}{d r^3} &&=-\frac{6}{r^4}&&\mathrm{or~~~}3rB_2(r) - r^3 B_3(r)\\
1769 t(r) &= \frac{ds}{d r} &&= \frac{d^4f}{d r^4} &&= \frac{24}{r^5} &&\mathrm{or~~~} 3
1770 B_2(r) - 6r^2 B_3(r) + r^4 B_4(r) \\
1771 u(r) &= \frac{dt}{d r} &&= \frac{d^5f}{d r^5} &&=-\frac{120}{r^6} &&\mathrm{or~~~} -15
1772 r B_3(r) + 10 r^3B_4(r) -r^5B_5(r).
1773 \end{align}
1774 %
1775 For undamped charges, Table I lists these derivatives under the Bare
1776 Coulomb column. Equations \ref{eq:b9} to \ref{eq:b13} are still
1777 correct for GSF electrostatics if the subscript $n$ is eliminated.
1778
1779 \newpage
1780
1781 \bibliography{multipole}
1782
1783 \end{document}
1784 %
1785 % ****** End of file multipole.tex ******