ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/multipole_2/multipole2.aux
Revision: 4166
Committed: Tue Jun 3 18:49:15 2014 UTC (10 years, 3 months ago) by mlamichh
File size: 9105 byte(s)
Log Message:

File Contents

# Content
1 \relax
2 \citation{Woodcock86,Woodcock75}
3 \citation{Wolf99}
4 \citation{Parry75}
5 \citation{Takada93,Gunsteren94,Gunsteren95,Pedersen93,Pedersen95}
6 \citation{Gezelter06}
7 \citation{Parry75,Parry76,Clarke77,Perram79,Rahman89}
8 \citation{Spohr97,Berkowitz99}
9 \citation{Wolf99}
10 \citation{Wolf92,Wolf95}
11 \citation{Wolf92,Wolf95}
12 \citation{Wolf99}
13 \citation{Wolf99}
14 \citation{Zahn02}
15 \citation{Wolf99}
16 \citation{Wolf92}
17 \citation{Lacman65}
18 \newlabel{FirstPage}{{}{1}{}{}{}}
19 \@writefile{toc}{\contentsline {title}{Real space alternatives to the Ewald Sum. II. performance in condensed phase simulations}{1}{}}
20 \@writefile{toc}{\contentsline {abstract}{Abstract}{1}{}}
21 \newlabel{sec:intro}{{I}{1}{}{}{}}
22 \@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{}}
23 \@writefile{toc}{\contentsline {subsection}{\numberline {A}Real-space methods}{1}{}}
24 \citation{Wolf99}
25 \citation{Fukuda13}
26 \citation{Gezelter06}
27 \citation{Luebke13,Daivis13,Acevedo13,Space12,English08,Lawrence13,Vergne13}
28 \citation{PaperI}
29 \citation{Wolf99}
30 \citation{Gezelter06}
31 \citation{Gezelter06}
32 \citation{Ren06,Essex10,Essex11}
33 \citation{Ichiye10_1,Ichiye10_2,Ichiye10_3}
34 \citation{Gordon10,Gordon07,Smith80}
35 \citation{Gezelter06}
36 \citation{PaperI}
37 \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces NaCl crystal showing (a) breaking of the charge ordering in the direct spherical truncation, and (b) complete $(NaCl)_{4}$ molecule interacting with the central ion. }}{2}{}}
38 \newlabel{fig:NaCl}{{1}{2}{}{}{}}
39 \@writefile{toc}{\contentsline {subsection}{\numberline {B}Damping function}{2}{}}
40 \@writefile{toc}{\contentsline {subsection}{\numberline {C}Point multipoles for CG modeling}{2}{}}
41 \newlabel{sec:method}{{II}{2}{}{}{}}
42 \@writefile{toc}{\contentsline {section}{\numberline {II}REVIEW OF METHODS}{2}{}}
43 \citation{PaperI}
44 \citation{PaperI}
45 \citation{PaperI}
46 \citation{Paper I}
47 \@writefile{toc}{\contentsline {subsection}{\numberline {A}Taylor-shifted force(TSF)}{3}{}}
48 \newlabel{eq:TSF}{{1}{3}{}{}{}}
49 \@writefile{toc}{\contentsline {subsection}{\numberline {B}Shifted potential (SP) }{3}{}}
50 \newlabel{eq:SP}{{2}{3}{}{}{}}
51 \@writefile{toc}{\contentsline {subsection}{\numberline {C}Gradient-shifted force (GSF)}{3}{}}
52 \newlabel{eq:GSF}{{3}{3}{}{}{}}
53 \@writefile{toc}{\contentsline {subsection}{\numberline {D}Self term}{3}{}}
54 \newlabel{sec:test}{{III}{3}{}{}{}}
55 \@writefile{toc}{\contentsline {section}{\numberline {III}Test systems}{3}{}}
56 \citation{fisher53}
57 \citation{Allen91}
58 \@writefile{toc}{\contentsline {subsection}{\numberline {A}Modeled systems}{4}{}}
59 \@writefile{toc}{\contentsline {subsection}{\numberline {B}Statistical analysis}{4}{}}
60 \@writefile{toc}{\contentsline {subsection}{\numberline {C}Analysis of vector quantities}{4}{}}
61 \newlabel{eq:pdf}{{4}{4}{}{}{}}
62 \newlabel{eq:displacement}{{5}{4}{}{}{}}
63 \@writefile{toc}{\contentsline {subsection}{\numberline {D}Energy conservation}{4}{}}
64 \newlabel{sec:result}{{IV}{5}{}{}{}}
65 \@writefile{toc}{\contentsline {section}{\numberline {IV}RESULTS}{5}{}}
66 \@writefile{toc}{\contentsline {subsection}{\numberline {A}Configurational energy differences}{5}{}}
67 \newlabel{fig:barGraph2}{{IV\tmspace +\thinmuskip {.1667em}A}{5}{}{}{}}
68 \@writefile{toc}{\contentsline {subsection}{\numberline {B}Magnitude of the force and torque vectors}{5}{}}
69 \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The correlation coefficient and regression slope of configurational energy differences for a given method with compared with the reference Ewald method. The value of result equal to 1(dashed line) indicates energy difference is indistinguishable from the Ewald method. Here different symbols represent different value of the cutoff radius (9 $A^o$ = circle, 12 $A^o$ = square 15 $A^o$ = inverted triangle)}}{5}{}}
70 \newlabel{fig:slopeCorr_energy}{{2}{5}{}{}{}}
71 \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces The correlation coefficient and regression slope of the magnitude of the force for a given method with compared to the reference Ewald method. The value of result equal to 1(dashed line) indicates, the magnitude of the force from a method is indistinguishable from the Ewald method. Here different symbols represent different value of the cutoff radius (9 $A^o$ = circle, 12 $A^o$ = square 15 $A^o$ = inverted triangle). }}{6}{}}
72 \newlabel{fig:slopeCorr_force}{{3}{6}{}{}{}}
73 \@writefile{toc}{\contentsline {subsection}{\numberline {C}Directionality of the force and torque vectors}{6}{}}
74 \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces The correlation coefficient and regression slope of the magnitude of the torque for a given method with compared to the reference Ewald method. The value of result equal to 1(dashed line) indicates, the magnitude of the force from a method is indistinguishable from the Ewald method. Here different symbols represent different value of the cutoff radius (9 $A^o$ = circle, 12 $A^o$ = square 15 $A^o$ = inverted triangle).}}{6}{}}
75 \newlabel{fig:slopeCorr_torque}{{4}{6}{}{}{}}
76 \citation{Wolf99}
77 \citation{Gezelter06}
78 \citation{PaperI}
79 \bibdata{multipole2Notes,references}
80 \@writefile{toc}{\contentsline {subsection}{\numberline {D}Total energy conservation}{7}{}}
81 \@writefile{toc}{\contentsline {section}{\numberline {V}CONCLUSION}{7}{}}
82 \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces The circular variance of the data sets of the direction of the force and torque vectors obtained from a given method about reference Ewald method. The result equal to 0 (dashed line) indicates direction of the vectors are indistinguishable from the Ewald method. Here different symbols represent different value of the cutoff radius (9 $A^o$ = circle, 12 $A^o$ = square 15 $A^o$ = inverted triangle)}}{7}{}}
83 \newlabel{fig:slopeCorr_circularVariance}{{5}{7}{}{}{}}
84 \bibcite{Woodcock86}{{1}{1986}{{Clarke, Smith,\ and\ Woodcock}}{{}}}
85 \bibcite{Woodcock75}{{2}{1975}{{Woodcock}}{{}}}
86 \bibcite{Wolf99}{{3}{1999}{{Wolf\ \emph {et~al.}}}{{Wolf, Keblinski, Phillpot,\ and\ Eggebrecht}}}
87 \bibcite{Parry75}{{4}{1975}{{Parry}}{{}}}
88 \bibcite{Takada93}{{5}{1993}{{Shimada, Kaneko,\ and\ Takada}}{{}}}
89 \bibcite{Gunsteren94}{{6}{1994}{{Luty\ \emph {et~al.}}}{{Luty, Davis, Tironi,\ and\ Van~Gunsteren}}}
90 \bibcite{Gunsteren95}{{7}{1995}{{Luty, Tironi,\ and\ van Gunsteren}}{{}}}
91 \bibcite{Pedersen93}{{8}{1993}{{Darden, York,\ and\ Pedersen}}{{}}}
92 \bibcite{Pedersen95}{{9}{1995}{{Essmann\ \emph {et~al.}}}{{Essmann, Perera, Berkowitz, Darden, Lee,\ and\ Pedersen}}}
93 \bibcite{Gezelter06}{{10}{2006}{{Fennell\ and\ Gezelter}}{{}}}
94 \bibcite{Parry76}{{11}{1976}{{tagkey1976195}}{{}}}
95 \bibcite{Clarke77}{{12}{1977}{{Heyes, Barber,\ and\ Clarke}}{{}}}
96 \newlabel{fig:energyDrift}{{IV\tmspace +\thinmuskip {.1667em}D}{8}{}{}{}}
97 \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces The plot showing (a) standard deviation, and (b) total energy drift in the total energy conservation plot for different values of the damping alpha for different cut off methods. }}{8}{}}
98 \newlabel{fig:fluctuation}{{6}{8}{}{}{}}
99 \bibcite{Perram79}{{13}{1979}{{De~Leeuw\ and\ Perram}}{{}}}
100 \bibcite{Rahman89}{{14}{1989}{{Rhee\ \emph {et~al.}}}{{Rhee, Halley, Hautman,\ and\ Rahman}}}
101 \bibcite{Spohr97}{{15}{1997}{{Spohr}}{{}}}
102 \bibcite{Berkowitz99}{{16}{1999}{{Yeh\ and\ Berkowitz}}{{}}}
103 \bibcite{Wolf92}{{17}{1992}{{Wolf}}{{}}}
104 \bibcite{Wolf95}{{18}{1995}{{Wolf}}{{}}}
105 \bibcite{Zahn02}{{19}{2002}{{Zahn, Schilling,\ and\ Kast}}{{}}}
106 \bibcite{Luebke13}{{20}{2013}{{Shi\ and\ Luebke}}{{}}}
107 \bibcite{Daivis13}{{21}{2012}{{Kannam\ \emph {et~al.}}}{{Kannam, Todd, Hansen,\ and\ Daivis}}}
108 \bibcite{Acevedo13}{{22}{2013}{{McCann\ and\ Acevedo}}{{}}}
109 \bibcite{Space12}{{23}{2012}{{Forrest\ \emph {et~al.}}}{{Forrest, Pham, McLaughlin, Belof, Stern, Zaworotko,\ and\ Space}}}
110 \bibcite{English08}{{24}{2008}{{English}}{{}}}
111 \bibcite{Lawrence13}{{25}{2013}{{Louden, Schoenborn,\ and\ Lawrence}}{{}}}
112 \bibcite{Vergne13}{{26}{2013}{{Tokumasu\ \emph {et~al.}}}{{Tokumasu, Meurisse, Fillot, Vergne \emph {et~al.}}}}
113 \bibcite{Ren06}{{27}{2006}{{Golubkov\ and\ Ren}}{{}}}
114 \bibcite{Essex10}{{28}{2010}{{Orsi, Michel,\ and\ Essex}}{{}}}
115 \bibcite{Essex11}{{29}{2011}{{Orsi\ and\ Essex}}{{}}}
116 \bibcite{Ichiye10_1}{{30}{2010}{{Te, Tan,\ and\ Ichiye}}{{}}}
117 \bibcite{Ichiye10_2}{{31}{2010{}}{{Te\ and\ Ichiye}}{{}}}
118 \bibcite{Ichiye10_3}{{32}{2010{}}{{Te\ and\ Ichiye}}{{}}}
119 \bibcite{Gordon10}{{33}{2010}{{Ponder\ \emph {et~al.}}}{{Ponder, Wu, Ren, Pande, Chodera, Schnieders, Haque, Mobley, Lambrecht, DiStasio, Head-Gordon, Clark, Johnson,\ and\ Head-Gordon}}}
120 \bibcite{Gordon07}{{34}{2007}{{Schnieders\ \emph {et~al.}}}{{Schnieders, Baker, Ren,\ and\ Ponder}}}
121 \bibcite{Smith80}{{35}{1980}{{{de Leeuw}, Perram,\ and\ Smith}}{{}}}
122 \bibcite{Lacman65}{{36}{1965}{{Lacman}}{{}}}
123 \bibcite{Fukuda13}{{37}{2013}{{Fukuda}}{{}}}
124 \bibcite{PaperI}{{38}{}{{Lamichhane, Newman,\ and\ Gezelter}}{{}}}
125 \bibcite{fisher53}{{39}{1953}{{Fisher}}{{}}}
126 \bibcite{Allen91}{{40}{1991}{{Allen, Doyle,\ and\ Taylor}}{{}}}
127 \bibstyle{rev4-1}
128 \newlabel{LastBibItem}{{40}{9}{}{}{}}
129 \newlabel{LastPage}{{}{9}{}{}{}}