ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nanoglass/analysis.tex
Revision: 3222
Committed: Tue Sep 11 15:23:24 2007 UTC (16 years, 9 months ago) by chuckv
Content type: application/x-tex
File size: 2453 byte(s)
Log Message:
More writing on paper.

File Contents

# User Rev Content
1 chuckv 3213 \section{Analysis}
2    
3     One method of analysis that has been used extensively for determining local and extended orientational symmetry of a central atom with its surrounding neighbors is that of Bond-orientational analysis as formulated by Steinhart et.al.\cite{Steinhardt:1983mo}
4     In this model of bond-orientational analysis, a set of spherical harmonics is associated with its near neighbors as defined by the first minimum in the radial distribution function forming an association that Steinhart et.al termed a "bond". More formally, this set of numbers is defined as
5     \begin{equation}
6     Y_{lm}\left(\vec{r}_{ij}\right)=Y_{lm}\left(\theta(\vec{r}_{ij}),\phi(\vec{r}_{ij})\right)
7     \label{eq:spharm}
8     \end{equation}
9 chuckv 3222 where, $\{ Y_{lm}(\theta,\phi)\}$ are spherical harmonic functions, and $\theta(\vec{r})$ and $\phi(\vec{r})$ are the polar angles made by the bond with respect to a reference coordinate system. We chose for simplicity the origin as defined by the coordinates for our nanoparticle. The local environment surrounding any given atom in a system can be defined by the average over all bonds, $N_b(i)$, surrounding that central atom
10 chuckv 3213 \begin{equation}
11     \bar{q}_{lm}(i) = \frac{1}{N_{b}(i)}\sum_{j=1}^{N_b(i)} Y_{lm}(\vec{r}_{ij}).
12     \label{eq:local_avg_bo}
13     \end{equation}
14 chuckv 3222 We can further define a global average orientational-bond order over all $\bar{q}_{lm}$ by calculating the average of $\bar{q}_{lm}(i)$ over all $N$ particles
15 chuckv 3213 \begin{equation}
16     \bar{Q}_{lm} = \frac{\sum^{N}_{i=1}N_{b}(i)\bar{q}_{lm}(i)}{\sum^{N}_{i=1}N_{b}(i)}
17     \label{eq:sys_avg_bo}
18     \end{equation}
19 chuckv 3222 The $\bar{Q}_{lm}$ contained in Equation(\ref{eq:sys_avg_bo}) is not necessarily invariant with respect to rotation to the reference coordinate system. This issue can be addressed by constructing rotationally invariant combinations
20     \begin{equation}
21     Q_{l} = \left( \frac{4\pi}{2 l+1} \sum^{l}_{m=-l} \left| \bar{Q}_{lm} \right|^2\right)^{1/2}
22     \label{eq:sec_ord_inv}
23     \end{equation}
24     and
25     \begin{equation}
26     \hat{W}_{l} = \frac{W_{l}}{\left( \sum^{l}_{m=-l} \left| \bar{Q}_{lm} \right|^2\right)^{3/2}}
27     \label{eq:third_ord_inv}
28     \end{equation}
29     \begin{equation}
30     W_{l} = \sum_{\substack{m_1,m_2,m_3 \\m_1 + m_2 + m_3 = 0}} \left( \begin{array}{ccc} l & l & l \\ m_1 & m_2 & m_3 \end{array}\right) \\ \times \bar{Q}_{lm_1}\bar{Q}_{lm_2}\bar{Q}_{lm_3}
31     \label{eq:third_inv}
32     \end{equation}
33     where $Q_l$ and $W_l$ are the second and third order invariant combinations of $\bar{Q}_{lm}$.