ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nanoglass/analysis.tex
Revision: 3230
Committed: Tue Sep 25 19:23:21 2007 UTC (16 years, 11 months ago) by gezelter
Content type: application/x-tex
File size: 6616 byte(s)
Log Message:
Edits

File Contents

# User Rev Content
1 chuckv 3226 %!TEX root = /Users/charles/Desktop/nanoglass/nanoglass.tex
2    
3 chuckv 3213 \section{Analysis}
4    
5 gezelter 3230 Frank first proposed icosahedral arrangement of atoms as a model for
6     structure supercooled atomic liquids.\cite{19521106} The ability to
7     cool simple liquid metals well below their equilibrium melting
8     temperatures was attributed to this local icosahedral ordering. Frank
9     further showed that a 13-atom icosahedral cluster has a 8.4\% higher
10     binding energy the either a face centered cubic ({\sc fcc}) or
11     hexagonal close-packed ({\sc hcp}) crystal structure. Icosahedra also
12     have six fivefold symmetry axes that cannot be extended indefinitely
13     in three dimensions making them incommensurate with long-range
14     translational order. This does not preclude icosahedral clusters from
15     possessing long-range {\it orientational} order. The ``frustrated''
16     packing of these icosahedral structures into dense clusters has been
17     proposed as a model for glass formation.\cite{19871127} The size of
18     the icosahedral clusters is thought to increase until frustration
19     prevents any further growth.\cite{HOARE:1976fk} Molecular dynamics
20     simulations of a two-component Lennard-Jones glass showed that
21     clusters of face-sharing icosahedra are distributed throughout the
22     material.\cite{PhysRevLett.60.2295} Simulations of freezing of single
23     component metalic nanoclusters have shown a tendency for icosohedral
24     structure formation particularly at the surfaces of these
25     clusters.\cite{Gafner:2004bg,PhysRevLett.89.275502,Ascencio:2000qy,Chen:2004ec}
26     Experimentally, the splitting (or shoulder) on the second peak of the
27     X-ray structure factor in binary metallic glasses has been attributed
28     to the formation of tetrahedra that share faces of adjoining
29     icosahedra.\cite{Waal:1995lr}
30 chuckv 3226
31 gezelter 3230 Various structural probes have been used to characterize structural
32     order in systems including: common neighbor analysis, voronoi-analysis
33     and orientational bond-order
34     parameters.\cite{HoneycuttJ.Dana_j100303a014,Iwamatsu:2007lr,hsu:4974,nose:1803}
35     One method that has been used extensively for determining local and
36     extended orientational symmetry in condensed phases is the
37     bond-orientational analysis formulated by Steinhart
38     et.al.\cite{Steinhardt:1983mo} In this model, a set of spherical
39     harmonics is associated with each of the near neighbors of a central
40     atom. Neighbors (or ``bonds'') are defined as having a distance from
41     the central atom that is within the first peak in the radial
42     distribution function. The spherical harmonic between a central atom
43     $i$ and a neighboring atom $j$ is
44 chuckv 3213 \begin{equation}
45 gezelter 3230 Y_{lm}\left(\vec{r}_{ij}\right)=Y_{lm}\left(\theta(\vec{r}_{ij}),\phi(\vec{r}_{ij})\right)
46     \label{eq:spharm}
47 chuckv 3213 \end{equation}
48 gezelter 3230 where, $\{ Y_{lm}(\theta,\phi)\}$ are spherical harmonics, and
49     $\theta(\vec{r})$ and $\phi(\vec{r})$ are the polar and azimuthal
50     angles made by the bond vector $\vec{r}$ with respect to a reference
51     coordinate system. We chose for simplicity the origin as defined by
52     the coordinates for our nanoparticle. (Only even-$l$ spherical
53     harmonics are considered since permutation of a pair of identical
54     particles should not affect the bond-order parameter.) The local
55     environment surrounding atom $i$ can be defined by
56     the average over all neighbors, $N_b(i)$, surrounding that atom,
57 chuckv 3213 \begin{equation}
58 gezelter 3230 \bar{q}_{lm}(i) = \frac{1}{N_{b}(i)}\sum_{j=1}^{N_b(i)} Y_{lm}(\vec{r}_{ij}).
59     \label{eq:local_avg_bo}
60 chuckv 3213 \end{equation}
61 gezelter 3230 We can further define a global average orientational-bond order over
62     all $\bar{q}_{lm}$ by calculating the average of $\bar{q}_{lm}(i)$
63     over all $N$ particles
64 chuckv 3213 \begin{equation}
65 gezelter 3230 \bar{Q}_{lm} = \frac{\sum^{N}_{i=1}N_{b}(i)\bar{q}_{lm}(i)}{\sum^{N}_{i=1}N_{b}(i)}
66     \label{eq:sys_avg_bo}
67 chuckv 3213 \end{equation}
68 gezelter 3230 The $\bar{Q}_{lm}$ contained in Equation(\ref{eq:sys_avg_bo}) is not
69     necessarily invariant with respect to rotation of the arbitrary reference
70     coordinate system.
71     Second- and third-order rotationally invariant combinations, $Q_l$ and
72     $W_l$, can be taken by summing over $m$ values of $\bar{Q}_{lm}$,
73 chuckv 3222 \begin{equation}
74 gezelter 3230 Q_{l} = \left( \frac{4\pi}{2 l+1} \sum^{l}_{m=-l} \left| \bar{Q}_{lm} \right|^2\right)^{1/2}
75     \label{eq:sec_ord_inv}
76 chuckv 3222 \end{equation}
77     and
78     \begin{equation}
79     \hat{W}_{l} = \frac{W_{l}}{\left( \sum^{l}_{m=-l} \left| \bar{Q}_{lm} \right|^2\right)^{3/2}}
80     \label{eq:third_ord_inv}
81     \end{equation}
82 gezelter 3230 where
83 chuckv 3222 \begin{equation}
84 gezelter 3230 W_{l} = \sum_{\substack{m_1,m_2,m_3 \\m_1 + m_2 + m_3 = 0}} \left( \begin{array}{ccc} l & l & l \\ m_1 & m_2 & m_3 \end{array}\right) \\ \times \bar{Q}_{lm_1}\bar{Q}_{lm_2}\bar{Q}_{lm_3}.
85 chuckv 3222 \label{eq:third_inv}
86     \end{equation}
87 gezelter 3230 The factor in parentheses in Eq. \ref{eq:third_inv} is the Wigner-3$j$
88     symbol.
89 chuckv 3226
90     \begin{table}
91 gezelter 3230 \caption{Values of bond orientational order parameters for
92     simple structures cooresponding to $l=4$ and $l=6$ spherical harmonic
93     functions.\cite{wolde:9932} $Q_4$ and $\hat{W}_4$ have values for {\it
94     individual} icosahedral clusters, but these values are not invariant
95     under rotations of the reference coordinate systems. Similar behavior
96     is observed in the bond-orientational order parameters for individual
97     liquid-like structures.}
98 chuckv 3226 \begin{center}
99     \begin{tabular}{ccccc}
100     \hline
101     \hline
102     & $Q_4$ & $Q_6$ & $\hat{W}_4$ & $\hat{W}_6$\\
103    
104     fcc & 0.191 & 0.575 & -0.159 & -0.013\\
105    
106     hcp & 0.097 & 0.485 & 0.134 & -0.012\\
107    
108     bcc & 0.036 & 0.511 & 0.159 & 0.013\\
109    
110     sc & 0.764 & 0.354 & 0.159 & 0.013\\
111    
112 gezelter 3230 Icosahedral & - & 0.663 & - & -0.170\\
113 chuckv 3226
114 gezelter 3230 (liquid) & - & - & - & -\\
115 chuckv 3226 \hline
116     \end{tabular}
117     \end{center}
118     \label{table:bopval}
119     \end{table}
120    
121 gezelter 3230 For ideal face-centered cubic ({\sc fcc}), body-centered cubic ({\sc
122     bcc}) and simple cubic ({\sc sc}) as well as hexagonally close-packed
123     ({\sc hcp}) structures, these rotationally invariant bond order
124     parameters have fixed values independent of the choice of coordinate
125     reference frames. For ideal icosahedral structures, the $l=6$
126     invariants, $Q_6$ and $\hat{W}_6$ are also independent of the
127     coordinate system. $Q_4$ and $\hat{W}_4$ will have non-vanishing
128     values for {\it individual} icosahedral clusters, but these values are
129     not invariant under rotations of the reference coordinate systems.
130     Similar behavior is observed in the bond-orientational order
131     parameters for individual liquid-like structures.
132    
133     Additionally, both $Q_6$ and $\hat{W}_6$ have extreme values for the
134     icosahedral clusters. This makes the $l=6$ bond-orientational order
135     parameters particularly useful in identifying the extent of local
136     icosahedral ordering in condensed phases. For example, a local
137     structure which exhibits $\hat{W}_6$ values near -0.17 is easily
138     identified as an icosahedral cluster and cannot be mistaken for
139     distorted cubic or liquid-like structures.
140    
141