ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nanoglass/analysis.tex
Revision: 3233
Committed: Thu Sep 27 18:45:55 2007 UTC (16 years, 9 months ago) by gezelter
Content type: application/x-tex
File size: 10868 byte(s)
Log Message:
Edits

File Contents

# User Rev Content
1 chuckv 3226 %!TEX root = /Users/charles/Desktop/nanoglass/nanoglass.tex
2    
3 chuckv 3213 \section{Analysis}
4    
5 gezelter 3230 Frank first proposed icosahedral arrangement of atoms as a model for
6     structure supercooled atomic liquids.\cite{19521106} The ability to
7     cool simple liquid metals well below their equilibrium melting
8     temperatures was attributed to this local icosahedral ordering. Frank
9     further showed that a 13-atom icosahedral cluster has a 8.4\% higher
10     binding energy the either a face centered cubic ({\sc fcc}) or
11     hexagonal close-packed ({\sc hcp}) crystal structure. Icosahedra also
12     have six fivefold symmetry axes that cannot be extended indefinitely
13     in three dimensions making them incommensurate with long-range
14     translational order. This does not preclude icosahedral clusters from
15     possessing long-range {\it orientational} order. The ``frustrated''
16     packing of these icosahedral structures into dense clusters has been
17     proposed as a model for glass formation.\cite{19871127} The size of
18     the icosahedral clusters is thought to increase until frustration
19     prevents any further growth.\cite{HOARE:1976fk} Molecular dynamics
20     simulations of a two-component Lennard-Jones glass showed that
21     clusters of face-sharing icosahedra are distributed throughout the
22     material.\cite{PhysRevLett.60.2295} Simulations of freezing of single
23     component metalic nanoclusters have shown a tendency for icosohedral
24     structure formation particularly at the surfaces of these
25     clusters.\cite{Gafner:2004bg,PhysRevLett.89.275502,Ascencio:2000qy,Chen:2004ec}
26     Experimentally, the splitting (or shoulder) on the second peak of the
27     X-ray structure factor in binary metallic glasses has been attributed
28     to the formation of tetrahedra that share faces of adjoining
29     icosahedra.\cite{Waal:1995lr}
30 chuckv 3226
31 gezelter 3230 Various structural probes have been used to characterize structural
32     order in systems including: common neighbor analysis, voronoi-analysis
33     and orientational bond-order
34     parameters.\cite{HoneycuttJ.Dana_j100303a014,Iwamatsu:2007lr,hsu:4974,nose:1803}
35     One method that has been used extensively for determining local and
36     extended orientational symmetry in condensed phases is the
37     bond-orientational analysis formulated by Steinhart
38 gezelter 3233 {\it et al.}\cite{Steinhardt:1983mo} In this model, a set of spherical
39 gezelter 3230 harmonics is associated with each of the near neighbors of a central
40     atom. Neighbors (or ``bonds'') are defined as having a distance from
41     the central atom that is within the first peak in the radial
42     distribution function. The spherical harmonic between a central atom
43     $i$ and a neighboring atom $j$ is
44 chuckv 3213 \begin{equation}
45 gezelter 3230 Y_{lm}\left(\vec{r}_{ij}\right)=Y_{lm}\left(\theta(\vec{r}_{ij}),\phi(\vec{r}_{ij})\right)
46     \label{eq:spharm}
47 chuckv 3213 \end{equation}
48 gezelter 3230 where, $\{ Y_{lm}(\theta,\phi)\}$ are spherical harmonics, and
49     $\theta(\vec{r})$ and $\phi(\vec{r})$ are the polar and azimuthal
50     angles made by the bond vector $\vec{r}$ with respect to a reference
51     coordinate system. We chose for simplicity the origin as defined by
52     the coordinates for our nanoparticle. (Only even-$l$ spherical
53     harmonics are considered since permutation of a pair of identical
54     particles should not affect the bond-order parameter.) The local
55     environment surrounding atom $i$ can be defined by
56     the average over all neighbors, $N_b(i)$, surrounding that atom,
57 chuckv 3213 \begin{equation}
58 gezelter 3230 \bar{q}_{lm}(i) = \frac{1}{N_{b}(i)}\sum_{j=1}^{N_b(i)} Y_{lm}(\vec{r}_{ij}).
59     \label{eq:local_avg_bo}
60 chuckv 3213 \end{equation}
61 gezelter 3230 We can further define a global average orientational-bond order over
62     all $\bar{q}_{lm}$ by calculating the average of $\bar{q}_{lm}(i)$
63     over all $N$ particles
64 chuckv 3213 \begin{equation}
65 gezelter 3230 \bar{Q}_{lm} = \frac{\sum^{N}_{i=1}N_{b}(i)\bar{q}_{lm}(i)}{\sum^{N}_{i=1}N_{b}(i)}
66     \label{eq:sys_avg_bo}
67 chuckv 3213 \end{equation}
68 gezelter 3233 The $\bar{Q}_{lm}$ contained in equation \ref{eq:sys_avg_bo} is not
69     necessarily invariant under rotations of the arbitrary reference
70     coordinate system. Second- and third-order rotationally invariant
71     combinations, $Q_l$ and $W_l$, can be taken by summing over $m$ values
72     of $\bar{Q}_{lm}$,
73 chuckv 3222 \begin{equation}
74 gezelter 3230 Q_{l} = \left( \frac{4\pi}{2 l+1} \sum^{l}_{m=-l} \left| \bar{Q}_{lm} \right|^2\right)^{1/2}
75     \label{eq:sec_ord_inv}
76 chuckv 3222 \end{equation}
77     and
78     \begin{equation}
79     \hat{W}_{l} = \frac{W_{l}}{\left( \sum^{l}_{m=-l} \left| \bar{Q}_{lm} \right|^2\right)^{3/2}}
80     \label{eq:third_ord_inv}
81     \end{equation}
82 gezelter 3230 where
83 chuckv 3222 \begin{equation}
84 gezelter 3230 W_{l} = \sum_{\substack{m_1,m_2,m_3 \\m_1 + m_2 + m_3 = 0}} \left( \begin{array}{ccc} l & l & l \\ m_1 & m_2 & m_3 \end{array}\right) \\ \times \bar{Q}_{lm_1}\bar{Q}_{lm_2}\bar{Q}_{lm_3}.
85 chuckv 3222 \label{eq:third_inv}
86     \end{equation}
87 gezelter 3230 The factor in parentheses in Eq. \ref{eq:third_inv} is the Wigner-3$j$
88 gezelter 3233 symbol, and the sum is over all valid ($|m| \leq l$) values of $m_1$,
89     $m_2$, and $m_3$ which sum to zero.
90 chuckv 3226
91     \begin{table}
92 gezelter 3230 \caption{Values of bond orientational order parameters for
93     simple structures cooresponding to $l=4$ and $l=6$ spherical harmonic
94     functions.\cite{wolde:9932} $Q_4$ and $\hat{W}_4$ have values for {\it
95     individual} icosahedral clusters, but these values are not invariant
96     under rotations of the reference coordinate systems. Similar behavior
97     is observed in the bond-orientational order parameters for individual
98     liquid-like structures.}
99 chuckv 3226 \begin{center}
100     \begin{tabular}{ccccc}
101     \hline
102     \hline
103     & $Q_4$ & $Q_6$ & $\hat{W}_4$ & $\hat{W}_6$\\
104    
105     fcc & 0.191 & 0.575 & -0.159 & -0.013\\
106    
107     hcp & 0.097 & 0.485 & 0.134 & -0.012\\
108    
109     bcc & 0.036 & 0.511 & 0.159 & 0.013\\
110    
111     sc & 0.764 & 0.354 & 0.159 & 0.013\\
112    
113 gezelter 3230 Icosahedral & - & 0.663 & - & -0.170\\
114 chuckv 3226
115 gezelter 3230 (liquid) & - & - & - & -\\
116 chuckv 3226 \hline
117     \end{tabular}
118     \end{center}
119     \label{table:bopval}
120     \end{table}
121    
122 gezelter 3230 For ideal face-centered cubic ({\sc fcc}), body-centered cubic ({\sc
123     bcc}) and simple cubic ({\sc sc}) as well as hexagonally close-packed
124     ({\sc hcp}) structures, these rotationally invariant bond order
125     parameters have fixed values independent of the choice of coordinate
126     reference frames. For ideal icosahedral structures, the $l=6$
127     invariants, $Q_6$ and $\hat{W}_6$ are also independent of the
128     coordinate system. $Q_4$ and $\hat{W}_4$ will have non-vanishing
129     values for {\it individual} icosahedral clusters, but these values are
130     not invariant under rotations of the reference coordinate systems.
131     Similar behavior is observed in the bond-orientational order
132     parameters for individual liquid-like structures.
133    
134 gezelter 3233 Additionally, both $Q_6$ and $\hat{W}_6$ are thought to have extreme
135     values for the icosahedral clusters.\cite{Steinhardt:1983mo} This
136     makes the $l=6$ bond-orientational order parameters particularly
137     useful in identifying the extent of local icosahedral ordering in
138     condensed phases. For example, a local structure which exhibits
139     $\hat{W}_6$ values near -0.17 is easily identified as an icosahedral
140     cluster and cannot be mistaken for distorted cubic or liquid-like
141     structures.
142 gezelter 3230
143 gezelter 3233 One may use these bond orientational order parameters as an averaged
144     property to obtain the extent of icosahedral ordering in a supercooled
145     liquid or cluster. It is also possible to accumulate information
146     about the {\it distributions} of local bond orientational order
147     parameters, $p(\hat{W}_6)$ and $p(Q_6)$, which provide information
148     about individual atomic sites that are central to local icosahedral
149     structures.
150 gezelter 3230
151 gezelter 3233 The distributions of atomic $Q_6$ and $\hat{W}_6$ values are plotted
152     as a function of temperature for our nanoparticles in figures
153     \ref{fig:q6} and \ref{fig:w6}. At high temperatures, the
154     distributions are unstructured and are broadly distributed across the
155     entire range of values. As the particles are cooled, however, there
156     is a dramatic increase in the fraction of atomic sites which have
157     local icosahedral ordering around them. (This corresponds to the
158     sharp peak appearing in figure \ref{fig:w6} at $\hat{W}_6=-0.17$ and
159     to the broad shoulder appearing in figure \ref{fig:q6} at $Q_6 =
160     0.663$.)
161    
162     \begin{figure}[htbp]
163     \centering
164     %\includegraphics[width=\linewidth]{images/w6fig.pdf}
165     \caption{Distributions of the bond orientational order parameter
166     ($\hat{W}_6$) at different temperatures. The upper, middle, and lower
167     panels are for 20, 30, and 40 \AA\ particles, respectively. The
168     left-hand column used cooling rates commensurate with a low
169     interfacial conductance ($87.5 \times 10^{6}$
170     $\mathrm{Wm^{-2}K^{-1}}$), while the right-hand column used a more
171     physically reasonable value of $117 \times 10^{6}$
172     $\mathrm{Wm^{-2}K^{-1}}$. The peak at $\hat{W}_6 \approx -0.17$ is
173     due to local icosahedral structures.}
174     \label{fig:w6}
175     \end{figure}
176    
177     \begin{figure}[htbp]
178     \centering
179     %\includegraphics[width=\linewidth]{images/q6fig.pdf}
180     \caption{Distributions of the bond orientational order parameter
181     ($Q_6$) at different temperatures. The curves in the six panels in
182     this figure were computed at identical conditions to the same panels in
183     figure \ref{fig:w6}.}
184     \label{fig:q6}
185     \end{figure}
186    
187     We have also looked at the fraction of atomic centers which have local
188     icosahedral order:
189     \begin{equation}
190     f_\textrm{icos} = \int_{-\infty}^{w_i} p(\hat{W}_6) d \hat{W}_6
191     \label{eq:ficos}
192     \end{equation}
193     where $w_i$ is a cutoff value in $\hat{W}_6$ for atomic centers that
194     are displaying icosahedral environments. We have chosen a (somewhat
195     arbitrary) value of $w_i= -0.15$ for the purposes of this work. A
196     plot of $f_\textrm{icos}(T)$ as a function of temperature of the
197     particles is given in figure \ref{fig:ficos}. As the particles cool,
198     the fraction of local icosahedral ordering rises smoothly to a plateau
199     value. The larger particles (particularly the ones that were cooled
200     in a lower viscosity solvent) show a lower tendency towards icosahedral
201     ordering.
202    
203     \begin{figure}[htbp]
204     \centering
205     %\includegraphics[width=\linewidth]{images/ficos.pdf}
206     \caption{Temperautre dependence of the fraction of atoms with local
207     icosahedral ordering, $f_\textrm{icos}(T)$ for 20, 30, and 40 \AA\
208     particles cooled at two different values of the interfacial
209     conductance.}
210     \label{fig:q6}
211     \end{figure}
212    
213     Since we have atomic-level resolution of the local bond-orientational
214     ordering information, we can also look at the local ordering as a
215     function of the identities of the central atoms. In figure
216     \ref{fig:AgVsCu} we display the distributions of $\hat{W}_6$ values
217     for both the silver and copper atoms, and we note a strong
218     predilection for the copper atoms to be central to local icosahedral
219     ordering. This is probably due to local packing competition of the
220     larger silver atoms around the copper, which would tend to favor
221     icosahedral structures over the more densely packed cubic structures.
222    
223     \begin{figure}[htbp]
224     \centering
225     %\includegraphics[width=\linewidth]{images/AgVsCu.pdf}
226     \caption{Distributions of the bond orientational order parameter
227     ($\hat{W}_6$) for the two different elements present in the
228     nanoparticles. This distribution was taken from the fully-cooled 40
229     \AA\ nanoparticle. Local icosahedral ordering around copper atoms is
230     much more prevalent than around silver atoms.}
231     \label{fig:q6}
232     \end{figure}